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)e guided filter is a novel explicit image filtering method, which implements a smoothing filter on “flat patch” regions and
ensures edge preserving on “high variance” regions. Recently, the guided filter has been successfully incorporated into the process
of fuzzy c-means (FCM) to boost the clustering results of noisy images. However, the adaptability of the existing guided filter-
based FCMmethods to different images is deteriorated, as the factor ε of the guided filter is fixed to a scalar. To solve this issue, this
paper proposes a new guided filter-based FCMmethod (IFCM_GF), in which the guidance image of the guided filter is adjusted by
a newly defined influence factor ρ. By dynamically changing the impact factor ρ, the IFCM_GF acquires excellent segmentation
results on various noisy images. Furthermore, to promote the segmentation accuracy of images with heavy noise and simplify the
selection of the influence factor ρ, we further propose a morphological reconstruction-based improved FCM clustering algorithm
with guided filter (MRIFCM_GF). In this approach, the original noisy image is reconstructed by the morphological reconstruction
(MR) before clustering, and the IFCM_GF is performed on the reconstructed image by utilizing the adjusted guidance image. Due
to the efficiency of the MR to remove noise, the MRIFCM_GF achieves better segmentation results than the IFCM_GF on images
with heavy noise and the selection of the influence factor for the MRIFCM_GF is simple. Experiments demonstrate the ef-
fectiveness of the presented methods.

1. Introduction

Image segmentation is considered an indispensable com-
ponent in image processing, comprehension, and computer
vision [1–3]. In the last few decades, prototype-based
clustering has been broadly applied in image segmentation
[4–6]. Owing to the inherent vagueness of the image, fuzzy
clustering, such as FCM, can achieve better performance in
image segmentation tasks than hard clustering [7, 8].

However, because the FCM-based image segmentation
methods only reflect the intensity of the pixel itself, they
are ineffective when images are corrupted by noise [9, 10].
To solve this issue, a novel FCM approach with spatial
constraints (FCM_S) is developed in [11], which parti-
tions a pixel into a cluster according to both the intensity

value of itself and the ones of its neighbor pixels. However,
FCM_S needs to spend countless time to compute the
spatial neighbor term. To alleviate the computation time
in the FCM_S, two improved versions (FCM_S1 and
FCM_S2) are explored by utilizing average filter and
median filter to attain the spatial information beforehand
[12]. )e two aforementioned clustering algorithms with
spatial constraints are robust to noise, but they get poor
segmentation results on the image edges [11–13]. )is is
because the computation of spatial information smooths
the whole image and leads to the damage of boundary
information.

)en, the guided filter is considered to address this
issue, which not only implements a smoothing filter on
“flat patch” regions to relieve the impacts of noise but also
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ensures edge preserving on “high variance” regions
[14, 15]. )e image-guided FCM (IGFCM) method is
exploited by adding a guided filter to the optimization of
FCM [16], but the complexity of the IGFCM model leads
to vast calculation time. To tackle this problem, a new
method called FCM+GF is further developed in [17], in
which the FCM is employed to segment the raw noise
image and the guided filter is implemented on the
membership metrics by adopting the raw noise image as
the guidance. )is method achieves good segmentation
results with low computational complexity. Nevertheless,
in FCM+GF, the factor ε regarding guided filter is fixed to
a scalar, which deteriorates the capability of FCM+GF to
divide images in the case of various noise rates. Actually,
the value of ε is considered to differ with the increase of
the noise level.

In this paper, a guided filter-based FCM algorithm with
an impact factor named IFCM_GF is presented, in which a
novel positive impact factor ρ is defined to adapt the
guidance image. )is adjustment on the guidance image is
proved to be equivalent to the change of parameter ε. Given
different ρ, the IFCM_GF obtains better performance on
various noisy rates images than FCM+GF with the fixed ε.

However, there are still two shortcomings of the IFCM_GF.
)e first one is that it is uneasy to choose an appropriate value ρ
empirically because the good value of ρ varies according to
different noise rates. )e second one is that the IFCM_GF is
not robust to noise type and obtains poor segmentation results
on the images with heavy noise.)is is because both the image
to be partitioned and the image to provide guidance infor-
mation are the original noisy image. To overcome the above
two shortcomings simultaneously, we introducemorphological
reconstruction (MR) [18] to the IFCM_GF and propose a
morphological reconstruction-based improved FCM clustering
algorithm with guided filter, named MRIFCM_GF. In the
approach, the FCM is conducted on the reconstructed image
obtained by MR, and the guided filter is implemented on the
membership metrics with the guidance of the raw noise image
adjusted by the impact factor ρ.)eMR adopts amarker image
to recast raw noise image so as to acquire a better image [19].
On the one hand, there is a little difference between the
reconstructed images of the original images with different noise
rates, so it is easier to set a good ρ for MRIFCM_GF. On the
other hand, since MR can remove noise without knowing the
type of noise and preserve the edge information of image,
MRIFCM_GF can achieve better performance on images with
heavy noise than IFCM_GF. What is more, as the recon-
structed image is calculated beforehand, the employment of the
MR brings little extra calculation time.)emain contributions
of this paper are briefly summarized as follows.

