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Machine learning models are increasingly used in the medical domain to study the association between risk 
factors and diseases to support practitioners in understanding health outcomes. In this paper, we showcase 
the use of machine-learned staged tree models for investigating complex asymmetric dependence structures in 
health data. Staged trees are a specific class of generative, probabilistic graphical models that formally model 
asymmetric conditional independence and non-regular sample spaces. An investigation of the risk factors in 
invasive fungal infections demonstrates the insights staged trees provide to support medical decision-making.
1. Introduction

Risk factors increase an individual’s likelihood of negative outcomes 
for a particular disease or condition. They can range from demographic 
factors such as age, gender, and ethnicity to behavioral factors such 
as physical inactivity, smoking, and unhealthy diet. Environmental fac-
tors, such as air and water pollution, exposure to radiation, and access 
to healthcare, also play a role in determining an individual’s risk for 
certain diseases. The study of risk factors and their relationship to med-
ical outcomes is critical in medicine as it can provide insights into the 
causes of diseases, help identify populations at high risk, and inform the 
development of prevention and treatment strategies.

Machine learning techniques have emerged as powerful tools for 
modeling the relationships between risk factors and medical outcomes. 
These techniques can analyze complex datasets, and identify patterns 
and relationships that are not immediately apparent. As a result, ma-
chine learning has become an essential tool for medical research, 
helping health practitioners, researchers, and policymakers better un-
derstand the impact of risk factors on health outcomes and develop 
targeted interventions to prevent or mitigate these risks.

Recent trends in applied machine learning focused on developing 
highly complex and black-box models that lack interpretability and in-
tuitiveness (e.g. [1,57,76]). However, there is an increasing awareness 
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of the criticality of developing AI systems that can provide clear and in-
terpretable explanations for their decision-making process. Explainable 
AI (XAI) can help address the trust and interpretability issues associated 
with black-box models and increase users’ trust and adoption [2,67].

Probabilistic graphical models [37] are generative machine learning 
models that visually represent the overall dependence structure using 
graphs. They do not simply model the conditional distribution of the 
output of interest given the available risk factors, as in discrimina-
tive models, but the overall probability distribution. They thus provide 
an intuitive platform to perform inferential and independence queries, 
sensitivity analyses, and risk factors’ rankings: all critical activities in 
applied machine learning modeling [36].

This article showcases the use in medical research of a relatively 
new class of graphical models called staged trees [14,73]. They are prob-
ability trees whose inner vertices are colored to embed conditional in-
dependence information formally. Recent critical advances have made 
them a viable, efficient, and highly informative alternative to competi-
tor models in health applications. In particular: (i) software packages 
now implement staged trees for the use of practitioners in any area of 
science [12,86]; (ii) faster and more flexible algorithms to learn staged 
trees from data have been recently developed, scaling them up to dozen 
of variables (e.g. [15,44,71,72]); (iii) novel visualization frameworks 
allow for an intuitive depiction of the underlying dependence struc-
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ture between the variables [84]; (iv) recent theoretical advances have 
formalized the use of staged trees for classification problems [13] and 
causal reasoning and discovery [18,45,80,79].

We showcase the use of staged trees for health data by studying 
the risk factors associated with invasive fungal infections. Invasive fun-
gal infections by Aspergillus and other filamentous fungi (henceforth 
called AFF-IFI) have become a critical public health problem in recent 
decades [8], with an increase in filamentous fungal infections mainly 
due to Aspergillus spp, and to a lesser extent, Mucor spp and Fusarium 
spp [41]. AFF-IFIs are significantly related to impaired host immune 
response, having generally affected patients with hematological malig-
nancies, those undergoing hematopoietic stem cell transplantation, or 
solid organ transplantation under immunosuppressive treatment [20].

The most widely used diagnostic criteria [20,22] include host factors 
(mainly immunocompromised conditions), radiological findings (based 
on angioinvasive signs only, which are partially informative for less 
immunocompromised patients), and microbiological tests. They have 
been validated on oncohematological patients with a high level of im-
munosuppression only. However, an increasing number of patients with 
impaired immunity from other causes have been observed, with various 
systemic or bronchopulmonary pathologies (among others, critically ill 
patients admitted to the intensive care unit (ICU) with severe influenza 
or other viral infections, repeated use of corticosteroids, poorly con-
trolled diabetes, etc., [42]) with the consequent progressive increase 
in AFF-IFI in non-oncohematological patients and increased mortality, 
possibly due to lack of clinical suspicion [52].

