Structure Reports

Online
ISSN 1600-5368

3-[(4-Oxo-4H-thiochromen-3-yl)methyl]-4H-thiochromen-4-one

M. Somasundaram, ${ }^{\text {a }}$ S. Athavan, ${ }^{\text {a }}$ K. K. Balasubramanian, ${ }^{\text {b }}$
R. Saiganesh ${ }^{\text {b }}$ and S. Kabilan ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram, India, and ${ }^{\text {b }}$ Shasun Reaearch Centre, 27 Vandaloor Kelambakkam Road,
Keezhakottaiyur, Meelakottaiyur Post, Chennai, India
Correspondence e-mail: soma78@gmail.com

Received 30 October 2012; accepted 18 January 2013
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.118 ;$ data-to-parameter ratio $=15.0$.

The title molecule, $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{O}_{2}$, lies on a twofold rotation axis. The thiochromonone unit is essentially planar, with a maximum deviation of 0.0491 (14) \AA. The dihedral angle between the thiochromenone ring systems is 64.48 (4) ${ }^{\circ}$. In the crystal, there are weak $\pi-\pi$ stacking interactions, with a centroid-centroid distance of 3.7147 (9) \AA.

Related literature

For backgound to bis-chromonones, see: Santhosh \& Balasubramanian (1991); Panja et al. (2009). For related structures, see: Ambartsumyan et al. (2012); Nyburg et al. (1986); Li et al. (2010).

Experimental

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$

$$
M_{r}=336.41
$$

Monoclinic, $C 2 / c$
$a=11.9480$ (5) A
$b=11.8649(5) \AA$
$c=11.1416$ (5) \AA
$\beta=108.918$ (2) ${ }^{\circ}$
$V=1494.14(11) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.38 \times 0.28 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.875, T_{\text {max }}=0.931$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.118$
$S=0.88$
1631 reflections
109 parameters

5040 measured reflections
1631 independent reflections 1410 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Jmol (Hanson, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the University Grants Commission, New Delhi, India, for financial support in the form of a Major Research Project. In addition, they express their thanks to Dr Jai Anand Garg for his valuable support in the preparation of this structure report.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5551).

References

Ambartsumyan, A. A., Vasiléva, T. T., Chakhovskaya, O. V., Mysova, N. E., Tuskaev, V. A., Khrustalev, V. N. \& Kochetkov, K. A. (2012). Russ. J. Org. Chem. 48, 451-455.
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250-1260.
Li, Y., Xiao, T., Liu, D. \& Yu, G. (2010). Acta Cryst. E66, o694.
Nyburg, S. C., Prasad, L., Leong, T. S. \& Still, I. W. J. (1986). Acta Cryst. C42, 816-821.
Panja, S. K., Maiti, S., Drew, M. G. B. \& Bandyopadhyay, Ch. (2009). Tetrahedron, 65, 1276-1280.
Santhosh, K. C. \& Balasubramanian, K. K. (1991). Tetrahedron Lett. 32, 77277730.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o358 [doi:10.1107/S1600536813001906]

3-[(4-Oxo-4H-thiochromen-3-yl)methyl]-4H-thiochromen-4-one

M. Somasundaram, S. Athavan, K. K. Balasubramanian, R. Saiganesh and S. Kabilan

Comment

Bis-chromonones linked at position 3 are biologically important motifs (Santhosh \& Balasubramanian, 1991; Panja, et al., 2009). Analogues of these compounds prepared by replacing the oxygen atom in the heterocyclic core with sulfur are considered to be chemically inportant. Herein, we report the structure determination of the title compound (I).
The molecular structure of (I) is shown in Fig. 1. The molecule lies on a twofold rotation axis. The unique thiochromonone unit is essentially planar with a maximum deviation of 0.0491 (14) \AA for atom C6. The planarity of this unit can be attributed to the sp^{2} hybridized nature of the aromatic benzene unit and the fused olefinic thiopyranone unit. This is similar to the case of a methylene bridged chromenone example found in the literature (Ambartsumyan et al., 2012). The dihedral angle between the two thiochromenone ring systems is $64.48(4)^{\circ}$. The torsion angles about the methylene carbon C 10 are 93.05 (13) \AA for $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$ (symmetry code: (i) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2$) and -87.80 (11) \AA for C6-C7 $-\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$. The angle subtended at the bridging methylene carbon C 10 by the olefinic carbons $\left[\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}=\right.$ $\left.113.66(17)^{\circ}\right]$ and the olefinic bond length $[\mathrm{C} 7-\mathrm{C} 8=1.344(2) \AA$] are close to the respective values in known chromanone systems (Ambartsumyan et al., 2012). Examaples of thiochromone structures already appear in the literature (Nyburg et al., 1986; Li et al., 2010). In the crystal, there are weak $\pi-\pi$ stacking interactions (Fig .2) with $\mathrm{Cg} 1 \cdots \mathrm{Cg} 2^{\mathrm{ii}}=$ 3.7147 (9) \AA where Cg 1 and cg2 are the centroids of the $\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 9$ and $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 9$ rings (symmetry code: (ii) $3 / 2-x, 1 / 2-y,-z)$.

