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The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal
environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a
selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are charac-
terized by their own physicochemical conditions, distinct microbial communities are present in these
locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions,
cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is
under-explored. This review aims to address these gaps in knowledge by focusing on how the host
intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota
composition.
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Fig. 1. Graphical representation of the intestinal tract of humans and mice. Both human and mouse intestine can be separated into small and large intestine (also known as
colon). Humans and mice have 3 segments of the small intestine: duodenum, jejunum and ileum. The cecum of humans is a small pouch at the beginning of the colon and is
connected to the appendix. The cecum of mice is a large fermentation region that is distinct from both small and large intestine. In both humans and mice, the colon is
segmented into different regions with distinct structures and function.
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1. Intestinal architecture and function

The gastrointestinal tract is essentially a series of hollow inter-
connected organs lined by epithelial cells which performs multiple
functions including digestion, absorption of water, uptake of nutri-
ents, immune tolerance/homeostasis, regulation of the intestinal
environment, and maintenance of the gut microbiota [2]. The
architecture of the gastrointestinal tract facilitates these numerous
functions. The intestine is divided length wise based on location
(Fig. 1). In mammals, the small intestine consists of the duodenum,
jejunum and ileum, while the large intestine consists of the colon.
In humans the small intestine is approximately (~) 6 m long. In
mice the small intestine is approximately ~350 mm [3]. In terms
of structure, the small intestine consists of a single layer of colum-
nar epithelium with crypts and villi. The crypts of Lieberkuhn har-
bor the proliferating stem cells, and finger-like villi contain the
majority of differentiated absorptive cells [4,5]. The adult small
135
intestinal epithelium is composed of different cell lineages:
absorptive enterocytes (~90% of cells), mucus-secreting goblet cells
(~5%), antimicrobial secreting Paneth cells (~3%), hormone secret-
ing enteroendocrine cells (~1%), chemo-sensing tuft cells (<1%)
and proliferative stem cells (~1%) [5–10]. Enterocytes, goblet cells
and enteroendocrine cells are located in the intestinal villi, while
Paneth and stem cells are located in the crypts [6,7,11,12]. Prolifer-
ation of the stems cells results in renewal of the epithelium every
3–6 days in humans [9] and ~2–3 days in mice [13].

The different regions of the intestine have unique functions. The
duodenum begins at the base of the stomach’s pyloric sphincter. A
major function of the duodenum region is to neutralize the acidic
chyme, or partially processed food material, from the stomach
and enzymatically breakdown food. Enzymes from the pancreas
and duodenum aid in digesting proteins and starches as well as
emulsifying fats. The duodenum is also the site of amino acid, fatty
acid, monoglycerides, phosphorus, and mono and/or disaccharides,
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iron, calcium, vitamin A, vitamin B12, and water absorption [5].
The jejunum is adjacent to the duodenum and is a site for the
absorption of amino acids, fatty acids, oligosaccharides, minerals,
electrolytes, vitamins, and water [5]. The final section of the small
intestine is the ileum, which is responsible for absorption of bile
salts and fats, as well as vitamin B12 and water.

The large intestine, also known as the colon, is largely responsi-
ble for reclaiming electrolytes and water. The colon in humans is
~1.5 m in length [5], while the colon in mice is ~110 mm [3]. Sim-
ilar to the small intestine, the colon can be further subdivided
based on anatomic divisions. In humans, the colon is divided into
the ascending colon, transverse colon, descending colon, sigmoid
colon, rectum, and anus [5]. In mice, the colon is commonly divided
into proximal, mid and distal colon [14]. In contrast to the small
intestine, the large intestine consists of crypts without villi [5,9].
These crypts are rapidly renewed by stem cells at the crypt base
[15]. Colonic epithelial cells include absorptive enterocytes at the
top of the crypts and mucus producing goblet cells that line the
colonic crypts. Mucus is critical in the colon as it provides lubrica-
tion for the feces and protects the underlying epithelium and
immune cells from interacting with luminal antigens.