Diagnosing these patients is not always easy because the AFF-IFI 
of non-oncohematological patients differs considerably in the degree of 
immunosuppression and underlying pathologies. Although they have as 
a common denominator the development of respiratory forms more fre-
quently with bronchopulmonary expression, they are not always iden-
tifiable, unlike oncohematological patients who are more likely to have 
more evident forms of homogeneous expression [20,22].

The emergent threat of invasive fungal diseases is driven by an-
tifungal resistance and limited global access to diagnostic tools and 
treatments [10,87]. This menace has vast implications for public health 
worldwide. It usually leads to more extended hospital stays and treat-
ments, including the need for expensive antifungal medicines, which 
are often unavailable in developing countries [48,87], Even if fungal 
infections have been recently recognized as a growing threat to human 
health worldwide, their study and clinical monitoring received little re-
sources at a global level [8]. This fact hinders our understanding of 
the problem and makes it impossible to understand its exact burden 
on public health [87]. In particular, due to its prevalence and expen-
sive treatment, it has become the most expensive fungal disease in the 
hospital setting [5].

Machine learning techniques for risk prediction and factor identifi-
cation have only recently started to be used in AFF-IFIs [47,50,89,91]. 
Only Potter et al. [66] developed a decision support system based on 
a probabilistic graphical model, namely the Bayesian network model 
[59], for combat-related AFF-IFI patients. With the present study, we 
contribute to developing robust and interpretable machine-learning ap-
proaches to understanding AFF-IFI diseases.

The two case studies below highlight the critical need to devise new 
criteria for the timely diagnosis of AFF-IFI patients, more widely appli-
cable than the gold standard EORTC scale [20,22], which must include 
the overlooked non-conventional group and broncoinvasive patterns, 
instead of angioinvasive ones only. Further details are given in Sec-
tion 4 below.

1.1. Health applications

Data-driven algorithms for discovering the genetic causes of var-
ious diseases are most commonly based on directed acyclic graphs 
(DAGs) (e.g. [17,25,65]). Applications of such causal discovery algo-
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rithms for understanding clinical risk factors have also recently started 
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to appear [78,85]. Conversely, the use of BNs as a decision-support tool 
for practitioners and as a platform for the study of risk factors is not 
as widespread [38–40,51], although recently they have been more fre-
quently used (e.g. [74,75,81]).

Tree-based machine learning algorithms are standard in health, for 
instance, decision trees [23,35]. However, these are not probability 
trees formally and highly differ from staged trees. Simple probability 
(or frequency) trees are vastly used in the health and medical liter-
ature [43] and are helpful to practitioners in computing probability 
queries [7,21]. Staged trees have been used in four medical applica-
tions in the past to investigate: type I diabetes [34], the effect of social 
and economic factors on kids’ health [3], COVID-19 trajectories [45], 
and data missingness patterns in health data [4].

2. Materials and methods

2.1. Data

Retrospectively included in the study were all non-oncohaematolo-
gical patients diagnosed with proven, probable, or possible pulmonary 
AFF-IFI according to different diagnostic scales from 1998 to 2021 in 3 
hospitals in the Community of Madrid, Spain (Hospital Ramón y Cajal, 
Hospital Doce de Octubre, Hospital Universitario Fundación Alcorcón) 
and two hospitals in the metropolitan city of Cagliari, Autonomous 
Region of Sardinia (Ospedale Santissima Trinitá di Dio and Ospedale 
Azienda Sanitaria G. Brotzu). The radiological findings were reviewed 
and described by three radiologists blinded to patients’ characteristics.

The chest CT findings and radiological pattern (RP, categorized as 
angioinvasive or broncoinvasive) of 146 patients1 with pulmonary AFF-
IFI and its prognostic value in non-oncohaematological patients divided 
into three groups (GR) according to the degree of immunosuppression 
have been assessed. The first group includes patients with neutropenia 
not related to haematological diseases (neutropenic group); the second 
includes patients who do not have neutropenia and have at least one of 
the following: solid organ transplant and/or tumor, inflammatory/au-
toimmune diseases, congenital or acquired immunodeficiency, or use of 
corticosteroids (conventional group); the third includes patients who, 
in the absence of neutropenia or another “conventional” immunosup-
pression factor, present alterations in innate and/or adaptive immunity 
described in the literature as related to specific populations at risk of 
AFF-IFI (non-conventional group). Despite the known relationship be-
tween this last group and AFF-IFI mortality, their risk factors are not 
included in the most widely used diagnostic scales. Therefore, they are 
often not diagnosed with AFF-IFI.

A first simpler case study investigates how the two above-mentioned 
patients’ characteristics (radiological pattern and group) are associated 
with the patients’ trajectory as recorded in the hospital: if entered the 
intensive care unit (ICU), if intubation is performed (INT) and finally 
the survival outcome (DTH).

