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ABSTRACT: FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The
ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies
against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of
FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature
stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ-ZapA interaction at
the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that
stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize
protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that
stabilization and bundling of FtsZ polymers by ZapAwas inversely correlated to theGTPase activity of FtsZ.
As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only
enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring
and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on
the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the
presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it
affected the interaction between FtsZ and ZapA in vitro.

FtsZ, ubiquitous in virtually all prokaryotes, is amajor actor in
the cytokinesis process of bacteria. In Escherichia coli this
universally conserved tubulin homologue is able to polymerize
into a ring-like structure (known as the Z-ring) at the impending
site of division. This cytoskeletal element is not only crucial for
bacterial cell division but is also required for assembly of other
constituents of the divisome (1). The ring-like structure is highly
dynamic and tightly regulated (2, 3). A number of proteins are
involved in the regulation and stability of the Z-ring at mid cell.
These regulators are expected to affect the transition from
assembly to disassembly and vice versa of the Z-ring. The FtsZ
level of 5 μM in the cell (4-6) is sufficient to promote polymer-
ization as the critical concentration for FtsZ polymerization is in
the order of 2 μM(7). To avoid the production ofmini cells due to
polar constrictions, the Min system inhibits FtsZ polymerization
near the cell poles (2, 8), and the nucleoid occlusion (Noc) protein
SlmA, which is associated with the bacterial chromosome,

inhibits FtsZ polymerization in the vicinity of the nucleoid (9).
As a result FtsZ can only polymerize at mid cell where a local
DNA minimum is realized due to segregation of the nucleoids.
ZipA, FtsA, and the widely conserved Z-ring associated protein
ZapA are reported to stabilize the Z-ring during its formation.

FtsZ is able to bind and hydrolyze GTP (10), and its
polymerization has been extensively studied in E. coli. Assembly
of FtsZ into polymers is dependent on GTP hydrolysis (11).
Association of two FtsZ monomers induces hydrolysis of the
interface-bound GTP (12), which is followed by a release of the
phosphate (13, 14). The remaining GDP-bound FtsZ favors
depolymerization (15). Depending on experimental conditions,
FtsZ can form a variety of polymeric structures. Alterations in
concentrations of, for example, FtsZ, GTP, KCl, Mg2þ, and
Ca2þ can affect the polymerization process and result in distinct
morphologies of the polymers (7, 16-19). Particularly, Mg2þ

is required for the hydrolysis of GTP as it binds the β- and
γ-phosphate. At Mg2þ levels between 1 and 5 mM the GTPase
activity of FtsZ was demonstrated to be enhanced, resulting in
the formation of protofilaments (7, 20-22). Above 5 mM (e.g.,
10 mM) Mg2þ the GTPase activity is reduced, and the filaments
are more stable, which results often in enhanced lateral associa-
tion (18, 23, 24) and Figures 6 and 8 of this report. Other divalent
cations such as Ca2þ and DEAE-dextran are not required for
assembly but induced lateral associations of protofilaments in
very large bundles.
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Up to now, most studies reported on the effect ofE. coliZapA
(12.594 kDa) on FtsZ polymerization were carried out at the
nonphysiological pHof 6.5 (25) as this is themore optimal pH for
FtsZ polymerization (7, 26). Under these conditions His-ZapA
strongly promotes the bundling of FtsZ and prevents the
disassembly of these bundles on a time scale that surpasses the
duration of a bacterial cell cycle (25). This seems to be in conflict
with the very dynamic nature of the Z-ring (3). Therefore, we
determined the stoichiometry of FtsZ and ZapA in vivo and the
interaction with FtsZ in vitro at pH 7.5 and 6.5 and discovered
that the His tag had a substantial effect, questioning previous
studies done without removing the His tag (25, 27, 28).

EXPERIMENTAL PROCEDURES

Materials and Strains. Purified proteins were dialyzed
against the buffers used in the experiments. High ionic strength
buffer was comprised of 50 mMTris-HCl, pH 7.5, 500 mMKCl,
and 5 mM MgCl2. Low ionic strength buffer contained 50 mM
Tris-HCl, pH7.5, 50mMKCl, and 5mMMgCl2 andwas used to
study the effect of ionic strength on the association state of ZapA.
MES buffer, pH 6.5, and HEPES buffer, pH 7.5, contained
50 mM buffering agent and 50 mM KCl. In all experiments
5 or 10 mM MgCl2 was used as indicated. The E. coli LMC500
(29, 30) and SF100 (31) wild-type strains were grown in minimal
medium GB1 or rich medium TY as described (32).
Purification of FtsZ. FtsZ was overproduced in E. coli

BL21(DE3) transformed with pRRE6 and purified as de-
scribed (33). Protein concentration was determined by BCA
assay, following the manufacturer’s protocol (Pierce, micro
BCA kit). The measured concentration of FtsZ was multiplied
by 1.23 to correct for the weaker staining of FtsZ compared to
BSA1 by the kit.
Purification of ZapA and Production of Polyclonal

Antiserum against ZapA. The zapA gene was PCR amplified
with the sense primer ZapANcoIFw (50-CATGCCATGG
GGTCTGCACAACCCGTCGATATCC-30) and the antisense
primer ZapASalIRv (50-ACGCGTCGAC CATCATTCAA
AGTTTTGGTT AGTTTTTTC-30). The PCR fragment was
digested with NcoI and SalI and ligated into vector pET302 (33)
cleaved with the same enzymes. The resulting plasmid pPG016
encodes a C-terminal six histidine tag followed by an enterokinase
recognition site (four aspartic acid residues, a lysine, and an
alanine residue) fused to the zapA gene.