Although considerable anatomical and physiological features of
the intestinal tract are shared between humans and mice, a key
Fig. 2. Graphical representation of intestinal ion transport. Transport mechanisms in the
distributed, creating unique microenvironments. These transporters are present in mou
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distinction is the cecum. In humans, the cecum is 6 cm and of
minor importance for intestinal homeostasis [16]. In mice, the
cecum is large, being 3–4 cm in length, and functions as a microbial
fermentation vessel. It has been speculated that in mice, the cecum
functions to restore the colonic microbiome after insult. In terms of
size, the human cecum per kg of body weight roughly calculates to
0.09 cm per kg, while in mice, the cecum is 175 cm per kg body
weight [16]. These calculations illustrate that, relative to body
weight, the cecum is a much larger organ in mice than in humans.
Since the cecum serves very different functions in mice versus
humans, acting as a bioreactor for microbes in mice and serving
as a reservoir for luminal contents passing from the small to large
intestine in humans, this review will only focus on similar anatom-
ical and functional segments (small and large intestine) in relation-
ship to the microbiome in mice and humans.
2. Intestinal ion transport

The combination of digestion, nutrient absorption, water
absorption, ion absorption and/or secretion determines the pH
and ion composition of intestinal fluid and sets the environmental
conditions for the growth of the intestinal microbiota [14,17–21].
small intestine and colon are depicted. As shown, ion transporters are differentially
se and human.
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Overall, intestinal ion transport is characterized by net absorption
of NaCl, nutrients and water and net secretion of bicarbonate
(HCO3�) and KCl [22,23]. The opposing functions of absorption
and secretion are accomplished by transporters located in cells in
both villus and crypt regions (Fig. 2). In general, cells in the villus
facilitate absorption, while cells in the crypts promote secretion
[22–26]. Transporters are found at both the apical (facing the
lumen) and basal (facing the blood) membranes, allowing for
transport in both directions [22].

Small intestinal fluid absorption predominantly occurs via the
net movement of Na+. Na+ absorption is accomplished by either
direct absorption of Na+ by Na+/H+ Exchangers (NHEs) or through
coordination of Na+ absorption with other components such as glu-
cose, transported by Na+-glucose co-transporter 1 (SGLT1) [17–
19,23]. In the intestine, there are three major NHEs: NHE1, NHE2
and NHE3. Apical NHE3 plays a major role in Na+ absorption, pH
and cell volume regulation [23,27,28], while NHE2 appears to con-
tribute to pH regulation and only minimally in Na+ absorption
[17,19,21,29]. Basolateral NHE1 also participates in volume and
pH regulation. In addition to Na+ and water, nutrients such as glu-
cose and amino acids are primarily absorbed in the small intestine.
Glucose enters the enterocyte via apical SGLT1 and exits entero-
cytes via the basolateral glucose transporter 2 (GLUT-2) [23].
Amino acids enter the enterocyte via apical Na+-coupled and/or
H+/dipeptide co-transporters and exit via various basal amino acid
transporters.

In contrast to absorption, secretion in the small intestine
involves the basal Na+/K+ pump, which drives the uphill entry of
Cl� by the basal Na+-K+-2Cl� co-transporter (NKCC1) [30]. Secre-
tion is also supported by basal K+ channels, which repolarize the
cell and maintain the driving force for Cl� exit. At the apical sur-
face, Cl� can exit the enterocyte by Cystic Fibrosis Transmembrane
Regulator (CFTR, family Cl� channels (ClC)), and/or the Ca2+-
activated Cl� channels (ClCA) [22,31–33]. In addition to Cl� secre-
tion, enterocytes also actively secrete bicarbonate, which plays a
critical role in defining the intestinal pH. In the duodenum in par-
ticular, bicarbonate secretion is crucial for luminal alkalization.
Bicarbonate secretion is accomplished by the anion exchanger
down-regulated in adenoma protein (DRA) [34] and the putative
anion transporter PAT1 [35]. Bicarbonate secretion via DRA and
Cl� secretion via CFTR are also essential for mucus excretion from
goblet cells [36,37].