In an extended case study, we consider additional risk factors for 
AFF-IFI that are known to be individually associated with an increase in 
mortality [28,58]. These are reported in Table 1 together with previous 
variables.

2.2. Logistic regression

Simple univariate logistic regressions for ICU, INT, and DTH are fit-
ted to data, using as predictor GR, RP, and the preceding variables in 
the trajectory (ICU → INT → DTH).

To study the relationship between the predictors and their effect 
on the probability of death, we fitted a group LASSO logistic regres-
sion [90], where the regularization parameter was chosen via a 10-fold 

1 The small sample size is due to the limited widespread of AFF-IFI. Related 

studies include comparable patients’ samples if not smaller [49,58].
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Table 1
Variables considered for the population under study, acronyms, and sample distributions. Categorical variables are 
reported as 𝑛 (%). Continuous variables are reported with the median (min-max). The guidelines of Hayes-Larson 
et al. [32] were followed to construct the table.

Response
sample

Complete
case sample

GROUP (GR) - Response sample

Total Total Neutropenic Conventional Non-Conventional
Sample Characteristics (n=146) (n=131) (n=9) (n=105) (n=32)

Death (DTH) 55 (38%) 50 (38%) 4 (44%) 35 (33%) 16 (50%)
Intubation (INT) 66 (45%) 62 (47%) 1 (11%) 44 (42%) 21 (66%)
Risk Factors
CMV Infection (CMV) 33 (23%) 32 (24%) 1 (11%) 30 (29%) 2 (6%)
Diagnostic Time (DT) - days 19 (4-87) 18 (4-87) 10 (4-28) 19 (5-87) 21 (5-59)
Diagnostic Time (DT) - days
< 16 58 (40%) 54 (41%) 7 (78%) 40 (38%) 11 (34%)
≥ 16 88 (60%) 77 (59%) 2 (22%) 65 (62%) 21 (66%)
ICU 72 (49%) 68 (52%) 2 (22%) 48 (46%) 22 (69%)
Immunotherapy (IM) 86 (59%) 77 (59%) 7 (78%) 79 (75%) 0 (0%)
Malnutrition (MN) 86 (59%) 85 (65%) 5 (56%) 56 (53%) 25 (78%)
Radiological Pattern (RP)
Angioinvasive 66 (45%) 61 (47%) 8 (89%) 48 (46%) 10 (31%)
Broncoinvasive 80 (55%) 70 (53%) 1 (11%) 57 (54%) 22 (69%)
Systemic Corticoids (SC) 43 (29%) 39 (30%) 1 (11%) 20 (19%) 22 (69%)
Solid Organ Transplant (SOT) 57 (39%) 52 (40%) 2 (22%) 55 (52%) 0 (0%)
Viral Pneumonia (VP) 29 (20%) 28 (21%) 1 (11%) 15 (14%) 13 (41%)
Demographics
Age - years 65 (14-91) 64 (14-91) 68 (14-87) 63 (17-91) 69 (48-85)
Age - years
14-60 56 (38%) 55 (42%) 3 (33%) 46 (44%) 7 (22%)
61+ 88 (60%) 75 (57%) 6 (67%) 57 (54%) 25 (78%)
NA 2 (2%) 1 (1%) 0 (0%) 2 (2%) 0 (0%)
Male 106 (73%) 96 (73%) 5 (56%) 79 (75%) 22 (69%)
cross-validation. The model also includes as predictors all 2-way inter-
actions, except for ICU:INT to avoid zero counts.

2.3. Bayesian networks

Evolving from the path coefficients method of [88], Bayesian Net-
work (BN) models [59] have become powerful tools in data science and 
statistics [6,69]. A BN defines a factorization of a random vector’s prob-
ability mass function (pmf) using a directed acyclic graph (DAG). More 
formally, let [𝑝] = {1, … , 𝑝} and 𝒀 = (𝑌𝑖)𝑖∈[𝑝] be a random vector of in-
terest with sample space 𝕐 = ×𝑖∈[𝑝]𝕐𝑖. A BN defines the pmf 𝑃 (𝒀 = 𝒚), 
for 𝒚 ∈ 𝕐 , as a product of simpler conditional pmfs as follows:

𝑃 (𝒀 = 𝒚) =
∏
𝑖∈[𝑝]

𝑃 (𝑌𝑖 = 𝑦𝑖 | 𝒀 Π𝑖
= 𝒚Π𝑖

), (1)

where Π𝑖 are the parents of 𝑖 in the DAG associated to the BN. Assuming 
variables are topologically ordered, the BN is further defined by the 
(symmetric) conditional independence statements 𝑌𝑖 ⟂⟂ 𝑌[𝑖−1]|𝑌Π𝑖

.
The DAG associated with a BN provides an intuitive overview of the 

relationships between variables of interest. However, it also provides a 
framework to assess if any generic conditional independence holds for 
a specific subset of the variables via the so-called d-separation criterion 
(e.g. [59]). Furthermore, the DAG provides a framework for the effi-
cient propagation of probabilities and evidence via algorithms that take 
advantage of the structure of the underlying DAG [19].