For the purification of ZapA, SF100 cells transformed with
pGP016 were grown at 37 �C in TY, and at an OD600 of 0.6
overexpression of the recombinant protein was induced by
addition of 0.3 mM IPTG. The cultures were then grown for
another 2 h after which the cells were harvested by centrifugation.
The cell pellet was resuspended in three volumes of ice-cold
binding buffer (20 mM phosphate, pH 7.4, 150 mM NaCl,
30 mM imidazole) to which DNase I (20 μg/mL), dithiothreitol
(1 mM), and protease inhibitors (0.4 mM Pefabloc plus and
complete protease inhibitors (Roche, Germany)) were added.
This suspension was passed twice through a French press at
10000 psi, after which unbroken cells were removed by centrifu-
gation (5 min, 12000g, 4 �C, SS34 rotor, Sorvall). After ultra-
centrifugation at 144000g for 45 min (Sorvall Discovery 100

centrifuge, Ti60 rotor, 4 �C), glycerol was added to the super-
natant to a final concentration of 10%. His-ZapA was then
purified in batch by incubating 5 mL of Ni2þ-NTA beads
(Amersham, Germany) with the supernatant for 1 h at 4 �C
under rotation. After washing three times with 10 mL of binding
buffer and one time with buffer containing 100 mM imidazole,
6His-ZapA was eluted in 5 times 5 mL elution buffer (20 mM
phosphate, pH 7.4, 150 mM NaCl, 500 mM imidazole, 10%
glycerol). The eluted fractions were pooled, and the protein
concentration was determined using a protein determination
kit (micro BCA kit; Pierce) according to the manufacturer’s
protocol. Antisera against 6His-ZapA were generated using a 1:1
with montenide-diluted 0.1 mg/mL protein solution, which was
injected into rabbits (Agrisera, Sweden).
Removal of the His Tag by Enterokinase Digestion of

His-ZapA. The His tag of ZapA was removed from His-ZapA
inHEPES buffer, pH 7.5, and fromHis-ZapA inMESbuffer, pH
6.5, by digestion with 0.2 and 0.6 μg of enterokinase (Roche),
respectively, per 25 μg of ZapA for 21 h at 37 �C. Subsequently,
the enterokinase was removed by filtration through a 100-kDA
cutoff filter (Microcon YM-100000 MWCO; Millipore). The
flow-through was next concentrated by centrifugation through a
10-kDa cutoff filter (Amicon ultra-4 10000 MWCO; Millipore)
that removed the His tag. Complete digestion of ZapA and
removal of unwanted protein parts was confirmed by SDS-
PAGE, and the concentration of the protein was determined by
BCA or by Quant-iT assay (Invitrogen). Enterokinase cleaves
after the lysine, which results in a ZapA with an extra alanine at
its N-terminus.
Quantification of Cellular Concentration of ZapA and

FtsZ. LMC500 cells were grown to steady state in GB1 at 28 �C.
The number of cells per milliliter was determined using an
electronic particle counter (orifice 30 μm). When the ratio
between optical density and number of cells remained constant,
the culture was considered to be in steady state of growth (34). At
an OD450 of 0.2, the cells were harvested, and to determine the
amount of endogenous ZapA or FtsZ per cell, 40 or 67 μL of cell
lysate ofOD450 0.2was applied in duplicate or triplicate on a 15%
or 12% SDS-PAGE, respectively. Purified FtsZ or ZapA, of
which the exact concentration was determined by amino acid
quantification (Eurosequence, The Netherlands), was used to
make a calibration curve and applied in duplicate on the same
SDS-PAGE. The gel was blotted on nitrocellulose, and the blot
was incubated with affinity-purified IgG against ZapA or
monoclonal antibody F168-12 against FtsZ (35) as the primary
antibodies and horseradish peroxidase-conjugated goat anti-
rabbit or anti-mouse (Bio-Rad) as the secondary antibodies.
The blot was then developed with a chemiluminescence kit (ECL
plus, Amersham, Germany), followed by quantitative detection
of the chemiluminescence signal with a phosphorimager (Storm
840, Amersham, Germany) and analyzed with the program
Image J.
Sedimentation Velocity. The experiments were carried out

at 42000 rpm and at 20 �C in an XL-I analytical ultracentrifuge
(Beckman-Coulter Inc.) equipped with a UV-vis and IF detec-
tion system, an An-50 Ti rotor, and 12 mm double-sector
centerpieces. Sedimentation profiles were registered every 5 min
at the appropriate wavelength (230 or 275 nm). The sedimenta-
tion coefficient distributions were calculated by least-squares
boundary modeling of sedimentation velocity data using the c(s)
method as implemented in the SEDFIT program (36). These
s-values were corrected to standard conditions (water, 20 �C, and

1Abbreviations: BSA, bovine serum albumin; CBB, Coomassie Brilliant
Blue; EM, electron microscopy; IPTG, isopropyl β-D-1-thiogalacto-
pyranoside; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel
electrophoresis.
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infinite dilution) to get the corresponding standard s-values
(s20,w) using the software SEDNTERP (37). f/f0 was calculated
with this software from the s20,w and the tetramer molecular
mass. Mass distributions from the sedimentation velocity experi-
ments were calculated using the c(M) maximum entropy routine
in SEDFIT (36).
Static Light Scattering. Composition-gradient static light-

scattering experiments were carried out following essentially the
procedure recently developed byMinton and co-workers (38). In
brief, a programmable three injector-syringe pump (CALYPSO;
Wyatt Technology, Santa Barbara, CA) was used to introduce a
solution of defined protein composition (loading His-ZapA
concentration = 0.4 mg/mL) into parallel flow cells to allow
for simultaneous measurement of Rayleigh light scattering at
690 nmand 18 angles (using aDAWN-EOSmultiangle laser light
scattering detector; Wyatt Technology, Santa Barbara, CA) and
protein concentration at 280 nm (using a Spectra SystemUV2000
absorbance detector; Thermo Finnegan, West Palm Beach, FL).
The experiment yields several thousand values of the Rayleigh
ratio as a function of protein(s) concentration and scattering
angle. The entire composition and angular dependence data can
be analyzed in the context of associationmodels as described (39)
to obtain the averagemolecular weight and state of association of
ZapA under given experimental conditions.
Pelleting Assay. Samples were prepared in HEPES buffer,

pH 7.5, orMES buffer, pH 6.5, at 30 �C containing 10 μMFtsZ.
Next, ZapA or His-ZapA was added to each sample at various
concentrations ranging from 0 to 32 μM (ZapA) or 40 μM (His-
ZapA). The polymerization was initiated by the addition of
1 mM GTP. The samples were incubated for 120 s at 30 �C and
then centrifuged for 5 min at 178000g at 20 �C (Airfuge A100;
Beckman-Coulter Inc.). The supernatant (150 μL) was removed,
sample buffer was added, and the samples were boiled for 5 min.
The pellet was resolved in 100 μL of sample buffer and heated for
10 min at 65 �C before the sample was transferred to an
Eppendorf tube and boiled for 5 min. An equal volume of the
supernatant and pellet was applied on a 15% SDS-PAGE, and
the amount of FtsZ and ZapA present in the pellet and super-
natantwas determined by densitometry of the CBB stained bands
using the program Image J. The data were corrected for the
difference in total amount of material applied on the gel of the
supernatant and the pellet.
90� Light Scattering for Polymerization Studies.A right-