Experimental

To a stirred solution of 4-chloro-2H-thiochromene-3-carbaldehyde ($0.5 \mathrm{~g}, 0.0025 \mathrm{~mol}$) in freshly dried DMSO (6.0 mL) was added dried potassium fluoride $(0.3 \mathrm{~g}, 0.005 \mathrm{~mol})$ and then heated to $343-353 \mathrm{~K}$. After completion of the reaction by TLC, the reaction mass was cooled to $303-308 \mathrm{~K}$ and then quenched with 50 ml of water. The mixture was extracted with ethyl acetate ($2 \times 30 \mathrm{ml}$). The combined organic portion was washed with water ($2 \times 25 \mathrm{~mL}$) , dried over anhydrous sodium sulphate and then concentrated under reduced pressure to yield a brown paste. Purification of the crude product by column chromatography yielded the title bis methylene chromanone. 50 mg of the title compound was dissolved in 2 ml of methanol, and warmed to 323 K for complete dissolution, then filtered, and the clear solution was stored at room temperature. After 2 days, pale yellow crystals were formed.

Refinement

H atoms bonded to $\mathrm{sp}^{2} \mathrm{C}$ atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. The unique H atom conded to C 10 was refined independently with an isotropic displacement factor.

Computing details

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Jmol (Hanson, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabeled atoms are related by the symmetry operator ($1-\mathrm{x}, \mathrm{y},-\mathrm{z}+1 / 2$).

Figure 2
Part of the crystal structure illustrating the $\pi . . \pi$ stacking interactions.

3-[(4-Oxo-4H-thiochromen-3-yl)methyl]-4H-thiochromen-4-one

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=336.41$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=11.9480$ (5) \AA
$b=11.8649$ (5) \AA
$c=11.1416(5) \AA$
$\beta=108.918$ (2) ${ }^{\circ}$
$V=1494.14(11) \AA^{3}$
$Z=4$

```
\(F(000)=696\)
\(D_{\mathrm{x}}=1.495 \mathrm{Mg} \mathrm{m}^{-3}\)
Melting point \(=489-493 \mathrm{~K}\)
Mo \(K \alpha\) radiation, \(\lambda=0.71073 \AA\)
Cell parameters from 2970 reflections
\(\theta=2.5-28.2^{\circ}\)
\(\mu=0.36 \mathrm{~mm}^{-1}\)
\(T=298 \mathrm{~K}\)
Block, yellow
\(0.38 \times 0.28 \times 0.20 \mathrm{~mm}\)
```

5040 measured reflections
1631 independent reflections
1410 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-15 \rightarrow 15$
$l=-8 \rightarrow 14$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.1 P)^{2}+0.4829 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.68093(16)$	$0.04971(13)$	$-0.09101(16)$	$0.0468(4)$
H1	0.6321	0.0231	-0.1689	0.056^{*}
C2	$0.79824(17)$	$0.02577(14)$	$-0.05263(17)$	$0.0510(4)$