Although the underlying DAG can be elicited using expert judgment, 
it is most commonly learned from data using nuanced optimization al-
gorithms (e.g. [29,70]). Moreover, BNs and DAGs are the gold standards 
for representing and learning causality from data, providing an intu-
itive framework for defining causal interventions and predicting their 
effects [29,60,64].

We fit a BN over the same five variables as the logistic regression 
(GR, RP, ICU, INT and DTH). Since BNs are generative models, they esti-
mate a full probability distribution over all variables, formally modeling 
their dependence. In particular, a BN is learned using 5000 bootstrap 
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replications of the tabu algorithm implemented in bnlearn [68], en-
forcing the causal order GR, RP, ICU, INT, and DTH. Arcs appearing in 
more than 50% of the replications are retained in the final model.

Similarly in the second case study (Section 3.2) a BN is fitted using 
the same procedure over all the variables in Table 1 but INT, since 
it is usually not considered when studying risk factors. Furthermore, 
the analysis below shows that it is functionally related to ICU and is 
thus redundant for studying risk factors. Demographic variables are also 
excluded from the analysis.

2.4. Staged trees

There is an increasing awareness that the stringent assumption of 
symmetric conditional independence of DAGs may be too restrictive 
in applications [53,63,82]. The most common non-symmetric condi-
tional independence is context-specific [9]: the independence between 
two variables holds only for specific values (called contexts) of con-
ditioning variables: e.g. 𝑌𝑖 ⟂⟂ 𝑌𝑗 |𝑌𝑘 = 𝑦𝑘 for a specific 𝑦𝑘 ∈ 𝕐𝑘. More 
flexible and generic types of independence statements have been de-
fined, namely partial and local [63].

Although models accounting for non-symmetric independence have 
been defined (e.g. [11,33,54,61,62,77]), staged trees [14,73] are the 
only ones extensively studied and implemented in user-friendly soft-
ware [12,86]. Since a formal definition of staged trees is beyond this 
paper’s scope and can be found elsewhere [24,30,84], we introduce 
them next with an example.

Fig. 1 reports a staged tree over the binary variables radiological pat-
tern (RP), diagnostic time (DT), access to ICU (ICU) and death (DTH). 
Each root-to-leaf path represents an atomic event (an assignment of all 
four variables), and inner vertices with corresponding emanating edges 
are associated with conditional probabilities. For instance, 𝑣1 is associ-
ated with the conditional distribution of diagnostic time conditional on 
an angioinvasive radiological pattern. Colors of the inner vertices are 
interpreted as equality of conditional distributions: the blue vertices 𝑣1
and 𝑣2 denote that 𝑃 (DT | RP = angio) = 𝑃 (DT | RP = bronco), or equiv-

alently DT ⟂⟂ RP.
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Fig. 1. Example of a staged trees over the variables RP, DT, ICU and DTH.
The flexibility of the coloring allows for asymmetric forms of inde-
pendence. For instance, the cyan colored vertices 𝑣7 − 𝑣10 denote the 
context-specific independence DTH ⟂⟂ ICU, DT | RP = angio: i.e. condi-
tionally on an angioinvasive radiological pattern, death is independent 
of both access to ICU and diagnostic time. The yellow and green vertices 
represent DTH ⟂⟂ DT | ICU, RP = bronco. Finally, red and orange vertices 
(at depth 2 from the root) are associated with so-called local indepen-
dences [63], where no discernable patterns can be identified since they 
imply equalities 𝑃 (ICU | DT ≥ 16, RP = bronco) = 𝑃 (ICU | DT < 16, RP =
angio) and 𝑃 (ICU | DT < 16, RP = bronco) = 𝑃 (ICU | DT ≥ 16, RP =
angio). Every BN can be represented exactly as a staged tree [73], 
while the reverse does not hold since the coloring allows for non-
symmetric independence statements that have no graphical represen-
tation in a DAG. Although, as for BNs, staged trees could be elicited 
from experts, they are most often learned from data using heuristic 
algorithms [12,44].