Compared to the small intestine, there are far fewer nutrient
transporters in the colon (Fig. 2). In contrast to the small intestine
where Na+ and glucose drive water absorption, in the colon water
absorption is only driven by Na+ absorption [23]. The proximal seg-
ments of the colon expresses NHE2 and NHE3, which contribute to
the absorption of residual water and maintenance of colonic pH.
The more distal segments of colon can also express NHE2, NHE3,
but their expression is lower than the proximal colon. Additionally,
the distal colon expresses the epithelial Na+ channel (ENaC)
[22,33]. The colon also harbors secretory transporters. The bicar-
bonate transporter DRA is predominantly expressed in the distal
colon [14,23]. In mice, NHE3 is highly expressed in the proximal
colon with decreasing expression in the distal colon, while DRA
is highly expressed at the most distal end of the colon with
decreasing expression toward the proximal colon [14]. The speci-
ficity of these ion transporters likely reflects specific intestinal
environment regulation and dictates potential environmental
changes. The colon also secretes and absorbs K+ by apical K+ trans-
porters and the H+/K+-ATPase [23]. Collectively, the balance of
absorption and secretion work in concert for the proper absorption
of nutrients and water, as well as maintaining the proper intestinal
ion composition and pH. This absorption/secretion balance pro-
duces feces low in salt, nutrients and water content (<2%). When
this absorption/secretion balance is disrupted, diarrhea ensues
137
[23]. Together these ion transporters regulate the intestinal envi-
ronment of the small and large intestine.
3. Mouse and human gut microbiomes

In both humans and mice, the gut microbiota is dominated by
two major phyla: Firmicutes and Bacteroidetes [38–42]. Although
mice and humans appear to harbor similar bacterial communities
at the high-taxonomic levels (phyla, class, order), they differ at
the lower-taxonomic levels (genera, species, subspecies) [43–47].
A comparison of fecal 16S rDNA data from four public datasets
from healthy adults [48,49] and five murine studies [50–54] by
Nguyen et al. revealed that mice and humans harbor 79 shared
genera [55]. Clostridium (Firmicutes), Bacteroides (Bacteroidetes)
and Blautia (Firmicutes) were found in both humans and mice at
similar relative abundance. However, in human samples, Prevotella
(Bacteroidetes), Faecalibacterium (Firmicutes) and Ruminococcus
(Firmicutes) were found in high abundance, while Lactobacillus
(Firmicutes), Alistipes (Bacteroidetes) and Turicibacter (Firmicutes)
were more abundant in mice [55]. Other studies have identified
differences between Mucispirillum schaedleri (Deferribacteres)
[56] and segmented filamentous bacteria (Firmicutes) [57–61],
which both appear higher in mice than humans. Despite lower-
taxonomic differences, the microbiota of both humans and mice
share similar metagenomic core functions [44,45,48,62–64]. In
mouse and human gut microbiome cores, 25 genera have been
identified as shared [63]. Moreover, almost 80% of annotated func-
tions were found in common between the mouse and human
microbiome, indicating significant functional overlap in micro-
biome function.

A confounding factor in studying the microbiome of mice and
humans is the techniques employed by each individual study
[65,66]. Common techniques include 16S rRNA sequencing and
shot-gun metagenomic approaches. 16S rRNA gene sequencing
employs PCR to target and amplify portions of the hypervariable
regions (V1-V9) of the bacterial 16S rRNA gene. Amplicons are then
given molecular barcodes, pooled together, and sequenced. Raw
sequencing data undergoes trimming, error correction, and com-
parison to a 16S reference database which assigns phylogenetic
rank to reads. In contrast with 16S sequencing, which only targets
16S rRNA genes, shotgun metagenomic sequencing sequences all
the genomic DNA. The workflow for library preparation is similar
to regular whole genome sequencing. Similar to 16S sequencing,
shotgun metagenomic sequencing also includes quality trimming
and comparison to a reference database comprising whole gen-
omes or marker genes to generate a taxonomy profile. Since shot-
gun metagenomic sequencing covers all genetic information, the
data can be used for additional analyses, e.g. metabolic function,
antibiotic resistance, metabolite prediction, etc. A major difference
between 16S and shotgun metagenomics is the taxonomic resolu-
tion: 16S is limited to the genus level, while shotgun can obtain
high resolution at the species and strain level. For both 16S
sequencing and shotgun metagenomic sequencing, multiple refer-
ence databases exist, as well as different versions of each database,
and these databases may generate different taxonomy assignment;
leading to potential differences in microbiome output. Another
consideration is sequencing depth. Jovel et al. randomly sampled
libraries at depths of 500, 1000, 5000, 10,000, 50,000, and
100,000 to investigate the minimal sequencing depth sufficient
for accurately profiling bacterial community composition in stool
samples [66]. The authors found that sequencing depths of 1000
and 50,000 were remarkably consistent, but the assignments of
some bacteria required increasing sequencing depth to augment
artifacts. A recent study comparing 16S rRNA gene-based analyses
to shotgun metagenomic sequencing identified that many aspects
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of bacterial community characterization were consistent across
methods [67]. In this study, Rausch et al. found that single-step
amplification of the V3-V4 region yield more comparable results
to shotgun metagenomics than multi-step amplification and use
of the V1-V2 region of the 16S rRNA gene [67]. Based on these
studies, it is evident that the microbiome composition of both
mouse and human studies rely in part on the sequencing method-
ologies and thus information should be interpreted with caution.
Despite these variables, it has been speculated that mouse micro-
biome studies can yield valuable information on the potential
function of the microbiome in the setting of disease.
4. The gut microbiome composition along the length of the
intestine