angled (90�) light scattering assay, based on themethoddescribed
previously by Mukherjee and Lutkenhaus (7), was used to study
the polymerization of purified FtsZ. In general, light scattering
was measured in a PTI QuantaMaster 2000-4 fluorescence
spectrophotometer (Photon Technology International, New
York) using a quartz cuvette that was maintained at 30 �C by
a circulating water bath. In all assays both excitation and
emission wavelengths were set at 350 nm with a slit width of 1
or 2 nm. For the standard polymerization assay, ZapA or His-
ZapA and/or FtsZ were incubated (in the cuvette) at 30 �C in
polymerization buffer in a total volume of 1.3 mL. After
establishing a baseline for 2 min, polymerization was induced
by addition of 0.2 μM GTP to the reaction mixture. The sample
was gently mixed with a pipet tip, and light scattering was
monitored for an additional 18-25 min. Data were collected
every second, and light scattering following GTP addition was
plotted as a function of time. The concentrations and the
constituents of the polymerization reaction are indicated in the
text and figure legends.

Electron Microscopy. For visualization of the FtsZ poly-
mers by EM, 8.3 μM FtsZ was prewarmed in polymerization
buffer (50 mM HEPES, pH 7.5, 50 mM KCl, and 5 or 10 mM
MgCl2) at 30 �C. Polymerization was induced by addition of
0.2 mM GTP. After 15 s samples of 3 μL were withdrawn from
the polymerization reaction and applied on a 400-mesh carbon-
coated grid (EMS, Hatfield, PA), and excess liquid was blotted
off. The gridwas stained for 1minwith 1 μLof 1%uranyl acetate
in water and blotted off again. Subsequently, the grids were dried
for 1 h at 30 �C. Grids were examined with a Technai G2

transmission electron microscope (FEI, Oregon).
GTPase Activity Assay. GTPase activity was assayed by a

fluorescence-based assay for phosphate release (39). In addition
to polymerization buffer (see above) the reaction consisted of
1 mM 7-methylguanosine (excitation at 300 nm), 0.3 unit/mL
nucleoside phosphorylase, 8.3 μMFtsZ, and ZapA or His-ZapA
at the indicated concentrations in a total volume of 1.3 mL. After
recording a baseline for 2 min, polymerization was induced by
addition of 0.2 mM GTP. Release of phosphate from GTP
hydrolysis was measured by decrease in fluorescence at 390 nm.
Standard curves with known concentrations of phosphate were
used to convert the decrease in fluorescence to phosphate
production.

RESULTS

ZapAConcentration in the E. coli Cell Is Approximately
Equimolar to That of FtsZ. To establish conditions that could
reflect the cellular situation, we determined the amount of ZapA
present in the E. coli cell. The ZapA concentration in Bacillus
subtilis was estimated to be about 5% of the FtsZ concentration
in this organism (28). Given the large difference in DivIB (FtsQ)
function and concentration inB. subitilis compared toE. coli (40),
we decided to determine the ZapA concentration in E. coli cells.
Although the number of FtsZ molecules per cell is well-known,
the average number of FtsZ molecules per cell was determined as
well to have an internal control for the reliability of our
quantification method. In addition, we would be able to directly
compare the cellular ZapA concentration with that of FtsZ in
cells grown under identical conditions. To this purpose, LMC500
cells were grown to steady state inGB1 at 28 �C.A cell lysate and
a purified ZapA concentration range (1-4 ng) were applied in
duplicate on SDS-PAGE and subsequently blotted on nitrocel-
lulose (Figure 1). In the case of FtsZ, a 10-100 ng range of
purified FtsZ was used as a standard (data not shown). The
protein bands were visualized using affinity-purified antibodies
against ZapA or FtsZ, and their intensities were determined by
chemiluminescence density analysis. By comparing the total
signal of the ZapA or FtsZ bands from the cell lysate to that of
the standards, the average number of ZapA molecules was
calculated to be 6100 ( 1000 per average cell (which equals
5.38 μM or 67.76 μg/mL) as deduced from the average of three
separate experiments. This is clearly different from B. subtilis
ZapA for which the number of molecules per cell was estimated
to be 250 (28). Note that throughout this report the ZapA
concentrations are expressed as that of the monomer. The
number of FtsZ molecules per average E. coli cell was 4800 (
1300 as was determined from three separate experiments (results
not shown). This is in agreement with the earlier published values
for FtsZ of 5000 molecules per cell under comparable growth
conditions (4), 3200 molecules per cell in E. coli B/r (5), and 5000
molecules per cell found in B. subtilis (6). This suggests that in
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E. coli at least during growth inminimal mediumZapA and FtsZ
are present in approximately 1:1 stoichiometry.
Characterization of His-ZapA. The crystal structure of

Pseudomonas aeruginosa His-ZapA showed two His-ZapA di-
mers associating via an extensive C-terminal coiled-coil protru-
sion to form an antiparallel tetramer (27). Previous analytical
ultracentrifugation studies of His-ZapA performed by Small
et al. (25) were compatiblewithE. coliZapAbeing an equilibrium
mixture of dimers and tetramers. Much higher concentrations
were required to obtain similar results with the His-ZapA of
P. aeruginosa (27). Because ZapA is a rather small protein of
molecular mass 12500 Da, the addition of six histidine residues
and the enterokinase recognition site of four aspartic acids, a
lysine, and an alanine could affect the tetramerization and
function of ZapA. Therefore, we first established whether the
protein still behaved as wild-type protein in vivo and in vitro. To
this end we determined the oligomeric state of His-ZapA by
sedimentation velocity and composition-gradient static light
scattering (CG-SLS). We analyzed the sedimentation velocity
profiles in terms of distribution of sedimentation coefficients,
allowing an evaluation of protein homogeneity and self-associa-
tion. Figure 2A shows sedimentation velocity data for 40 μM
His-ZapA samples equilibrated in buffer of pH 7.5 to mimic the
cellular pH of E. coli (41, 42) containing 50 mM KCl and 5 mM
MgCl2 (solid line). We observed that the major species (>95%)
sediment with a standard s-value of 3.4 ( 0.2 S. The sedimenta-
tion velocity of the protein did not change upon increasing the
salt concentration to 0.5 M KCl or by chelating the magnesium
withEDTA (Figure 2A). Based on the c(M) distribution (insert in
Figure 2A), the molecular mass of His-ZapA was estimated to be
55( 0.5 kDa, which is compatible with the expected mass of the
protein tetramer (molecular weight of the His-ZapA monomer is
14273). To further measure the molecular mass of the 3.4 S
protein species, we carried out in parallel composition-gradient
static light scattering experiments. The normalized scattering
intensity of His-ZapA in buffer, pH 7.5, with 0.5 M KCl and