We employ a staged tree model in the first case study to provide a 
flexible picture of patients’ trajectories and outcomes. A priori, we fix 
the ordering of the variables as GR, RP, ICU, INT, and DTH to represent 
the actual steps of the patient’s trajectory.

For the extended case study, learning a staged tree over ten binary 
and one ternary variable is challenging because of the exponentially 
growing model space size (e.g. [24]). Visualizing the staged tree would 
also be impossible as it would include 210 ⋅ 3 = 3072 leaves. To circum-
vent the visualization issue, Varando et al. [84] defined the so-called
minimal DAG: a DAG representation of the staged tree such that two 
variables are d-separated in the minimal DAG if and only if the coloring 
of the staged tree embeds the associated conditional independence.

Because of the high flexibility of the coloring of staged trees, min-
imal DAGs of staged trees are usually fully connected unless some 
sparsity is imposed in the structural learning algorithms. Sparsity is the 
gold standard in Gaussian probabilistic graphical models (e.g. [26]). In 
the context of discrete BNs, one of the first attempts to impose sparsity 
was to limit the number of parents each variable can have [27,83]. This 
makes sense from an applied point of view since, most often, only a lim-
ited number of variables can be expected to influence another directly. 
Setting a maximum number of parents is also available in the standard
bnlearn software [68].

Limiting the maximum number of parents further decreases the size 
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of the possible models, speeding up structural learning algorithms. For 
this reason, Leonelli and Varando [44] introduced learning algorithms 
for 𝑘-parents staged trees: staged trees whose minimal DAG has a max-
imum in-degree less or equal to 𝑘. Limiting the number of parents has 
a further advantage in that the probabilities to be estimated are from 
small dimensional contingency tables, thus providing more reliable es-
timates with narrower confidence intervals.

3. Results

3.1. 1st case study

We start investigating the effect of the groups’ allocation and the 
radiological pattern on the patient trajectory in the hospital: first, if they 
enter the ICU; second, if they are intubated; and, ultimately, whether 
they die.

Table 2 reports the results of the univariate logistic regression anal-
ysis, suggesting that access to ICU (OR = 2.26) and intubation (OR = 
2.33) are the only two significant predictors of death. Concerning intu-
bation and access to ICU, patients of the non-conventional group have 
a much higher risk (OR INT = 15.2; OR ICU = 7.70), possibly because 
they tend to have longer diagnosis times since they are usually not con-
sidered at risk of AFF-IFI.

Table 3 reports the estimated ORs from the LASSO logistic regres-
sion. Except for RP:INT, all two-way interactions are estimated not to be 
relevant (OR = 1). Furthermore, as a discriminative model, logistic re-
gression cannot provide additional information about the relationships 
between risk predictors. Table 4 shows that the predicted probabilities 
from the LASSO logistic regression, while roughly following the em-
pirical ones from the data, fail to capture the highly non-symmetric 
relationships between predictors.

Fig. 2 reports the learned BN, which suggests that the group (GR) 
and the radiological pattern (RP) are independent of the patient’s trajec-
tory. Also, access to ICU and intubation are estimated to be independent 
of survival. This conclusion is possibly due to the strict hypothesis of 
symmetric independence embedded by BNs. These stringent hypothe-
ses were also confirmed by other classical DAG learning algorithms (e.g. 
[16,83]).

To have a more comprehensive overview of the patients’ trajectories 

in the hospital, we constructed the data event tree reported in Fig. 3. 
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Fig. 2. Structure of the Bayesian network learned over the variables GR, RP, ICU, INT, and DTH. The edge label reports the proportion of times the edge appeared 
in the bootstrap replications and, in parenthesis, the proportion of times the edge has the given orientation.
Table 2
Odds ratios and 95% confidence intervals for univariate logistic regressions to 
predict death.

Response Predictor Term OR CI.Low CI.High

DTH GR Neutropenic (Intercept) 0.80 0.20 3.02
DTH GR Conventional 0.63 0.16 2.66
DTH GR Non-Conventional 1.25 0.28 5.88
DTH RP Bronco. (Intercept) 0.48 0.30 0.76
DTH RP Angio. 1.63 0.83 3.21
DTH ICU No (Intercept) 0.40 0.23 0.65
DTH ICU Yes 2.26 1.15 4.53
DTH INT No (Intercept) 0.40 0.24 0.65
DTH INT Yes 2.33 1.18 4.67