Firstly, the IFCM_GF method with a newly defined
factor ρ is proposed to enhance the adaptability for different
noisy images.

Secondly, the MRIFCM_GR method is further devel-
oped by incorporating MR technique into IFCM_GF for
better segmentation performance on images with heavy
noise and easier selection of proper values of factor ρ.

)e rest part of this paper is organized as follows. Some
related works are reviewed in Section 2. )e presented

algorithms and the proof are detailed in Section 3. )e
experiments are elaborated in Section 4. Finally, Section 5
summarizes the conclusion.

2. Related Works

2.1. Fuzzy C-Means. FCM is a prototype-based clustering
approach which is extensively applied in image segmenta-
tion. Let xn, n � 1, 2, ..., N􏼈 􏼉 stand forN pixels in an image, C
indicates the number of clusters, and FCM partitions the N
pixels into C clusters by solving the following minimization
problem:

J(U, V) � 􏽘
C

c�1
􏽘

N

n�1
u

m
cn xn − vc

����
����
2
,

subject to 􏽘
C

c�1
ucn � 1, 0< ucn < 1,

(1)

where U � [ucn] is the membership degree matrix and ucn

means the membership of pixel xn in cluster c. V � [vc]

denotes the cluster prototype matrix, and vc denotes the
center vector of cluster c. )e parameter m(m> 1) indicates
the fuzzification index, and the norm ‖ · ‖ represents the
Euclidean norm.

Minimizing J(U, V) is a nonlinear optimization problem
with a constraint. )e Picard iteration is used to solve it.
First, V is fixed to find U minimizing J(U). )en, U is fixed
to find V minimizing J(V).

When V is fixed, the Lagrange multiplier technique is
applied to convert the min J(U, V) into an unconstrained
optimization problem regarding U asfollows:

􏽥J(U,Λ) � 􏽘
C

c�1
􏽘

N

n�1
u

m
cn xn − vc

����
����
2

− 􏽘

N

n�1
λn 􏽘

C

c�1
ucn − 1⎛⎝ ⎞⎠, (2)

where Λ � [λn] is a Lagrange multipliers matrix corre-
sponding to the constraint 􏽐

C
c�1 ucn � 1. Set the partial de-

rivatives of J(U,Λ) regarding ucn and λn to zero as follows:

zJ(U,Λ)

zucn

� mu
m−1
cn xn − vc

����
����
2

− λn � 0, (3)

zJ(U,Λ)

zλn

� − 􏽘
C

c�1
ucn − 1⎛⎝ ⎞⎠ � 0. (4)

From, (3) and (4), (5) is obtained.

ucn �
1

􏽐
C
j�1 xn − vc

����
����/ xn − vj

�����

�����􏼒 􏼓
(2/(m−1))

,
(5)

for 1≤ c≤C, 1≤ n≤N.
When U is fixed, set the gradient of J(V) with respect to

vc to zero to make J(V) locally minimized as follows:

zJ(V)

zvc

� −2 􏽘
N

n�1
u

m
cn xn − vc( 􏼁 � 0. (6)

From (6), (7) is obtained.
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􏽐
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􏽐
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, (7)

for 1≤ c≤C, 1≤ n≤N.
Equations (5) and (7) are repeatedly implemented until

the difference between the optimization problem regarding
two successive iterations is small enough.

2.2. Guided Filter. Guided filter is widely utilized in linear
filtering area. Considering an input image p and the
guidance image I, the output image q is obtained as
follows:

qi � akIi + bk, ∀i ∈ ωk, (8)

where i and k are pixel indexes and ωk denotes a window
centralized at the pixel k. ak and bk indicate some linear
scalars with respect to the pixel of ωk. )is local linear model
is able to preserve the edge information due to ∇q � a∇I.
And the capability of this model is proved in image
processing.

To get the linear coefficients, the minimization of the
difference between the input image p and the output image q
is adopted to establish the cost equation as follows:

E ak, bk( 􏼁 � 􏽘
i∈ωk

akIi + bk − pi( 􏼁
2

+ εa2
k􏼐 􏼑, (9)

where ε indicates a regularized indicator to prevent ak from
being too big.

Let the gradients of E(ak, bk) regarding ak and bk be
equal to zero as follows:

zE

zak

� 􏽘
i∈ωk

2 akIi + bk − pi( 􏼁Ii + 2εak( 􏼁 � 0, (10)

zE

zbk

� 􏽘
i∈ωk

2 akIi + bk − pi( 􏼁 � 0. (11)

From (10) and (11), ak and bk are obtained as follows:

ak �
(1/|ω|)􏽐i∈ωk

Iipi − μkpk

σ2k + ε
, (12)

bk � pk − akμk, (13)

where |ω| denotes the number of pixels, μk and σk indicate
the mean and variance of I, and pk represents the mean of p
in window ωk.

ak and bk are associated with the window ωk, so qi may
be different when calculated in different ωk. )e final output
qi is the average of all the possible values and is computed as
follows:

qi �
1

|ω|
􏽘

k:i∈ωk

akIi + bk � aiIi + bi, (14)

where ai � (1/|ω|)􏽐k∈ωi
ak and bi � (1/|ω|)􏽐k∈ωi

bk.