5 mMMgCl2 is plotted as a function of protein concentration in
Figure 2B. The data have been fitted quantitatively by a model
according to which His-ZapA behaves as a single species with an
average molecular mass of 52 ( 0.3 kDa (95% confidence limit)
in very good agreement with the value obtained from the c(M)
distribution. The best fit of this model is plotted together with
the data set. It follows that under the experimental conditions
used His-ZapA is a tetramer species that slightly deviates from
the hydrodynamic behavior of a globular protein (frictional ratio
f/f0=1.42).
His-ZapA Is Not Functional. Although the His-ZapA

formed a tetramer as reported for the other His-ZapA pro-
teins (25, 27, 28), the tag might still interfere with the binding to
FtsZ. Therefore, we determined whether our His-ZapA was able
to complement a zapA deletion strain. Despite the published
absence of phenotype of a ZapAdeletionmutant strain (3, 28, 43),
during exponential growth in rich medium a minor phenotype
could be detected in our zapA deletion strain. Consistently, the
ΔzapA cultures contained amixture of filaments (11%of the cells)
and normal sized cells. The average length of the cells in the
culture was 4.9 ( 1.9 μm whereas the average length of cells in a
wild-type culture is 3.7( 0.8μm.Based on aKolmorov-Smirnov

FIGURE 1: Affinity-purified antibodies against ZapA are specific
(A) and can be used to quantify the number of ZapA molecules per
cell (B). PanelA:Thewild-type strainLMC500 (lane 1) and theZapA
null strain LMC3143 (lane 2) were grown in TY at 28 �C and
harvested at OD600 of 0.5. The cell pellet was resuspended in sample
buffer and protease inhibitors, and 2.7 OD units was applied on the
gel.On lane 3 1 μg of purifiedZapAwas applied. The left panel shows
a Ponceau staining of the blot, and the right image shows staining
with the affinity-purified IgG against ZapA. Panel B: Cell lysates of
GB1 at 28 �C grown cells of known cell number and known amounts
of purified ZapA were run on gel, immunoblotted, and stained with
antibodies against ZapA. Using a phosphorimager, the amount of
ZapA in each cell lysate sample could be quantified. WT is LMC500
cell lysate. EndogenousZapAwas found to be present at 6100( 1000
molecules per average cell.

FIGURE 2: Biophysical analysis of His-ZapA in solution. Panel A:
Sedimentation coefficient distributions c(s) of ∼40 μM His-ZapA
that result from the analysis of the corresponding sedimentation
velocity profiles measured at 42000 rpm and 20 �C with protein
equilibrated in 50mMTris-HCl buffer, pH7.5, containing either 0.05
MKCl (solid line, 5mMMgCl2; dashed-dotted line,EDTA) or 0.5M
KCl (dotted line, 5mMMgCl2; dashed line, EDTA). The inset shows
the corresponding molar mass distribution c(M) versusM. Panel B:
Normalized scattering intensity plotted as a function of His-ZapA
concentration inTris buffer, pH7.4, containing0.5MKCl and 5mM
MgCl2. The solid line is the best fit of a single speciesmodelwithM=
52( 0.3 kDa that is compatible with the mass of the His-ZapA
tetramer.
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test the two populations are clearly different (Dn,n0 = 30%,
Dcritical = 6.4%, n = 500 by a 95% confidence limit). We used
thismorphological difference to determine whether theHis-ZapA
could replace the ZapA protein. TheΔzapA strain LMC3143 was
transformed with the plasmid pGP016 that expresses the His-
ZapA, with plasmid pGP021 that expresses ZapA without His
tag, or with the parental plasmid pTHV037 (44) of pGP021 that
does not express any protein. The cells were exponentially grown
in rich medium at 28 �C. The average length of the cells in these
cultures was 4.6 ( 1.7, 3.1 ( 1.0, and 4.6 ( 2.8 μm, respectively,
indicating that the His-ZapA is not functional in vivo.
Interaction of ZapA and FtsZ under Physiological

Relevant Conditions. In vitro studies on the interaction of
ZapA and FtsZ showed that ZapA very strongly stabilizes and
stimulates bundling of FtsZ polymers (25). The surprisingly high
concentration of ZapA in the E. coli cells, given the reported 250
molecules of ZapA in B. subtilis cells (28), made us wonder how
E. coli can prevent ZapA to prematurely stabilize and bundle
FtsZ polymers in the cytosol before they are needed to assemble
the Z-ring. Recently, it was shown that ZapA is able to prevent
the FtsZ polymerization inhibitory activity of MinC (45, 46).
Thus, MinC might prevent the stabilization of FtsZ polymers by
ZapA. However, ZapA is present throughout the cytosol,
whereas the Min system is thought to be predominantly func-
tional in the cell poles. Therefore, additional mechanisms might
be needed to prevent premature interaction between ZapA and
FtsZ. To understand how ZapA might interact with FtsZ in
nondividing cells and with the Z-ring in dividing cells, we
performed the experiments at the physiological pH of 7.5 (41).
To check for consistency with published data (25) the experi-
ments were also performed at pH 6.5. In addition, it was
attempted to assay their interaction under conditions that do
not stimulate bundling (to mimic predivision conditions) and
conditions under which FtsZ filaments were already somewhat
stabilized (to mimic Z-ring formation). The first condition was
assessed by measuring polymerization in the presence of 5 mM
MgCl2 (7, 20-22). The second condition was in the presence of
10 mM MgCl2 that reduces the GTPase activity of FtsZ (7). We
removed theHis tag because we found that it did not complement
the ZapA null strain. Information on the behavior of the His-
ZapA in the below described assays can be found in the
Supporting Information and figures.