The gastrointestinal tract harbors diverse and dynamic micro-
bial communities [68–71]. In general, the gut microbiota is domi-
nated by the phyla Firmicutes and Bacteroidetes, with
Proteobacteria, Actinobacteria, Fusobacteria and Verruomicrobia
present in lower abundance [39,44,72–76]. The composition of
these microbial communities differs based on intestinal locations
(duodenum, jejunum, ileum, colon) as well as proximity to the host
(luminal vs mucosa-associated) [14,19,21,45,77–84]. The differ-
ences in microbiota composition reflect the differences in the local
environments: the microbiota is exposed to varying pH conditions
(acidic stomach and alkaline intestine), various ion concentrations,
intestinal motility, redox potential, nutrient supplies, and host
secretions (e.g. hydrochloric acid, digestive enzymes, bile juice,
pancreatic secretion and mucus) [1,85–87].
Fig. 3. Graphical representation of the microbiome composition along the length of the
(pink), Bacteroidetes (yellow), Actinobacteria (blue), Verrucomicrobia (green), Fusobacte
the luminal population as well as the mucosa-associated microbiome for human and mo
the references to colour in this figure legend, the reader is referred to the web version o
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The microbiota increases in number and diversity from the
stomach to the colon, with the colon being the most densely pop-
ulated region [86,88]. The Human Microbiome Project (HMP) and
the Metagenomics of the Human Intestinal Tract (MetaHIT) initia-
tives have helped define the healthy human microbiome and iden-
tify region specific microbial ecosystems [89,90]. Based on these
initiatives and current literature, we know that the small intestine
commonly harbors Streptococcus (Firmicutes), Lactobacillus (Firmi-
cutes), Clostridium (Firmicutes), and Prevotella (Bacteroidetes) [91–
93]. Analysis from luminal contents along the length of the small
intestine in two separate studies has revealed a dominance of
Streptococcaceae (Firmicutes, ~55% of sequences) in the duodenum
and jejunum followed by Veilonellacaea (Firmicutes, ~35%), and
Lactobacillaceae (Firmicutes, ~5%), with lower abundance of Lach-
nospiraceae (Firmicutes), Clostridiaceae (Firmicutes), Erysipelotri-
chaceae (Firmicutes), Pasteurellaceae (Proteobacteria) and
Prevotella (Bacteroidetes) [94,95] (see graphical representation in
Fig. 3, Table 1). In contrast, the feces of these healthy individuals
were dominated by Ruminococcaceae (Firmicutes), Blautia (Firmi-
cutes), Bifidobacteria (Actinobacteria), and Lachnospiraceae (Firmi-
cutes)(~35%). Analysis of ileal luminal contents from a separate
study has shown that the ileum harbored high levels of Bacilli
(which include Streptoccoccus and Lactobacilli, Firmicutes, ~60%),
followed by Bacteroides (Bacteroidetes, ~10%) and Clostridium (Fir-
micutes, ~25%) [96]. These findings are consistent with ileal swabs
which also confirmed the dominance of Streptococcus (Firmicutes,
~60%), followed by Lactobacillus (Firmicutes) and other microbes
[97]. In one study, the pH of the luminal contents was correlated
with microbial operational taxonomic units (OTUs) [95]. In this
study, Seekatz et al. demonstrated that 15 OTUs significantly corre-
lated with pH changes. Six OTUs classified as Bacteroidetes, mainly
intestine. Pie graphs depict the relative abundance of the major phyla (Firmicutes
ria (fusia), Proteobacteria (orange) and other (grey)). Composition is noted for both
use. Composition is approximated from published literature. (For interpretation of
f this article.)