2.3. Morphological Reconstruction. As an effective method
for image denoising and edge preservation simultaneously,
morphological reconstruction includes two basic opera-
tions, that is, morphological dilation and erosion
reconstructions.

Morphological dilation is defined as

R
δ
f(g) � δn

f(g), (15)

where f denotes the mask image, g indicates the marker
image and g≤f, δ denotes the dilation operator, and
δ1f(g) � δ(g)∧f, δn

f(g) � δ1f(δn−1
f (g))∧f, ∧ represents the

pointwise minimum.
Morphological erosion is defined as

R
ε
f(g) � εn

f(g), (16)

where g≥f, ε denotes erosion operator, and
ε1f(g) � ε(g)∨f, εn

f(g) � ε1f(εn−1
f (g))∨f, ∨ represents the

pointwise maximum.
Morphological dilation and erosion operations apply a

structuring element B including center element to an
input image, constructing an output image with the same
size. )e shape and size of structuring element B deter-
mine the degree of dilation and erosion. )e structuring
element of size 3 × 3 is always exploited in dilation and
erosion operation. If the size of B is 1 × 1, the output image
is identical to the input image or else the output image will
be dilated or eroded to a different degree according to the
size of B.

)e choice of mask images and marker images deter-
mines the reconstruction effect of an image. In general, if the
raw noise image is selected as the mask image, the marker
image is obtained by transforming the original noise image.
In practical application, the marker image is always obtained
by g � ε(f) or g � δ(f). )is is because ε(f)≤f and
δ(f)≥f, and they meet the condition of dilation and
erosion operation.

Morphological opening and closing reconstructions are
derived from the composition of morphological dilation and
erosion reconstructions, which have a stronger filter
capability.

Morphological opening operation firstly carries out
morphological erosion operation on the image and then
carries out morphological expansion operation on the image
obtained by erosion operation. Morphological opening re-
construction, denoted by RO, is given as

R
O

(f) � R
δ
Rε

f
(δ(f)) ε R

ε
f(δ(f))􏼐 􏼑􏼐 􏼑. (17)

Morphological closing operation firstly carries out
morphological expansion operation on the image and then
carries out morphological erosion operation on the image
obtained by expansion operation. Morphological closing
reconstruction, denoted by RC, is depicted as

R
C

(f) � R
ε
Rδ

f
(ε(f)) δ R

δ
f(ε(f))􏼐 􏼑􏼐 􏼑. (18)

Morphological opening reconstruction is suitable for
accurately recovering the shape of the object after erosion,
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while the morphological closing reconstruction is more
effective for smoothing the texture details. In this paper, we
employ RC to obtain reconstructed image due to the su-
periority of morphological closing reconstruction for texture
detail smoothing.

3. Morphological Reconstruction-Based
Improved FCM Clustering Algorithm with
Guided Filter

In this section, we first propose a guided filter-based FCM
with an influence factor, in which the influence factor ρ is
set to adapt guidance image.)en we give the proof that the
adjustment on guidance image is equal to changing pa-
rameter ε. Last, we propose the morphological recon-
struction-based improved FCM clustering algorithm with
guided filter.

3.1. A Guided Filter-Based FCM Method with an Influence
Factor. Because the factor ε regarding guided filter in
FCM+GF is defined as the scalar, the capability of
FCM+GF to images in the case of various rate noise is
weakening. To handle this issue, a guided filter-based fuzzy
c-means method with an influence factor is proposed, in
which a novel impact factor ρ is set to adapt the guidance
image. )e pseudocode of the IFCM_GF algorithm is
depicted in Algorithm 1.

Proof. )e parameter ε controls the ability of the guided filter
to recognize “flat patch” and “high variance”, so ε should
change with different noises in the image. )us, we give the
proof that multiplying the guidance image by an influence
factor ρ is the same as changing parameter ε to ε/ρ2.

From (12) and (13), we can know that ak and bk asso-
ciated with ωk can be regarded as functions of parameter ε.
)en, (12) and (13) can be rewritten as follows:

a(ε)k �
(1/|ω|)􏽐i∈ωk

Iipi − μkpk

σ2k + ε
, (19)

b(ε)k � pk − a(ε)kμk. (20)

)en, the output qi is defined as follows:

q(ε)i �
1

|ω|
􏽘

k:i∈ωk

a(ε)kIi + b(ε)k( 􏼁. (21)

Let the image I∗ρ be defined as the guidance image, the
new linear coefficients ak

′ and bk
′ are computed as (22) and (23),

respectively, and the new output qi
′ is calculated as follows:

ak
′ �

(1/|ω|)􏽐i∈ωk
Iiρpi − ρμkpk

ρ2σ2k + ε
�
1
ρ

(1/|ω|)􏽐i∈ωk
Iipi − μkpk

σ2k + ε/ρ2􏼐 􏼑
.