Using a pelleting assay (25, 27, 47, 48), we found that ZapA
stoichiometrically pelleted FtsZ in the presence of 10 mMMgCl2
at pH 7.5 (Figure 3A) as well as at pH 6.5 (Figure 3B; see for all
corresponding SDS-PAGE gels Supporting Information Figure
S1). In contrast, in the presence of 5 mMMgCl2 at pH 7.5, ZapA
did not pellet FtsZ (Figure 3A), whereas at pH 6.5 FtsZ was still
pelleted byZapA albeit less efficiently (Figure 3B). In conclusion,
the efficiency of FtsZ pelleting decreased in the following order:
pH6.5, 10mMMgCl2>pH7.5, 10mMMgCl2>pH6.5, 5mM
MgCl2 > pH 7.5, 5 mM MgCl2. The ability of ZapA to pellet
FtsZ was most markedly stimulated by 10 mM MgCl2. (See for
the behavior of His-ZapA Supporting Information Figure S2.)
The predivision mimicking condition clearly resulted in a differ-
ence in FtsZ-ZapA interaction than the Z-ring mimicking
condition.
Light Scattering Experiments. To obtain further insight in

the nature of the differences in the stabilization of FtsZ by ZapA
and to be able to follow the polymerization and the depolymer-
ization process, we repeated the experiments by measuring light
scattering. No increase in light scattering signal was seen when

either 1 mM GDP replaced GTP or no guanosines were
employed as reported (25). A light scattering signal increase
was also absent when ZapA was assayed in the absence of FtsZ
(Supporting Information Figure S3). With 5 mM MgCl2 and in
the presence of a substoichiometric to stoichiometric ZapA
concentration, the light scattering signal showed a small increase
(Figure 4 and Supporting Information Figure S4; see for His-
ZapA data Supporting Information Figure S5). This might
indicate that ZapA binds to protofilaments and causes an
augmentation in the amount of scattered light due to the
increased thickness of the filaments or due to a change in the
length of the filaments (see EMdata below). In the presence of 10
mM MgCl2 the light scattering signal increased much more
(Figure 4). At pH 7.5 the polymers started to depolymerize
within the time course of the experiment (Figure 4A). However,
at pH 6.5 the light scattering signal was completely stable within
the time span of the experiment (Figure 4B). To verify that the
FtsZ polymers were able to depolymerize at pH 6.5 in the
presence of 10 mM MgCl2, the experiment was repeated with
0.03 mMGTP instead of 0.2 mMGTP as was used in the above
experiments. Under these conditions depolymerization of FtsZ
occurred within the time span of the experiment (Figure 5), which
meant that with a molar ratio of FtsZ to GTP of 1:3 a
considerable amount of polymers was still formed in the presence

FIGURE 3: Quantification of the proteins in a pelleting assay shows
that ZapA precipitates FtsZ effectively in the presence of 10 mM
MgCl2 and to a much lesser extent in the presence of 5 mM MgCl2.
FtsZ (10 μM) was incubated in prewarmed MES buffer, pH 6.5, or
HEPES buffer, pH 7.5, of 30 �C with increasing ZapA concentra-
tions. Polymerizationwas initiated by the addition of 1mMGTPand
allowed to continue for 2 min before the polymers were pelleted by
airfuge. Supernatant and the pellet were applied on a 15%
SDS-PAGE, which was stained with CBB. The stained gel was
imaged, and the amount of material present in the supernatant and
thepelletwasdeterminedbydensitometry.Theprotein concentration
was plotted as a function of the ZapA concentration added to the
sample. Panel A:Quantification of the pellets of the CBB stained gels
of the experiments inHEPES buffer, pH 7.5. Panel B: Quantification
of the pellets of the experiment inMES buffer, pH 6.5. Solid lines are
from the FtsZ in the pellet and dashed lines from the ZapA in the
pellet. Black and gray lines are from the experiments in the presence
of 5 and 10mMMgCl2, respectively. The correspondingCBB stained
gels are shown in Supporting Information Figure S1.
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of ZapA. FtsZ polymers are normally very transient in the
absence of an excess of GTP because of the high rate of GTP
turnover by FtsZ (26). These results suggested, therefore, that
ZapA considerably stabilized the polymers by decreasing the
GTPase activity of FtsZ or by simply cross-linking the polymers
(see below).
GTPase Activity Assays. To verify whether the GTPase

activity of FtsZ was indeed affected by ZapA, we determined its
GTPase activity in the presence of ZapA under the same
conditions as used for the light scattering assays. A fluorescent
molecule 7-methylguanosine that is converted to a nonfluor-
escent molecule by purine nucleoside phosphorylase was used to
monitor the phosphate release due to the GTP hydrolyzing
activity of FtsZ. First, the GTPase activity of 8.3 μM FtsZ in
the absence of ZapA was measured under the four conditions
used: pH 6.5, pH7.5, and 5 or 10mMMgCl2. The lowering of the

pH gave a small decrease in the GTPase activity of FtsZ, whereas
the addition of 10mM instead of 5 mMMgCl2 caused a decrease
in GTPase activity of 30% (Figure 6). Subsequently, the GTPase
activity of 8.3 μMFtsZ was measured using the same four buffer
conditions in the presence of ZapA or His-ZapA (Supporting
Information Figure S7) in concentrations ranging from 1 to
8.3 μM. The resulting GTPase activities are plotted as a
percentage of the FtsZ GTPase activity in the absence of ZapA
(Figure 7). Overall, it seems that up to a stoichiometric concen-
tration of 8.3μM,ZapAhad little effect on theGTPase activity of
FtsZ in the presence of 5 mMMgCl2, confirming its lack of effect
on the polymers in general under these conditions. In the presence
of 10mMMgCl2 the GTPase activity was slightly inhibited up to
20% at the highest ZapA concentration used. It should be noted
that FtsZ polymers are already stabilized at much lower ZapA
concentration in the light scattering experiments (not shown) and
pelleting experiments (Figure 2) in the presence of 10mMMgCl2.
ZapA concentrations at which no effect on theGTPase activity of
FtsZ is observed. Lateral association of FtsZ protofilaments is
known to decrease the GTPase activity of FtsZ, which conse-
quently stabilizes the bundles (7). The weak effect of ZapA on the
GTPase activity of FtsZ in combinationwith its strong stabilizing
effect suggests that ZapA does not actively reduce the GTPase
activity of FtsZ and that the observed mild decrease in GTPase
activity might be just the consequence of the lateral association of
FtsZ protofilaments.
Morphology of FtsZ-ZapA Polymers. A possible expla-

nation for the lack of effect ofZapAon theFtsZ polymer stability
in the presence of 5 mMMgCl2 could be that ZapA simply does
not bind or has a very low affinity for protofilaments. In contrast,
the presence of 10 mM MgCl2 and its accompanying reduced
GTPase activity of FtsZ might stimulate bundling of protofila-
ments. This would provide a binding site for which ZapA could
have a much higher affinity. To verify this hypothesis, the
morphology of the filaments was studied by electron microscopy