Table 2
Bacteria that are commonly identified in mouse luminal and mucosa-associated
microbiota from various intestinal segments.

Luminal Microbiota Mucosa-associated Microbiota

Small Intestine Feces Small Intestine Feces

Ileum Colon Ileum Colon
Clostridium Clostridium Bacteroides Bacteroides
Lactobacilli Bacteroides Prevotella Prevotella
Bacteroides Prevotella Clostridium Clostridium
Prevotella Lactobacillus Lactobacillus Lactobacillus
Enteroccocus Lachnospiraceae Akkermansia

Table 1
Bacteria that are commonly identified in human luminal and mucosa-associated microbiota from various intestinal segments.

Luminal Microbiota Mucosa-associated Microbiota

Small Intestine Feces Small Intestine Colon

Dudoenum Jejunum Ileum Colon Dudoenum Ileum Colon
Streptococcaceae Streptococcaceae Streptoccoccus Ruminococcaceae Bacillales Lachnospiraceae Lachnospiraceae
Veilonellacaea Veilonellacaea Lactobacilli Blautia Streptococcaceae Bacteroidaceae Bacteroidaceae
Lactobacillaceae Lactobacillaceae Bacteroide Bifidobacteria Veillonellaceae Ruminoccocaceae Ruminoccocaceae
Lachnospiraceae Lachnospiraceae Clostridium Lachnospiraceae Pseudomonadaceae Enterobacteriaceae Enterobacteriaceae
Clostridiaceae Clostridiaceae Fusobacteriaceae Fusobacteriaceae Fusobacteriaceae
Erysipelotrichaceae Erysipelotrichaceae Akkermansia
Pasteurellaceae Pasteurellaceae
Prevotella Prevotella
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Prevotella, and two OTUs were classified as Pasteurellaceae (Pro-
teobacteria) were found to negatively correlate with pH (with
decreased abundance at higher pHs). The other OTUs, classified
as Firmicutes, mainly Streptococcus and Lactobacobacillaleas, as well
as Actinomyces (Actinobacteria) were found to positively correlate
with pH [95]. These findings highlight the link between intestinal
pH and microbe composition.

Analysis of biopsy specimens from healthy humans has
revealed that the mucosa-associated microbiota differs signifi-
cantly from the luminal microbiota. In a study examining mucosal
biopsies along the length of the gastrointestinal tract, the authors
found that the duodenum mucosa-associated microbiome con-
tained Bacillales (Firmicutes, ~25%), Streptococcaceae (Firmicutes,
~20%), Veillonellaceae (Firmicutes, ~10%), Pseudomonadaceae (Pro-
teobacteria, ~10%), and Fusobacteriaceae (Fusobacteria, ~5%), with
lower levels of other microbes [98]. Interestingly, the ileum
mucosa-associated microbiome was found to harbor Lach-
nospiraceae (Firmicutes, ~35%), Bacteroidaceae (Bacteroidetes,
~30%) Ruminoccocaceae (Firmicutes ~5%), Enterobacteriaceae
(Proeobacteria ~5%) and Fusobacteriaceae (Fusobacteria ~3%). This
composition greatly differs from the documented members of the
luminal microbiome. Similarities were found in the mucosa-
associated bacterial populations of the ascending and descending
colon mucosa-associated microbiomes to that of the ileum, which
also harbored Lachnospiraceae (~40%), Bacteroidaceae (~30%)
Ruminoccocaceae (~5%), Enterobacteriaceae (~5%) and Fusobacteri-
aceae (~2%). These human studies establish relative community
structures of the healthy microbiome along the gastrointestinal
tract.