(22)

bk
′ � pk − ak

′ρμk, (23)

qi
′ �

1
|ω|

􏽘
k:i∈ωk

ak
′Iiρ + bk

′( 􏼁. (24)

Comparing (22) and (23) with (19) and (20), we can see
that

ak
′ �

1
ρ

a
ε
ρ2

􏼠 􏼡
k

, (25)

bk
′ � pk − a

ε
ρ2

􏼠 􏼡
k

μk � b
ε
ρ2

􏼠 􏼡
k

. (26)

Embedding (25) and (26) into (24), we get

qi
′ �

1
|ω|

􏽘
k:i∈ωk

1
ρ

a
ε
ρ2

􏼠 􏼡
k

Iiρ + b
ε
ρ2

􏼠 􏼡
k

􏼠 􏼡

�
1

|ω|
􏽘

k:i∈ωk

a
ε
ρ2

􏼠 􏼡
k

Ii + b
ε
ρ2

􏼠 􏼡
k

􏼠 􏼡 � q
ε
ρ2

􏼠 􏼡
i

.

(27)

As shown in (27), the new output of the guided filter with
guidance image I∗ ρ is equal to the original output of the
guided filter with parameter ε/ρ2. )erefore, adjusting the
guidance image with an influence factor ρ is equivalent to
changing parameter ε.

In this way, the proposed IFCM_GF method simplifies
the selection of guiding filter parameters and improves the
segmentation effect of different noise images. □

3.2. Morphological Reconstruction-Based Improved FCM
Clustering Algorithm with Guided Filter. )e MRIFCM_GF
clustering algorithm is developed in this subsection. Herein,
by leveraging the morphological closing reconstruction, the
reconstructed image β of the raw noise image f is firstly
computed as follows:

β � R
C

(f). (28)

Subsequently, FCM is employed to segment the
reconstructed image and the guide filter is implemented on
the membership matrix with the guidance of the raw noise
image adjusted by ρ. )e minimization problem of
MRIFCM_GF is written as follows:

JMR(U, V) � 􏽘
C

c�1
􏽘

N

n�1
u

m
cn βn − υc

����
����
2
,

subject to 􏽘
C

c�1
ucn � 1, 0< ucn < 1 ,

(29)

where βn denotes the n-th pixel of the reconstructed image β,
ucn indicates the membership of pixel βn in cluster c, and υc

means the prototype vector of cluster c.
)e U matrix and V matrix are updated according to the

following equations:
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ucn �
1

􏽐
C
j�1 βn − υc

����
����/ βn − υj

�����

�����􏼒 􏼓
(2/(m−1))a

.
(30)

υc �
􏽐

N
n�1 u

m
cnβn

􏽐
N
n�1 u

m
cn

, (31)

for 1≤ c≤C, 1≤ n≤N.
In each iteration, the guided filter is implemented on the

membership metrics. )e flowchart of the proposed
MRIFCM_GF algorithm is shown in Figure 1. Firstly, input a
noisy image to be segmented, reconstruct it by MR, and
initialize cluster centers. )en, calculate memberships, ad-
just the guidance image by multiplying the influence factor,
filter membership matrix by GF method, and update cluster
centers iteratively until the stopping condition is satisfied.
)e pseudocode of the MRIFCM_GF algorithm is sum-
marized in Algorithm 2.

By introducing theMRmethod, MRIFCM_GF solves the
problem that IFCM_GF is not robust to different types of
noisy images and high-noise images, and it is difficult to
select influence factors when the noise ratio is unknown.

4. Experiments

)e experiments are executed on synthetic images and Brain
images. FCM [9], FCM+GF [17], FCM_S1 [12], FCM_S2
[12], and FRFCM [20] are selected for comparison analysis.
)e number of clusters is predetermined according to the
prior information of the image to be clustered. )e fuzzifi-
cation indexm is fixed to 2 and the error threshold ξ is defined
as 10− 8 in all methods. For FCM+GF, IFCM_GF, and
MRIFCM_GF, the factor ε regarding guided filter is fixed to
0.14, and the filtering window size is 3 × 3. For FCM_S1 and
FCM_S2, α that trades off the influence of the neighbor term
is set to 3.8, and the window size is 3 × 3. For IFCM_GF and
MRIFCM_GF, the impact factors ρ are changed by various
noise levels and types. For FRFCM and MRIFCM_GF, the
mask image is the raw noise image, and a structuring element
of size 3 × 3 is utilized to get the marker image.