FIGURE 4: Light scattering analysis shows thatZapAstimulatesFtsZ
polymer bundling in the presence of 10 mM MgCl2 but not in the
presence of 5 mMMgCl2. Polymerization of 8.3 μMFtsZ in HEPES
buffer, pH 7.5 (A), or inMES buffer, pH 6.5 (B), at 30 �C. At pH 7.5
and 10mMMgCl2 the bundles aremuch less stable (panelA)whereas
at pH 6.5 and 10 mM MgCl2 the bundles are extremely stable
(panel B). Traces: gray dotted, 10 mM MgCl2 and 4.1 μM ZapA;
black dotted, 5 mM MgCl2 and 4.1 μM ZapA; gray solid, 10 mM
MgCl2 and no ZapA; black solid, 5 mM MgCl2 and no ZapA.
Polymerization was initiated by the addition of 0.2 mMGTP.

FIGURE 5: Light scattering of FtsZ polymerization (8.3 μM) inMES
buffer, pH 6.5, and 10 mM MgCl2 induced with 0.03 mM GTP at
30 �C in the presence of 2 μM ZapA. The polymers are able to
depolymerize within 1200 s in this buffer if the GTP concentration is
reduced from 0.2 to 0.03 mM.

FIGURE 6: GTPase activity of 8.3 μMFtsZ in HEPES buffer, pH 7.5
(black), orMES buffer, pH 6.5 (gray), in the presence of 5 or 10 mM
MgCl2 as indicated. The data show the average of five experiments.
The phosphate release was measured using 0.2 mM 7-methylguano-
sine as fluorescent marker (excitation at 300 nm) and 0.3 unit/mL
purine nucleoside phosphorylase (PNP). After recording a baseline
for several minutes, polymerization was induced by addition of
0.2 mM GTP. Release of phosphate from GTP hydrolysis was
measured by the decrease in fluorescence at 390 nm. The determina-
tion of the initial velocity of the reaction was based on the slopes
obtained by linear regression of the experimental data of the first
100-150 s. Using the same buffer conditions, a range of phosphate
concentrations was used to calibrate the GTPase activity.
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(EM) using the same experimental conditions as described for the
light scattering and GTPase activity measurements. Samples
were applied on an EM grid 15 s after addition of GTP that
initiated the polymerization reaction in HEPES, pH 7.5, buffer.
In the presence of 5 mMMgCl2 FtsZ forms predominantly short
protofilaments and thin bundles of protofilaments (thickness of
the filamentous structures was 11.4 ( 3.9, n = 57; Figure 8A).
In the presence of 10 mM MgCl2 the filaments seemed to be
longer but not thicker (thickness of the filamentous structures
was 11.5 ( 3.0, n = 88; Figure 8B). Addition of ZapA in the
presence of 5 mM MgCl2 did not cause an obvious change in
the structure of the filaments (thickness 11.3 ( 4.1, n = 156;
Figure 8C), whereas bundles of protofilaments are observed in
the presence of 10 mM MgCl2. They often appeared as regular
arrays of parallel filaments separated with an interprotofilament
distance (distance between two adjacentFtsZ filaments) of 22.1(
4.1 nm, n=110 (Figure 8D and enlargement in Figure 8E). If the
tetrameric ZapA (MW 50 kDa) would bind to the FtsZ (45 kDa)
protofilaments, one would expect the filaments in the presence of
5 mM MgCl2 to become slightly thicker because of the added
mass. However, this is not observed. In the absence of FtsZ, it
was not possible to see recognizable ZapA structures on the grids.
Therefore, the EM images are not conclusive as to whether ZapA
binds to the filaments in the presence of 5 mM MgCl2. Occa-
sionally, about four adjacent filaments similar to those observed
in the presence of 10mMMgCl2 were seen, suggesting that ZapA

is in principle able to promote bundling at the lower MgCl2
concentration. The His-ZapA induced arrays of parallel runn-
ing filaments in the presence of 10 mM MgCl2 with an interfila-
ment distance of 24.8 ( 4.7 nm, n = 88. Interestingly, the
filaments bundled by ZapA were almost always double
protofilaments (thickness 10.5 ( 3.1 nm, n=79), whereas the
His-ZapA bundled single protofilaments (thickness 6.5( 1.7 nm,
n = 85) as if the His-ZapA tetramer lacked two binding sites
(Figure 9). In conclusion, ZapA seems to arrange double FtsZ
protofilaments in a precise conformation.

DISCUSSION

The Cellular Concentration of E. coli FtsZ and ZapA Is
Approximately the Same. To obtain a better understanding of
the possible role of ZapA during the cell cycle of E. coli, we
investigated the interaction between ZapA and FtsZ at near
physiological conditions. We found that the concentration of the
ZapA protein in minimal medium grown bacteria was approxi-
mately identical to that of FtsZ (i.e., 5 μM). We could not
reconcile this high ZapA concentration in the cell with the
published in vitro data showing the strong and persistent promo-
tion of FtsZ bundling by ZapA. In vivo, FtsZ is always present in
the cell at a concentration sufficiently high to polymerize, but the
small polymers are continuously depolymerized due to the
inhibitory activities of theMin system and the nucleoid occlusion
system (8, 9). One would expect ZapA to stabilize these small
emerging protofilaments and cause FtsZ to form large precipi-
tates in the cell. This is not what generally is reported in FtsZ
localization studies (49-52). To find out how ZapA discrimi-
nates in the cell, which protofilaments should be stabilized, we

FIGURE 8: Electron microscopy images of uranyl acetate stained
FtsZ filaments in the absence and presence of ZapA in 50 mM
HEPES, pH 7.5, and 50 mM KCl buffer at 30 �C. The FtsZ
concentration was 8.3 μM, and the reaction was initiated with
0.2 mM GTP. After 15 s a sample was removed from the reaction
mixture and applied on an EM grid. FtsZ in the presence of 5 and
10mMMgCl2 (A and B, respectively). FtsZ filaments in the presence
of 4.1 μMZapAand 5 and 10mMMgCl2 (C andD, respectively). An
enlargement of a parallel array of FtsZ filaments from a sample with
4.1 μM ZapA in the presence of 10 mM MgCl2 (E). The bar equals
200 nm.