Similar to the human microbiome, the mouse microbiome has
also been shown to vary along the length of the intestine (Fig. 3,
Table 2). Whole segment microbiome analysis has shown that
the small intestine (duodenum, jejunum and ileum) contained
higher levels of Lactobacillaceae (Firmicutes ~30%), Bacteroidales
(Bacteroidetes ~30%) followed by Lachnospiraceae (Firmicutes,
~10%), while the colon contained Bacteroidales (Bacteroidetes,
~40%), Clostridia (Firmicutes, ~30%), Lachnospiraceae (Firmicutes,
~20%), and Ruminococcus (~4%) in mice [99]. Analysis of luminal
contents has revealed a dominance of Lactobacilli (Firmicutes,
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~20%), Clostridium (Firmicutes, ~20%) and other Firmicutes mem-
bers (~20%), followed by Bacteroides (Bacteroidetes, 5%) and other
microbes in the ileum of mice [19,21,100]. In the mouse colon,
the lumen was dominated by Clostridium (Firmicutes, ~35%) and
Bacteroides (Bacteroidetes, ~20%), followed by Prevotella (Bac-
teroidetes, ~5%) and other microbes. In contrast, the mucosa-
associated population was found to contain higher levels of Bac-
teroides, Prevotella and Mouse Intestinal Bacteroides (MIB) in the
ileum and higher levels of Clostridium and MIB in the mucosa of
the mouse colon than the luminal population [19,21,100]. These
studies set the stage for examining how intestinal ion transport
shapes the microbiome.
5. Connecting ion transport with the gut microbiome

The interconnection between the intestinal environment and
the microbiome has been elegantly demonstrated using various
animal knockout models. Among the best characterized ion trans-
port knockout mice are the NHE3, NHE2, CFTR, DRA and GLUT2
deficient mice (Fig. 4).
5.1. NHE3 and NHE2 knockout mouse microbiome

Given the importance of NHE3 in sodium and water absorption,
NHE3�/� mice exhibit chronic diarrhea with an alkaline intestinal
fluid high in sodium compared with wild type (WT) littermates
[17–19,21]. Two different groups have reported on the microbiome
of NHE3�/� mice [19,101,102]. NHE3�/� mice housed at one uni-
versity exhibited an ileal and colonic luminal microbiome higher
in Bacteroidetes compared to WT littermates [19]. Interestingly,
the mucosa-associated microbiome exhibited even higher levels
of Bacteroidetes in both the ileal and colonic microbial populations
in the NHE3�/� mice compared to WT littermates and compared to
the luminal contents. At another institution, NHE3�/� mice were
likewise found to have increased Bacteroidetes in both the luminal
and mucosa-associated colonic microbiomes, as well as expanded
Proteobacteria [102]. These microbiome findings are consistent
with previous studies that indicate that Bacteroidetes have
improved growth at slightly higher pHs [103]. Select Bacteroides,
like B. thetaiotaomicron, which were increased in NHE3�/� mice,
were found to have optimal growth in conditions that resemble
the NHE3�/� ileal environment in vitro [19]. Mice in the second
facility exhibited decreased colonic mucus and developed sponta-
neous colitis, exhibited increased sensitivity to dextran-sodium-
sulfate (DSS)-induced colitis, and when crossed with Rag2�/� mice
for T-cell transfer experiments, NHE3�/�Rag2�/� mice experienced
dramatically accelerated and exacerbated disease in a microbiome
dependent manner [101,102,104]. These studies highlight the role
of NHE3 in dictating the microbiome, which in turn can promote
inflammation in the right setting.