4.1. Performance Measurement. )e segmentation accuracy
(SA) is adopted for quantitative comparison, and it is
depicted as follows:

Input:)e original noise image including N pixels, the cluster number C, the influence factor ρ, the fuzzification index m, and a small
error threshold ξ.
Initialization: Select the raw noise image as the guidance image. Adjust the guidance image by multiplying the influence factor ρ.
Randomly pick C pixels as the initialized cluster centers. Set the iteration index t � 0.
Repeat:
Update the membership matrix U by (5).
For every cluster c, reshape the membership vector [uc1, uc2, ..., ucN] into an image with the size of the input image, and implement

a guided filter on it. )en reshape the filtered membership image back to the vector shape.
Update the cluster center matrix V by (7).
Calculate the objective function Jt by (1).
t � t + 1

Until: ‖Jt − Jt−1‖< ξ
Output: Results of segmentation

ALGORITHM 1: IFCM_GF algorithm.

input an image

initialize the cluster
center

perform FCM
clustering to update
membership degree

update cluster
centers

satisfy the iteration
stop condition?

obtain classification
results

NO

YES

morphological
reconstruction image

filter the membership
matrix by GF

multiply the influence
factor ρ as the guide

image

Figure 1: )e block diagram of the overall methodology of the
MRIFCM_GF algorithm.
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SA �
D

N
, (32)

where D means the number of properly clustered pixels and
N indicates the whole number of pixels. All tested ap-
proaches are repeatedly conducted 100 times, so the average
SA (ASA) is applied for comparative analysis.

4.2. Results on Synthetic Images. Two synthetic images,
named ST and SF, respectively, are constructed artificially.
)e size of the ST image and SF image is 256 × 256. )e ST
image includes three classes, of which the intensities are 0,
85, and 170, respectively. )e SF image is divided into four
clusters, of which the intensities are 0, 85, 170, and 255,
respectively. To examine the effectiveness of the presented
algorithms for different noises, those synthetic images are
corrupted by Gaussian noise and Salt & Pepper noise at
various rates. )e levels of Gaussian noise include 3%, 5%,
10%, and 15%. And the rates of Salt & Pepper noise contain
10%, 20%, and 30%.

Figure 2 illustrates the filtering results of MR, mean filter,
and median filter on ST image with Gaussian noise (zero
means and 5% variance) and Salt & Pepper noise (20% noise
intensity). As shown in Figures 2(d) and 2(h), the median
filter achieves a good denoising result on Salt & Pepper noise
ST image, while it fails to remove Gaussian noise. At the
same time, from Figures 2(c) and 2(g), it can be seen that the
performance of the mean filter on the Gaussian noise ST
image is slightly better than that of the median filter, but the
mean filter performs worse on Salt & Pepper noise. )e
above observations denote that the mean filter and the
median filter are sensitive to noise type. Conversely, as
shown in Figures 2(b) and 2(f), the MR obtains excellent
denoising results on both Gaussian noise image and Salt &
Pepper image. )is proves the ability of the MR to remove
different type of noise.

Figure 3 shows the filtering results of MR and mean filter
on ST image with various rate Gaussian noise. From
Figures 3(i)–3(l), we can see that the denoising effects of the
mean filter decrease with the increase of noise rate. In
contrast, as shown in Figures 3(e)–3(h), the MR achieves
good denoising results on all noise rates.)e efficiency of the

MR in denoising is helpful to get better segmentation results.
More importantly, as the images with different noise rates
are all well denoised by MR, they have similar grey level
distributions, which are beneficial to simplify the selection of
the influence factor in the MRIFCM_GF.

Figure 4 exhibits the segmentation results on the ST
image with Gaussian noise (zero means and 5% variance).
Table 1 reflects the ASA of all testing methods on ST image
with various noises. From Table 1, we can see that FCM
obtains poor segmentation results on ST image due to its
sensitivity to noise. Compared with the FCM, the FCM+GF
achieves higher ASA. )is reflects the superiority of the
guided filter. But the improvement on ASA is very slight,
which is because the fixed factor ε of the guided filter de-
creases the efficiency of FCM+GF. In contrast, by using an
influence factor to adapt guidance image, the IFCM_GF can
effectively segment different noise rate images and improve
the segmentation results to some extent. )is proves the
benefit of the introduction of the influence factor ρ. When
MRIFCM_GF is compared with IFCM_GF, we can see that
the MRIFCM_GF achieves better ASA on image with
Gaussian and high rate Salt & Pepper noise. )is is because
the MR can efficiently remove noise. Except the
MRIFCM_GF, the other three methods (FCM_S1, FCM_S2,
and FRFCM), which own the denoising operation, also get
good ASA. However, FCM_S1 and FCM_S2 are greatly
affected by the type of noise by virtue of the limitation of
mean filter and median filter, and the FRFCM gets bad
segmentation on edges. Different from FCM_S1, FCM_S2,
and FRFCM algorithm, MRIFCM_GF obtains the best ASA
on almost all ST images.)is is because the introducedMR is
effective in removing any type of noise, and the guided filter
whose guidance image is adjusted by the influence factor can
improve the segmentation on edges. From the segmented
result of MRIFCM_GF (Figure 4(j)), we can see that the
Gaussian noise is removed and the edge of the object is
completely preserved.