FIGURE 7: ZapA seems not to affect the GTPase activity of FtsZ
dramatically. FtsZ (8.3 μM) was preincubated with various ZapA
concentrations at 30 �C in HEPES buffer, pH 7.5 (A), or in MES
buffer, pH6.5 (B), in the presence of 5mMMgCl2 (blackmarkers) or
10 mM MgCl2 (gray markers), with 0.2 mM 7-methylguanosine
(excitation at 300 nm) and 0.3 unit/mL PNP. After recording a
baseline for several minutes, polymerizationwas induced by addition
of 0.2 mM GTP. Release of phosphate from GTP hydrolysis was
measured by the decrease in fluorescence at 390 nm. The initial
velocity of the reaction was fitted by linear regression as described in
the legend of Figure 6, and the slope was plotted on the Y-axis as
percentage of the activity of FtsZ in the absence of ZapA obtained
from Figure 6.
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tried to mimic two conditions. One condition would result in
predominantly protofilaments (5 mM MgCl2 (7, 20-22)) that
would resemble small cytosolic FtsZ filaments in nondividing
cells. The second condition would mimic the assemblage of the
Z-ring by modestly inhibiting the GTPase activity of FtsZ
causing the protofilaments to be more stable and often associate
(10 mM MgCl2 (7, 24, 53)). We decided to study the interaction
between ZapA and FtsZ at pH 7.5 because this reflects the pH of
the cytosol more closely (41, 42) than pH 6.5, which is more
optimal for FtsZ polymerization (7, 26).
The His-ZapA Is Not Functional in Vivo. The His-ZapA

appeared not to be functional, as it could not restore the
filamentous phenotype of our ZapA deletion strain to normal
rod shapewhereas expression of ZapA could. In addition, theHis
tag protein did not pellet FtsZ stochiometrically in the pelleting
assay and behaved differently from ZapA in all in vitro assays.
Therefore, theHis tag was removed by enterokinase digestion for
all experiments apart from studies on the oligomeric state of
ZapA.
Effect of Buffer Composition on the in Vitro Interaction

of ZapA and FtsZ. The interaction between FtsZ and ZapA
was studied by pelleting, light scattering, and GTPase activity
assays. Significant differences in polymer behavior between pH
7.5 and pH 6.5 as well as with the two concentrations of MgCl2
were found.

In all experiments up to stoichiometric concentrations of ZapA
had little effect on the polymerization of FtsZ in the presence of
5mMMgCl2 either at pH6.5 or at pH7.5.Under these conditions,
FtsZ forms short filaments that are not laterally associated. This
suggests that ZapA can only stabilize FtsZ filaments that are
already somewhat associated. This is illustrated by the ability of
ZapA to bundle FtsZ in the presence of 10 mM MgCl2, which
itself stimulates lateral association of FtsZ filaments (53). The
stoichiometry of the interaction appears to be 1:1 as was found
for P. aeruginosa His-ZapA (27) and B. subtilis His-ZapA (25).
The His-ZapA of Small et al. (25) pelleted FtsZ in a 1:2

stoichiometry, and our His-ZapA did not pellet FtsZ in a fixed
ratio (Supporting InformationFigure S2), suggesting that theHis
tag in the case of E. coli ZapA is more of a hindrance than in the
other two organisms.

The presence of 10 mMMgCl2 did reduce the GTPase activity
of FtsZ by 30%, causing an increase in the length of the FtsZ
polymers but not in the amount of filaments bundling as judged
from the electron microscopy images of polymers sampled after
15 s. As the bundling is cooperative, longer incubation times
result in more bundling in the presence of 10 mM MgCl2
compared to 5 mM MgCl2 as published (7, 53). The subsequent
addition of ZapA did not affect the GTPase activity of FtsZ
particularly but caused a considerable change in the morphology
of the bundles, which appeared to consist of very orderly parallel-
aligned filaments separated by a constant space of 22 nm.
Remarkably at pH 7.5, this stabilizing effect was transient
whereas at pH 6.5 the stabilization lasted at least 30 min before
the light scattering signal began to decrease again. A reduction in
the ZapA concentration to 2 μM and the GTP concentration to
30 μM (approximately 1 FtsZ molecule to 3 GTPmolecules) was
required to observe depolymerization in the time span of the
experiment (Figure 5). As the Z-ring is reported to be completely
renewed every 18 s (3), the extreme stabilization of FtsZ polymers
at pH 6.5 cannot reflect, in our opinion, the endogenous
situation. Theoretically, ZapA possesses the same charge at pH
6.5 as at pH 7.5, whereas FtsZ has a charge of-18 at pH 6.5 and
of -20 at pH 7.5. Overall, this seems to be a small difference, but
locally two extra charges can affect the interaction between two
proteins. However, it is the GTPase activity that is decreased by
the lower pH and by the higher MgCl2 concentration (Figure 6).
Because the GTPase activity is the limiting factor in polymer
turnover (14), the polymers are more stable at pH 6.5 and at
10 mM MgCl2. For the cross-linking of FtsZ protofilaments,
ZapA has to bind multiple FtsZ monomers, which makes it
plausible that FtsZ polymer stability affects the ZapA binding
ability. We could not reproduce the 100% inhibition of the