Fig. 4. Graphical representation of the microbiome of WT type mice highlighting the communities in the ileum and colon, for both luminal and mucosa-associated
communities. Pie graphs depict the relative abundance of the major phyla (Firmicutes (pink), Bacteroidetes (yellow), Actinobacteria (blue), Verrucomicrobia (green),
Fusobacteria (fusia), Proteobacteria (orange) and other (grey)). In contrast to WT mice, NHE3, NHE2, CFTR, DRA and GLUT2 knockout (KO) mice harbor an altered intestinal
environment and bacterial populations. Composition is approximated from published literature. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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In contrast to NHE3�/�, NHE2�/� mice do not exhibit diarrhea,
but have an acidic intestinal fluid throughout the gastrointestinal
tract [17–19,21]. Interestingly, no differences were observed in
the microbial communities of the luminal contents in the NHE2�/�

mice compared to WT littermates [21]. However, significant differ-
ences were observed in mucosa-associated ileal and colonic micro-
biomes. In the ileal mucosa-associated microbiome, there were
dramatic increases in Actinobacteria and decreases in Bacteroides
(Bacteroidetes), MIB (Bacteroidetes), and other Firmicutes in
NHE2�/� mice compared to WT controls. In the colon, significant
increases were observed in Clostridia and Lactobacillus (Firmicutes)
in NHE2�/� mice. Shifts in Lactobacillus and Clostridium/Ruminococ-
cus correlates with changes in host mucus oligosaccharide compo-
sition [21]. These studies were among the first to identify a direct
role of intestinal ion transport in shaping the intestinal environ-
ment and the microbiome composition.
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5.2. CFTR knockout mouse microbiome

The microbiome is also altered in chloride transporter cystic
fibrosis transmembrane conductance regulator (CFTR) deficient
mice [105,106]. CFTR�/� mice exhibit decreased luminal Cl� and
increased mucus secretion with no change in pH [105]. In the ter-
minal ileum of CFTR�/� mice, total bacteria were increased with
enrichment of Enterobacteriaceae (Proteobacteria), Mycobacteria
(Actinobacteria) and Bacteroides (Bacteroidetes), with an associ-
ated reduction in Lactobacilliales (Firmicutes) and Acinetobacter
lwoffii (Proteobacteria) [105]. In a separate study, analysis of small
intestinal luminal contents found increased Firmicutes and
decreased Verrucomicrobia in CFTR�/� mice compared to WT mice
[107]. OTU classification revealed increased abundance of Lacto-
bacillus (Firmicutes) and Porphyromonadaceae (Bacteroidetes), with
decreased abundance of Akkermansia (Verrucomicrobia) in CFTR�/�
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mice. Interestingly, another study examining small intestinal lumi-
nal contents found the reverse. In CFTR�/� mice they observed
increased Akkermanisa (Verrucomicrobia) and Erysipelotrichaceae
(Proteobacteria), and decreased Firmicutes (Lactobacillus) [108].
These studies highlight the need to identify region specific differ-
ences and emphasizes the microbiome variations that can be
observed in different animal housing facilities. Fecal analysis of
CFTR�/� mice from another study indicated a significant increase
in E. coli (Proteobacteria) compared to WT controls [109]. To the
best our knowledge, there are no mucosa-associated microbiome
studies in CFTR�/� mice. Collectively, these studies confirm the
importance of ion transport and particularly the role of Cl� in mod-
ulating the microbiome composition and depict the need for more
studies on the CFTR microbiome.

5.3. DRA knockout mouse microbiome

Recently, two groups have established the microbiome of
DRA�/� mice [110,111]. Mutations in mouse DRA resembles that
of congenital chloride-losing diarrhea in humans. Mice exhibit
diarrhea with a high chloride, volume depletion, and growth
defects [112]. DRA�/� mice also have an acidic colonic pH-
microclimate, similar to NHE2�/� mice [111]. At an institution in
the United States, DRA�/� mice exhibited an expansion in Bac-
teroidacaea (Bacteriodetes) with significant increases in Parabac-
teroides and B. ovatus in the feces [110]. DRA�/� mice also had an
expansion in Erysipelotrichaceae (Firmicutes) and Porphromon-
adaceae (Bacteroidetes) and a retraction in Actinobacteria and Bac-
teroidales family S24-7 (Bacteroidetes). In an institution in
Germany, DRA�/� mice also exhibited expansion of Bacteroidetes
and retraction of Firmicutes in the proximal and distal colon
[111]. These DRA�/� knockout mice also had decreased levels of
Actinobacteria. DRA�/� mice from both institutions exhibited
decreased colonic mucus and inflammation [110,111]. These two
studies highlight the importance of DRA in regulating the gut
microbiota and intestinal homeostasis.