Figure 5 reveals the ASA of the IFCM_GF with varying
impact factors on ST images with various rate Gaussian
noise. It can be seen that each curve makes a peak value; that
is, no matter what the noise rate is, there is an optimal
impact factor ρ which leads to the highest accuracy. What is

Input: )e raw noise image including N pixels, the cluster number C, the influence factor ρ, the fuzzification index m, and a small
error threshold ξ.
Initialization: Compute the reconstructed image of the raw noise image as (28). Select the raw noise image as the guidance image of
the guided filter. Adjust the guidance image by multiplying the influence factor. Randomly pick C pixels as the initialized cluster
centers. Set the iteration index t � 0.
Repeat:
Update the membership matrix U by (30).
For every cluster c, reshape the membership vector [uc1, uc2, ..., ucN] into an image with the size of the input image, and implement

guided filter on it. )en reshape the filtered membership image into the vector with the size of the membership.
Update the cluster center matrix V by (31).
Calculate the objective function Jt

MR by (29).t � t + 1
Until: ‖Jt

MR − Jt−1
MR‖< ξ

Output: Results of segmentation

ALGORITHM 2: MRIFCM_GF algorithm.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2: )e filter results of tested models on different noise images. (a) Gaussian noise image (zero means and 5% variance). (b) Filtering
result of MR on (a). (c) Filtering result of mean filter on (a). (d) Filtering result of median filter on (a). (e) Salt & Pepper noise image (20%
noise intensity). (f ) Filtering result of MR on (e). (g) Filtering result of mean filter on (e). (h) Filtering result of median filter on (e).

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 3: )e filtering results of MR and mean filter on ST image with various rates of Gaussian noise. (a) Gaussian noise image (zero
means and 3% variance). (b) Gaussian noise image (zero means and 5% variance). (c) Gaussian noise image (zero means and 10%
variance). (d) Gaussian noise image (zero means and 15% variance). (e) Filtering result of MR on (a). (f ) Filtering result of MR on (b).
(g) Filtering result of MR on (c). (h) Filtering result of MR on (d). (i) Filtering result of mean filter on (a). (j) Filtering result of mean
filter on (b). (k) Filtering result of mean filter on (c). (l) Filtering result of mean filter on (d).
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: )e segmentation results on ST image with Gaussian noise (zero mean and 5% variance). (a) Ground truth. (b) Raw noise image.
(c) Reconstructed image of raw noise image. (d) FCM. (e) FCM_S1. (f ) FCM_S2. (g) FCM+GF. (h) IFCM_GF. (i) FRFCM.
(j) MRIFCM_GF.
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Figure 5: )e ASA of IFCM_GF with various impact factors on ST images corrupted by varying levels of Gaussian noise.

Table 1: )e ASA of tested algorithms on ST images with various noises.

Noise FCM FCM_S1 FCM_S2 FCM+GF (ε � 0.14) IFCM_GF (ρ) FRFCM MRIFCM_GF (ρ)

3% Gaussian 0.7028 0.9783 0.9742 0.6984 0.7520 (0.047) 0.9982 ∗0.9993 (0.014)
5% Gaussian 0.6471 0.9166 0.8716 0.6646 0.7166 (0.034) 0.9965 ∗0.9987 (0.009)
10% Gaussian 0.5806 0.7628 0.7497 0.6172 0.7153 (0.02) 0.9892 ∗0.9964 (0.008)
15% Gaussian 0.5499 0.7292 0.7139 0.5924 0.7082 (0.017) 0.9425 ∗0.9907 (0.005)
10% Salt & Pepper 0.9431 0.9389 0.9826 0.9443 ∗0.9995 (0.008) 0.9991 0.9993 (0.009)
20% Salt & Pepper 0.8873 0.8757 0.9647 0.8916 ∗0.9993 (0.006) 0.9989 ∗0.9993 (0.004)
30% Salt & Pepper 0.8304 0.7806 0.9409 0.8366 0.9981 (0.002) 0.9976 ∗0.9982 (0.003)
∗)e best segmentation accuracy among the group.
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more, the optimal impact factors at various noise rates
change with a certain rule. It gets smaller with the increase in
the noise rate. )is finding is beneficial in the selection of ρ
for the IFCM_GF if the noise rate of the image is known.
However, it is challenging to know the noise rate of an image
in advance, and the good influence factor values of different
curves locate in different intervals, so it is not easy to select
an appropriate ρ for IFCM_GF in practice.