INT GR Neutropenic (Intercept) 0.13 0.01 0.68
INT GR Conventional 5.77 1.00 109.0
INT GR Non-Conventional 15.2 2.37 302.8
INT RP Bronco. (Intercept) 0.95 0.61 1.48
INT RP Angio. 0.73 0.37 1.40
INT ICU No (Intercept) 0.00 0.00 Inf
INT ICU Yes 0.00 0.00 Inf

ICU GROUP Neutropenic (Intercept) 0.29 0.04 1.18
ICU GR Conventional 2.95 0.67 20.4
ICU GR Non-Conventional 7.70 1.54 58.3
ICU RP Bronco. (Intercept) 0.95 0.61 1.48
ICU RP Angio. 1.05 0.55 2.02

Table 3
Estimated ORs for LASSO logistic 
regression with 2-way interactions 
to predict DEATH. Only ORs differ-
ent from 1 are reported.

Term OR

Intercept 0.47
GR = conventional 0.84
GR = non-conventional 1.13
RP = angio. 1.20
INT = yes 1.58
RP = angio. & INT = yes 1.33

Even though no machine learning algorithms have been used to learn 
the staging, the tree is already highly expressive and intuitively shows:

• Which combinations of variables are not observed in the data. 
These are usually referred to as observed zeros. For instance, the 
only patient in the neutropenic group with a broncoinvasive pat-
tern enters the ICU.

• A non-product sample space. It is known that patients who do not 
enter the ICU cannot be intubated. For this reason, after the edge 
ICU = no, the edge INT = no is always the only option. This func-
tional relationship is often called structural zero.

The event tree in Fig. 3 is now embellished with a coloring (stag-
ing) of its vertices to learn about non-symmetric dependence patterns, 
which BNs cannot generally represent. The staged tree learned with 
a hill-climbing greedy algorithm minimizing the BIC [31] using the
stagedtrees R package [12] is reported in Fig. 4. Table 5 reports 
the stage probabilities with associated confidence intervals.

Clinically, we observe the following. Patients in the non-conventi-
onal and conventional groups are equally likely to have the same 
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radiological pattern (stage 2). In particular, these two groups of pa-
tients are more likely to have a broncoinvasive pattern (58%), whereas 
neutropenic patients are more likely to have an angioinvasive pattern 
(89%). Admission to the ICU does not depend on the radiological pat-
tern in the case of non-conventional and conventional patients (stages 
3 and 4), but admission itself is higher for non-conventional patients 
(70%). On the other hand, the radiological pattern does affect the prob-
ability of admission to the ICU in the case of neutropenic patients. 
Neutropenic patients with a broncoinvasive pattern have a higher prob-
ability (70%) of accessing the ICU than patients with an angioinvasive 
pattern (43%). Thanks to the colors, we can see that the probability 
of ICU admission of neutropenic patients with a broncoinvasive pat-
tern and non-conventional patients is the same. The same observation 
holds for neutropenic patients with an angioinvasive pattern, and con-
ventional patients.

Upon admission to the ICU, patients with a broncoinvasive pattern 
have a 100% chance of being intubated regardless of the group (stage 
5). Patients in the non-conventional and conventional groups are es-
timated to have the same chance of being intubated (82%), while no 
neutropenic patients with an angioinvasive pattern are intubated.

Intubated patients with an angioinvasive pattern from the non-
conventional and conventional groups have the same estimated chance 
of dying, which reaches 59% (stage 12). In contrast, the patients with 
the highest survival (82%) are non-intubated individuals from the non-
conventional group with an angioinvasive pattern and ICU admission 
or conventional patients with a broncoinvasive pattern without ICU ad-
mission (stage 10). The second-highest survival probability (73%) is 
associated with non-intubated patients with an angioinvasive pattern 
admitted to ICU if in the conventional group or not admitted to the 
ICU if in the neutropenic group (stage 9). Conventional patients not 
admitted to the ICU with an angioinvasive pattern have a survival prob-
ability of 67%, the same as conventional patients with a broncoinvasive 
pattern, admitted to the ICU and intubated (stage 11) Patients in the 
non-conventional group who have not been admitted to the ICU have 
a survival of 50%, regardless of the radiological pattern (stage 13). Pa-
tients in the non-conventional group with a broncoinvasive pattern who 
have been intubated also have a 50% survival probability (stage 13). 
The two neutropenic patients admitted to the ICU have died regardless 
of the radiological pattern and intubation (stage 8).

Despite the small sample size, the staging of the tree has the asso-
ciated advantage that probabilities are estimated using larger sample 
sizes than in an event tree. This has a reduction in the uncertainty 
about the probability estimates as shown in the confidence intervals 
of Table 5. For instance, it can be noticed that the confidence intervals 
of the survival probability for patients in stage 10 (highest one) and in 
stage 12 (lowest non-zero) do not intersect. Of course, this staged tree 
should me mostly interpreted as an exploratory tool, but the associated 
uncertainty measures can provide a first indication towards medical ev-
idence.