FIGURE 9: Electron microscopy images of uranyl acetate stained FtsZ filaments in the presence of ZapA (A) or His-ZapA (B). The FtsZ
concentrationwas 8.3 μM, and the ZapAorHis-ZapA concentration was 4.1 μM.The polymerization was performed in 50mMHEPES, pH7.5,
50 mMKCl, and 10mMMgCl2 at 30 �C and initiated by the addition of 0.2 mMGTP. The bar equals 100 nm. To the right of images A and B a
model shows a possible interpretation of the images. ZapA might be able to bind in between FtsZ protofilaments as well as on top of a double
filament (A). His-ZapA might not be able to bind on top of double filaments because of steric hindrance due to the presence of the His tag and
appears to cover a larger distance between two filaments (B). The gray circles present FtsZmolecules, T isGTP, and the light gray bone-like shape
presents the ZapA tetramer and the black dot the His tag.
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GTPase activity of FtsZ by His-ZapA as published by Small
et al. (25). At a 1:1 His-ZapA concentration we find about 40%
inhibition (Supporting Information Figure S6). The differences
between our data and the data of Small are most likely due to a
difference in the His-tagged version of ZapA.
Morphology of the ZapA-Stabilized FtsZ Filaments. On

the basis of the crystal structure ofP. aeruginosaZapA (27) it was
anticipated that the amino-terminal His tag was unlikely to
interfere with the tetrameric state of ZapA as the carboxy termini
are the responsible parts for tetramerization (Supporting Infor-
mation Figure S7). Using analytical ultracentrifugation and
static light scattering, we found that His-ZapA is predominantly
a tetramer irrespective of salt levels, pH, or magnesium concen-
tration. The publishedKd of 320 nM for His-ZapA determined in
MES buffer, pH 6.5, and 10 mMMgCl2 by Small et al. (25) and
the fact that association of proteins is favored by the macro-
molecular crowding in the cytoplasm strongly suggest that at the
cytosolic concentration of 5 μM all ZapA molecules will be part
of a tetramer. The length of the unhydrated tetrameric ZapA
molecule, as derived from its crystal structure (27), is approxi-
mately 10 nm, whereas the distance from the middle of a double
FtsZ filament to the next parallel double filament in Figure 9A is
22( 4 nm (n= 110). If a ZapA tetramer would bind in between
them (Figure 9A), the distance to be covered would be 11.5 nm
(Figure 9A) and more or less correspond to the length of a ZapA
tetramer, which could differ somewhat between E. coli and
P. aeruginosaZapA.Thewidthof the parallel doubleFtsZ filaments
is about 10.5( 3 nm (n= 79). Possibly, a ZapA tetramer is also
able to bind on top of a double FtsZ filament. Although electron
microscopic tomography images show FtsZ filaments as scat-
tered arcs in aCaulobacter cell (54), a configuration inwhichFtsZ
filaments should be kept segregated by ZapA tetramers seems to
be in conflict with the not very essential nature of ZapA.
Therefore, the binding in between filaments should more likely
have a function in bringing the filaments together, which is
supported by the following observations.

The GTPase activity of FtsZ is determined by the pH of the
buffer and to a much larger extent by the Mg2þ concentration
(Figure 6 and ref 26). A high GTPase activity results in shorter
protofilaments than a lower GTPase activity because GTP
hydrolysis is the rate-limiting step in polymer depolymeriza-
tion (14). Because of the cooperative nature of the polymerization
and of the lateral association of protofilaments (55), the proto-
filaments will more readily bundle at pH 6.5 than at pH 7.5 and
still more in the case of 10mMMgCl2 compared to 5mMMgCl2.
Based on the results of the in vitro assays presented in Figures 3
and 4, the magnitude of the FtsZ-ZapA interaction follows the
same trend while ZapA affects the GTPase activity of FtsZ itself
marginally (Figure 7). This suggests that the presence of lateral
interactions between FtsZ polymers stimulates the binding of
ZapA and most likely is a requirement for the interaction of
ZapA with FtsZ. In the EM images that were collected after 15 s
of polymerization (Figures 8 and 9) but also in images obtained
after incubation for 30 s or for 5 min (not shown) regular arrays
of parallel double FtsZ filaments separated by a fixed width are
observed. We speculate that by binding in between the proto-
filaments ZapA enhances their chance to associate. As the
association is cooperative, the filaments will become more stable
when they are annealed over a particular length of the filaments
making continued action of ZapA superfluous.
ZapA-FtsZ Interaction in Vivo. The MinC protein of the

Min system that prevents polar Z-ring formation (8) has been

reported to prevent lateral association of FtsZ filaments and
possibly to compete with ZapA for the same binding site on
FtsZ (45, 46). ZapA requires two adjacent FtsZ filaments to
stimulate their lateral association, whereas MinC needs only one
filament to prevent association. This putative higher affinity of
MinC for small protofilaments could prevent ZapA from effec-
tively binding and associating FtsZ polymers near the cell poles.
The SlmA protein inhibits Z-ring formation in the vicinity of the
nucleoid by a presently unknown mechanism (9).

We propose the following model for the interaction of ZapA
with FtsZ during the cell cycle (Figure 10). In nondividing
cells the MinC and SlmA activity that negatively regulate

FIGURE 10: Hypothetical model for the interaction between ZapA
and FtsZ. From top to bottom: In young cells FtsZ (red and blue)
forms continuously short filaments that are destabilized by the Min
and nucleoid occlusion systems. At the appropriate length to initiate
cell division the inhibition of MinC, which functions predominantly
at the cell poles, andof the partly segregatednucleoids is not sufficient
any more, and the filaments will become longer, eventually organiz-
ing, possibly with the help of FtsA and ZipA (49), into a helical
structure (49, 50). This structure assembles into the Z-ring. By
binding in between the filaments ZapA (orange) increases the chance
of lateral association. Once the Z-ring is established, this ZapA
activity is not neededanymore, andZapAwill bindat the cytoplasmic
side on top of the filaments, where it might have a weak structural
function in the association of other cell divisionproteins. The cells are
shown on the left, and an enlargement of the FtsZ polymer-ZapA
interaction is shown on the right.
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polymerization of FtsZ prevent the growth of the FtsZ polymers
to a length sufficient to laterally associate. ZapA is not able to
bundle single protofilaments, and therefore no FtsZ ring can be
initiated despite the presence of ZapA and FtsZ at stoichiometric
concentrations. At a specific cell length the MinC and SlmA
activity is too low to prevent FtsZ polymers from becoming of
sufficient length, and with the help of FtsA and ZipA a helical
arrangement of FtsZ polymers is formed underneath the cyto-
plasmic membrane (49, 50). Especially under conditions of fast
growth when less time is available to depend on lateral associa-
tion by chance only, ZapA will be beneficial to the survival of the
cells by bringing the helical FtsZ filaments together and thus
assist in the timely formation of the Z-ring. As a result only
ΔzapA cells grown in rich medium have a phenotype. Once the
Z-ring is established, ZapA binds to the ring where it has perhaps
a weak structural function in the assembly of the divisome.
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