H2	0.8291	-0.0174	-0.1041	0.061^{*}
C3	$0.87278(15)$	$0.06556(14)$	$0.06363(17)$	$0.0481(4)$
H3	0.9535	0.0509	0.0887	0.058^{*}
C4	$0.82636(14)$	$0.12635(14)$	$0.14060(15)$	$0.0408(4)$
H4	0.8763	0.1517	0.2186	0.049^{*}
C5	$0.70544(14)$	$0.15121(11)$	$0.10466(13)$	$0.0324(3)$
C6	$0.66133(13)$	$0.21467(12)$	$0.19414(13)$	$0.0340(3)$
C7	$0.53715(13)$	$0.24814(11)$	$0.15575(13)$	$0.0331(3)$
C8	$0.45826(13)$	$0.22113(13)$	$0.04278(13)$	$0.0364(4)$
H8	0.3814	0.2467	0.0278	0.044^{*}
C9	$0.63250(13)$	$0.11413(12)$	$-0.01442(13)$	$0.0345(3)$
C10	0.5000	$0.31787(18)$	0.2500	$0.0384(5)$
H18	$0.4303(16)$	$0.3692(14)$	$0.2050(18)$	$0.043(5)^{*}$
O1	$0.72943(11)$	$0.23896(11)$	$0.29985(11)$	$0.0513(3)$
S1	$0.48288(3)$	$0.14521(3)$	$-0.07650(3)$	$0.04148(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0538(12)$	$0.0488(8)$	$0.0385(8)$	$-0.0005(7)$	$0.0159(7)$	$-0.0020(6)$
C2	$0.0548(12)$	$0.0519(9)$	$0.0530(9)$	$0.0107(8)$	$0.0265(8)$	$0.0016(7)$
C3	$0.0365(10)$	$0.0540(9)$	$0.0568(10)$	$0.0096(7)$	$0.0190(8)$	$0.0131(8)$
C4	$0.0316(10)$	$0.0500(8)$	$0.0374(8)$	$0.0021(6)$	$0.0066(7)$	$0.0101(6)$
C5	$0.0314(9)$	$0.0372(7)$	$0.0278(7)$	$-0.0021(5)$	$0.0083(6)$	$0.0080(5)$
C6	$0.0290(8)$	$0.0439(7)$	$0.0273(6)$	$-0.0050(6)$	$0.0068(6)$	$0.0054(5)$
C7	$0.0316(9)$	$0.0382(7)$	$0.0299(6)$	$-0.0017(6)$	$0.0103(6)$	$0.0062(5)$
C8	$0.0269(9)$	$0.0492(8)$	$0.0319(7)$	$0.0002(6)$	$0.0079(6)$	$0.0060(5)$
C9	$0.0340(9)$	$0.0386(7)$	$0.0297(7)$	$-0.0019(6)$	$0.0089(6)$	$0.0054(5)$
C10	$0.0396(14)$	$0.0384(10)$	$0.0384(10)$	0.000	$0.0140(9)$	0.000
O1	$0.0351(7)$	$0.0820(8)$	$0.0311(6)$	$-0.0044(5)$	$0.0027(5)$	$-0.0081(5)$
S1	$0.0317(4)$	$0.0602(3)$	$0.0272(2)$	$-0.00364(15)$	$0.00220(19)$	$-0.00228(14)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.356(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.476(2)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.403(2)$	$\mathrm{C} 6-\mathrm{O} 1$	$1.2291(18)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 6-\mathrm{C} 7$	$1.460(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.395(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.344(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 7-\mathrm{C} 10$	$1.5120(18)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.368(2)$	$\mathrm{C} 8-\mathrm{S} 1$	$1.7082(15)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.400(2)$	$\mathrm{C} 9-\mathrm{S} 1$	$1.7344(15)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 10-\mathrm{C} 7^{\mathrm{i}}$	$1.5120(18)$
$\mathrm{C} 5-\mathrm{C} 9$	$1.401(2)$	$\mathrm{C} 10-\mathrm{H} 18$	$1.022(18)$
			$119.75(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	$120.69(16)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.50(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.7	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$123.18(13)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{H} 1$	119.7	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.42(12)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.35(16)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 10$	$116.40(11)$

supplementary materials

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8	C7-C8-S1	127.52 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.60 (15)	C7-C8-H8	116.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2	S1-C8-H8	116.2
C2-C3-H3	120.2	C5-C9-C1	119.64 (15)
C3-C4-C5	121.49 (15)	C5-C9-S1	123.71 (12)
C3-C4-H4	119.3	C1-C9-S1	116.64 (12)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.3	C7-C10-C7 ${ }^{\text {i }}$	113.66 (17)
C4-C5-C9	118.16 (14)	C7-C10-H18	111.2 (10)
C4-C5-C6	118.40 (13)	C7--C10-H18	106.9 (10)
C9-C5-C6	123.43 (14)	C8-S1-C9	102.54 (7)
O1-C6-C7	120.75 (14)		
C9-C1-C2-C3	-0.4 (3)	C6-C7-C8-S1	0.0 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.8 (3)	C10-C7-C8-S1	179.14 (11)
C2-C3-C4-C5	-0.9 (2)	C4-C5-C9-C1	2.8 (2)
C3-C4-C5-C9	-1.4 (2)	C6-C5-C9-C1	-176.99 (12)
C3-C4-C5-C6	178.43 (13)	C4-C5-C9-S1	-176.06 (10)
C4-C5-C6-O1	-3.8(2)	C6-C5-C9-S1	4.2 (2)
C9-C5-C6-O1	175.94 (13)	C2-C1-C9-C5	-2.0 (2)
C4-C5-C6-C7	175.98 (12)	C2-C1-C9-S1	176.96 (13)
C9-C5-C6-C7	-4.2 (2)	C8-C7-C10-C7 ${ }^{\text {i }}$	93.05 (13)
O1-C6-C7-C8	-178.10 (14)	C6-C7-C10-C7 ${ }^{\text {i }}$	-87.80 (11)
C5-C6-C7-C8	2.1 (2)	C7-C8-S1-C9	-0.25 (16)
O1-C6-C7-C10	2.8 (2)	C5-C9-S1-C8	-1.80 (14)
C5-C6-C7-C10	-177.05 (12)	C1-C9-S1-C8	179.31 (11)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