5.4. GLUT2 knockout mouse microbiome

The transporter GLUT2 facilitates the passage of dietary sugars,
glucose, fructose, and galactose in the intestine [113]. Reduced
GLUT2 leads to higher sugar content in the distal intestine. Animals
deficient in GLUT2 exhibit decreased microvillus length in the jeju-
num compared to control mice and reduction in absorptive epithe-
lial cells [114]. Sequencing demonstrates that GLUT2�/� mice have
increased fecal levels of Clostridium cluster IV (Firmicutes) and
Enterococcus (Firmicutes) compared to control mice. These findings
indicate that glucose persistence in the intestinal lumen can
impact gut bacterial composition.
6. Conclusions

Although multiple aspects of host physiology can influence
the microbiome, including oxygen content [115–118], bile acids
[119–122], antibiotic use [123–125], diet [126–129], mucus
[130–134], etc., in this review we have focused on the unique
link between intestinal ion transport and the gut microbiota.
The studies presented herein demonstrate that endogenous
ion transport (luminal Na+, K+, Cl�, pH) alters the intestinal
microenvironment making it inhabitable for particular bacterial
groups. Since multiple factors can influence the gut micro-
biome, at present we lack a strong understanding of exactly
how transported ions impact the gut microbiota. In the future,
studies using bioreactors with human and mice feces might
shed more insight into how ion composition and pH can
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directly modulate gut microbes (independent of the immune
system, mucus secretion and subsequent host responses, etc.).
These types of studies would provide valuable information of
microbial tolerance and niche development and may provide
insights into how to shift an altered microbiome back towards
a healthy composition.

The highlighted studies emphasize that knowledge of the
stool microbiota does not necessarily fully reflect intestinal
changes upstream (small intestine) or fully reflect the mucosa-
associated bacterial populations, which dramatically change in
the setting of altered host ion transport. Since it can be challeng-
ing to obtain human small intestinal samples, mouse models
provide a valuable scientific tool for these types of analyses.
Analyzing the microbiota regionally along the length of the
intestine and by population (luminal or mucosa-associated)
could be used in the future to determine mechanistic interac-
tions. Since mucosa-associated bacteria live in closer proximity
to the intestinal epithelium, it is likely they execute different
functions within the GI ecosystem compared with luminal
microbiota [1].

Although mouse models can be useful, mice differ from
humans in some key aspects. Mouse diet, fur, and behavior
(e.g., nocturnal behavior, grooming practices, and coprophagia)
clearly differ from humans [44,135]. These differences likely
influence the gut microbiota composition and confound analysis.
Furthermore the mouse immune system differs from the human
immune system [135], which affects the way the host responds
to the gut microbiota. As a result, mouse disease does not always
reflect human disease. Despite these differences mouse models
can still be a useful tool for unraveling mechanisms of host–mi-
crobiota interactions. Kostic et al. eloquently stated ‘‘acknowledg-
ing this complexity and the potential pitfalls is not meant to
suggest that using mice for host–microbiota studies is a flawed
approach; rather, the point is to highlight that studying host–mi-
crobiota interactions in mice requires careful experimental
design” [44].

Mouse genetic background has been shown to impact the com-
position, diversity, and richness of the gut microbiota in both WT
and knockout mice [136,137]. In a study by Campbell et al. eight
core inbred strains were examined by 16S rRNA. Effects were
shown to exist in the gut microbiota based on litter, co-housing
and in some mouse strains, gender [138]. Effects of mouse back-
ground can provide an advantage for selecting specific traits and
determining how they influence the gut microbiota. However, it
can also confound data analysis, and as such mouse background
should be considered in experimental design. Animal age is also
an important consideration as the microbiome of both rodents
and humans shifts overtime.

Despite the potential impact of microbial communities on
human health and disease, our understanding of how microbial
communities are maintained in the gut remains incomplete.
Although much is known about basic host physiology and stool
gut microbiota composition, more studies are needed for a better
understanding of the interplay between the gut microbiota and
host environment set by ion transport. Current work in the field
supports the notion that ion transport shapes the microbiota com-
position and ultimately the microbe-host interactions. Knowledge
of how the intestinal environment affects specific bacteria will
likely aid in the development of future therapies for diseases with
abnormal bacterial composition.
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