Figure 6 shows the ASA of the MRIFCM_GF with
different influence factors on ST images with various rate
Gaussian noise. Firstly, we can see that the best value of ρ
(0.014, 0.009, 0.008, and 0.005) still varies regularly. In
addition, the curves of the 3% and 5% noise rate vary gently,
which means the good value of ρ locates in a large scale. For
example, as long as the value of ρ is set in interval (0, 0.1), the
MRIFCM_GF will achieve high ASA on ST image with 3%
rate Gaussian noise. What is more, when dealing with the
image corrupted by high rate Gaussian noise, the good value
of ρ is around zero. For instance, the good value of ρ of the
MRIFCM_GF on 15% rate Gaussian noise image locates in
interval (0, 0.008]. )erefore, a small ρ is appropriate for the
MRIFCM_GF to segment an image with any rate Gaussian
noise.

Table 2 presents the ASA of different methods on SF
image with different rate Gaussian noises. We can see that
the results obtained by different algorithms on SF images are

similar to the ones on ST images. )e performance of FCM
deteriorates sharply as the noise rates increase. )e
FCM+GF and the IFCM_GF get higher ASA than FCM due
to the employment of the guided filter. Moreover, the
segmentation results of IFCM_GF are better than the ones of
FCM+GF; this is because the IFCM_GF defines an impact
factor ρ to adapt the guidance image. )e MRIFCM_GF
achieves the best ASA on all Gaussian noise images and high
rate Salt & Pepper noise images. )is is another proof of the
superiority of the combination of the MR and the guided
filter.

Figure 7 displays the segmentation results of tested
models on SF image with Gaussian noise (zero means and
5% variance). As shown in Figures 7(d)–7(h), the FCM, the
FCM_S1, the FCM_S2, the FCM+GF, and the IFCM_GF
suffer from the noise, which leads to numerous misclassi-
fications. From Figures 7(i) and 7(j), it can be seen that there
are a few noise points remaining in the segmentation results
of the FRFCM and MRIFCM_GF. What is more, the
MRIFCM_GF obtains better performances on the edges
than the FRFCM.

Figures 8 and 9 show the ASA of the IFCM_GF and the
MRIFCM_GF with various impact factors on SF images
corrupted by Gaussian noise. From Figure 8, it can be seen
that the best impact factor of the IFCM_GF on different rate
Gaussian noise does not vary regularly. What is more, the
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Figure 6: )e ASA of MRIFCM_GF with various impact factors on ST images corrupted by varying levels of Gaussian noise.

Table 2: )e ASA of tested algorithms on SF images with various noises.

Noise FCM FCM_S1 FCM_S2 FCM+GF (ε � 0.14) IFCM_GF (ρ) FRFCM MRIFCM_GF (ρ)

3% Gaussian 0.7277 0.9716 0.9736 0.7333 0.9274 (0.02) 0.9972 ∗0.9986 (0.019)
5% Gaussian 0.6417 0.9301 0.9271 0.6486 0.7492 (0.04) 0.9952 ∗0.9979 (0.016)
10% Gaussian 0.5392 0.8103 0.8003 0.5250 0.6132 (0.002) 0.9857 ∗0.9944 (0.004)
15% Gaussian 0.4902 0.7331 0.7348 0.4709 0.5620 (0.015) 0.9592 ∗0.9847 (0.001)
10% Salt & Pepper 0.9233 0.9329 0.9746 0.9273 ∗0.9995 (0.003) 0.9990 0.9994 (0.007)
20% Salt & Pepper 0.8475 0.8617 0.9477 0.8620 ∗0.9989 (0.002) 0.9982 ∗0.9989 (0.005)
30% Salt & Pepper 0.7708 0.7613 0.9152 0.7958 0.9973 (0.001) 0.9966 ∗0.9975 (0.003)
∗)e best segmentation accuracy among the group.
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values of the good influence factors on different noise rates
locate in various intervals. For example, the good influence
factor interval of the 5% noise rate is [0.03, 0.049]; mean-
while, the one of the 15% noise rate is [0.008, 0.027]. )us, it
is difficult to choose an appropriate influence factor for the
IFCM_GF without knowing the noise rate. On the contrary,
as shown in Figure 9, the best influence factors of the
MRIFCM_GF on the SF images with Gaussian noise de-
crease regularly as the noise rates change. In addition, the
good influence factor of the MRIFCM_GF on a noise rate is
also adapted to another noise rate. For instance, if the in-
fluence factor is set to 0.005, the ASA of MRIFCM_GF on SF
image with 3% Gaussian noise is 0.9984, and the one on 15%

Gaussian noise image is 0.9845. In summary, it is easy to set
the influence factor ρ for the MRIFCM_GF.

5. Results on Brain Images

To further verify the advantage of the MRIFCM_GF, the
brain magnetic resonance images (Brian images) collected
from “BrainWeb” [21] are considered as the test images in
this subsection. )e size of the Brain images is 181 × 217.
Brain images are corrupted by Rician noise, and the noise
rates include 5%, 10%, 15%, 20%, and 25%.