3.2. Extended case study

The previous case study is highly suited for staged tree modeling 
since it includes a limited number of variables, with an explicit causal 
ordering and an asymmetric sample space that the tree can explic-
itly and intuitively represent. However, recent advances in staged tree 
theory have made them a viable and efficient tool to investigate depen-
dence in more complex scenarios, including a more extensive array of 
risk factors, as we showcase in the following data application.

We now consider all risk factors included in Table 1, except for intu-

bation. Observations with missing values were dropped to ensure a fair 
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Fig. 3. Event tree over the variables GR, RP, ICU, INT, and DTH (D). The labels of the edges indicate the corresponding events, and in parenthesis, the observation 
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counts along each edge.
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Table 4
Empirical and predicted probabilities of death for combinations of significant predictors in the LASSO logistic regression.

Observed Predictive

GR = neutro GR = conv. GR = non-conv. GR = neutro GR=conv. GR = non-conv

PR = angio
INT = yes NaN 60% 57% 54% 50% 57%
INT = no 38% 32% 33% 36% 32% 39%

PR = bronco
INT = yes 100% 33% 50% 43% 38% 46%
INT = no NaN 18% 50% 32% 28% 35%

Fig. 4. Staged tree over the variables GR, RP, ICU, INT, and DTH (D). The colors of the nodes denote the stages, the labels of the edges indicate the corresponding 
events, and in parenthesis the observation counts for each stage.

Table 5
Conditional probability estimates and associated 95% confidence intervals for the staged tree in Fig. 4.

Stage Probability Estimate CI.Low CI.High Probability Estimate CI.Low CI.High

1 RP = bronco 0.11 0.00 0.32 RP = angio 0.89 0.68 1.00
2 RP = bronco 0.58 0.49 0.66 RP = angio 0.42 0.34 0.51
3 ICU = yes 0.70 0.54 0.85 ICU = no 0.30 0.15 0.46
4 ICU = yes 0.43 0.34 0.53 ICU = no 0.57 0.47 0.66
5 INT = yes 1.00 1.00 1.00 INT = no 0.00 0.00 0.00
6 INT = yes 0.00 0.00 0.00 INT = no 1.00 1.00 1.00
7 INT = yes 0.84 0.72 0.97 INT = no 0.16 0.03 0.28
8 DTH = yes 1.00 1.00 1.00 DTH = no 0.00 0.00 0.00
9 DTH = yes 0.27 0.01 0.54 DTH = no 0.73 0.46 0.99
10 DTH = yes 0.18 0.05 0.30 DTH = no 0.82 0.70 0.95
11 DTH = yes 0.33 0.20 0.47 DTH = no 0.67 0.53 0.80
12 DTH = yes 0.59 0.40 0.78 DTH = no 0.41 0.22 0.59
13 DTH = yes 0.50 0.30 0.70 DTH = no 0.50 0.30 0.70
18
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Fig. 5. Structure of the Bayesian network learned over AFF-IFI death-related risk factors. The edge label reports the proportion of times the edge appeared in the 
bootstrap replications and, in parenthesis, the proportion of times the edge has the given orientation.

Fig. 6. Minimal DAG associated to learned staged tree over AFF-IFI death-related risk factors.
comparison between BNs and staged trees since the two learning algo-
rithms would tackle this missingness differently. The resulting dataset 
includes 131 patients, and 80% of the dropped observations were from 
the conventional group (which included most of the data). Fig. 5 re-
ports the BN learned using the same procedure as in Section 3.1, where 
edges from death, ICU, and diagnostic time to other variables are for-
bidden for ease of interpretation. Again death, and in this case also 
diagnostic time, is independent of all risk factors. This implies, for in-
stance, that angioinvasive and broncoinvasive patients have the same 
probability of dying. A similar conclusion holds for the patients in the 
different groups. The BN provides an intuitive representation of the 
variables’ dependence and an efficient platform to answer inferential 
queries. For instance, the bnlearn software can be straightforwardly 
used to compute the probability that a patient entering the ICU has a 
solid organ transplant, computed as 0.35. Similarly, we can compute 
any other probability of interest from the model using software.

Fig. 6 reports the minimal DAG of the 2-parents staged tree over 
the AFF-IFI death-related risk learned using the algorithm of Leonelli 
and Varando [46]. We chose two parents to find a balance between the 
goodness of fit and ease of interpretation. This minimal DAG reveals 
a much more involved dependence pattern. Diagnostic time, assumed 
to be marginally independent of death by the BN, directly influences it. 
Group is a central variable that directly affects diagnostic time, systemic 
19

corticoids, radiologica pattern, immunotherapy, solid organ transplant, 
CMV infection, and viral pneumonia. No variables are assumed to be 
marginally independent of death.

The 2-parents staged tree better fits the data, having a BIC of 1698, 
against that of the BN equal to 1749. Given the small dataset, checking 
predictive accuracy would be unreliable. However, staged trees have 
been shown to often outperform BNs in predictive tasks [13].

The minimal DAG of the staged tree provides a compressed, partial 
vision of the staged tree dependence structure. However, such an asym-
metric structure is still learned from data. It can be visualized for each 
variable using a dependence subtree [84], reporting the conditional 
independence coloring of a variable given its parents. Fig. 7 reports the 
dependence subtree associated with the variable death in the minimal 
DAG of Fig. 6. It shows that survival is conditionally independent of the 
diagnostic time given ICU = yes. Patients with a short diagnostic time 
who do not access the ICU have the smallest probability of death (11%).

The group patients belong to, which has already been observed to 
be associated with the radiological pattern, has a direct influence on 
the diagnostic time, which in turn affects mortality. The dependence 
subtree for the diagnostic time in Fig. 8 shows that non-conventional 
patients, usually not considered by diagnostic criteria, tend to have a 
longer diagnostic time. For this reason, the use of new diagnostic crite-
ria that consider the broncoinvasive radiological pattern and a broader 
classification of risk groups would lead to a rapid diagnosis of AFF-IFI 
patients, possibly entailing a reduction in mortality. In turn, the use of 

these criteria would lead to a reduction in hospital pressure in ICU (as 
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Fig. 7. Dependence subtree for DEATH from the minimal DAG of Fig. 6 with stage probabilities and associated confidence intervals.
20

Fig. 8. Dependence subtree for DIAGNOSTIC TIME from the minimal DAG of Fig. 6 with stage probabilities and associated confidence intervals.
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observed in case study 1) with a consequent reduction of hospitality 
costs and an increase in survival [52].

4. Discussion

Observations from the results on the first case study (Section 3.1) re-
inforce what has been described in the literature, that non-neutropenic 
patients (conventional and not-conventional) tend to develop respira-
tory forms more frequently with bronchopulmonary patterns [49,55,56,
58], although they differ considerably in the type of underlying diseases 
and degree of immunosuppression. On the other hand, neutropenic pa-
tients more frequently present angioinvasive patterns [20,42].

Regarding actionable conclusions, the observations drawn from the 
staged tree highlight the need to include information about broncoin-
vasive patterns in the diagnostic criteria for AFF-IFI since the gold 
standard EORTC criteria [20,22] completely overlook them. We are cur-
rently working on proposing extended diagnostic criteria based on the 
results of this study. However, their discussion is beyond the scope of 
this paper.

5. Conclusions

Recently, staged trees have been the focus of research, leading to 
a better understanding of their underlying dependence structure, more 
flexible visualization platforms, more efficient data learning algorithms, 
and open-source implementations. Given all these advances, staged 
trees can now provide unique insights into data-driven health appli-
cations to support practitioners.

Two case studies in AFF-IFIs demonstrated the flexibility of staged 
trees in intuitively representing highly asymmetric patterns of depen-
dence, which BNs cannot explicitly visualize. Furthermore, given suf-
ficient data, staged trees could be used to answer inferential and in-
dependence queries and sensitivity analyses. Using staged trees helped 
clinicians understand the relationship between risk factors in AFF-IFI 
more intuitively than BNs.

From a clinical perspective, the analysis showed that the non-
conventional group, usually not considered by standard diagnostic 
scales, shares many characteristics and risks with the neutropenic and 
conventional groups. Therefore this observation highlights the need to 
construct more widely applicable entry criteria for diagnostic scales 
in AFF-IFIs for the timely diagnosis of this group of often overlooked 
patients. Furthermore, the analysis has shown that the broncoinvasive 
radiological pattern, not considered within the gold standard diagnostic 
criteria, plays a critical role in AFF-IFI. Its full clinical appraisal would 
lead to a timely diagnosis and, consequently, a decrease in mortality.

Despite the small sample size and the lack of statistical validation 
techniques, all the insights given by staged trees match the clinical in-
tuition of the doctors in our study and information from established 
literature [49,58]. However, the staged tree provided a more intuitive 
platform for their interpretation and discussion among clinicians than 
numerical tables commonly reported in medical studies.
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