)e segmentation results of tested algorithms on Brain
image with 5% Rician noise are illustrated in Figure 10.
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Figure 8: )e ASA of IFCM_GF with various impact factors on SF images corrupted by varying levels of Gaussian noise.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 7: )e segmentation results on SF image with Gaussian noise. (a) Ground truth. (b) Raw noise image (zero mean and 5%
variance). (c) Reconstructed image of raw noise image. (d) FCM. (e) FCM_S1. (f ) FCM_S2. (g) FCM+GF. (h) IFCM_GF. (i) FRFCM.
(j) MRIFCM_GF.
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Table 3 details the ASA of all methods on the Brain image
with Rician noise. When the noise rate is 5%, the IFCM_GF,
the FCM+GF, and the FCM achieve the best three results
(0.9999, 0.9998, and 0.9993 on ASA, resp.). )is is because
the 5% Rician noise has little influence on image segmen-
tation, and the denoising operations (mean filter, median

filter, and theMR) are not helpful in this case but only lead to
the destruction of the image edges. However, with the in-
crease of noise rate, the methods with denoising operations
get better ASA. For example, when the noise rate is 10%, the
FCM_S1, the MRIFCM_GF, and the FCM_S2 get the best
three results on ASA (0.9866, 0.9844, and 0.9722, resp.).

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 10: )e segmentation results on Brain image. (a) Ground truth. (b) Raw noise image (Rician noise intensity is 15%). (c) Reconstructed
image of raw noise image. (d) FCM. (e) FCM_S1. (f) FCM_S2. (g) FCM+GF. (h) IFCM_GF. (i) FRFCM. (j) MRIFCM_GF.
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Figure 9: )e ASA of MRIFCM_GF with various impact factors on SF images corrupted by varying levels of Gaussian noise.

Table 3: )e ASA of tested algorithms with various noises on Brain images.

Noise FCM FCM_S1 FCM_S2 FCM+G (ε� 0.14) IFCM_GF (ρ) FRFCM MRIFCM_GF (ρ)
5% Rician 0.9993 0.9953 0.9908 0.9998 ∗0.9999 (0.15) 0.9837 0.9952 (0.14)
10% Rician 0.8427 ∗0.9866 0.9772 0.8480 0.9380 (0.15) 0.9762 0.9844 (0.1)
15% Rician 0.7075 0.9085 0.8313 0.7265 0.8167 (0.05) 0.9387 ∗0.9483 (0.08)
20% Rician 0.6240 0.7993 0.7823 0.6456 0.7731 (0.03) 0.8984 ∗0.9152 (0.08)
25% Rician 0.5540 0.7674 0.7477 0.5862 0.7410 (0.02) 0.8631 ∗0.8745 (0.07)
∗)e best segmentation accuracy among the group.
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More importantly, the proposed MRIFCM_GF method
obtains the best ASA when the noise rate is high (15%, 20%,
and 25%). )e excellent performance of the MRIFCM_GF
results from both the ability of theMR to remove heavy noise
and the superiority of the influence factor to enhance the
capacity of the guided filter to reserve edges.

Figures 11 and 12 present the ASA of IFCM_GF and
MRIFCM_GF with different influence factors on Brain
images. As shown in Figure 11, for the IFCM_GF, the good
values of the influence factor ρ for different noise rates locate
in different intervals. For instance, the good influence factor
values for 10% Rician noise Brain image locate in [0.13, 0.2];
meanwhile, the ones for 25% Rician noise Brain image locate
in [0.01, 0.04]. So, it is challenging to set the value of the
influence factor ρ for the IFCM_GF without knowing the
noise rate. On the contrary, from Figure 12, we can see that
the good influence factor values of the MRIFCM_GF on

images with different rate noises locate in the same interval.
Specifically, if only the value of ρ is set larger than 0.06, the
MRIFCM_GF can obtain good ASA on all Brain images
whatever the noise rate is.

6. Conclusions

In this paper, we first present the IFCM_GF method, in
which a novel impact factor ρ is designed to adapt the
guidance image. )e essence of this adjustment on guidance
image is proved to be equal to the change on parameter ε of
guided filter. IFCM_GF improves the segmentation per-
formance of images with various noise rates by varying the
value of ρ. )us, to reinforce the heavy noise image seg-
mentation quality and simplify the selection of impact
factor, we further propose the MRIFCM_GF algorithm, in
which the original noise image is reconstructed by MR
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Figure 12: )e ASA of MRIFCM_GF with various influence factors corrupted by varying levels of Rician noise rate.
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before clustering. )e MR is effective in removing noise
ignoring noise type, so the MRIFCM_GF achieves better
performance than the IFCM_GF. More importantly, the MR
can efficiently remove any rate noise and the reconstructed
images of different rate noise images have similar grey
distributions, so it is easy to set an appropriate influence
factor for the MRIFCM_GF without knowing noise rates.

In the future, we will explore how to automatically get an
appropriate influence factor ρ based on the type and rate of
noise. Moreover, the choice of mask image and marker
image determines the reconstruction result, so we will
continue to study how to select mask or marker image inMR
to obtain better performance.
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