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ARTICLE INFO ABSTRACT

The application of X-ray microtomography for quantitative structural analysis of pharmaceutical multi-parti-
culate systems was demonstrated for commercial capsules, each containing approximately 300 formulated
ibuprofen pellets. The implementation of a marker-supported watershed transformation enabled the reliable
segmentation of the pellet population for the 3D analysis of individual pellets. Isolated translation- and rotation-
invariant object cross-sections expanded the applicability to additional 2D image analysis techniques. The full
structural characterisation gave access to over 200 features quantifying aspects of the pellets' size, shape, por-
osity, surface and orientation. The extracted features were assessed using a ReliefF feature selection method and
a supervised Support Vector Machine learning algorithm to build a model for the detection of broken pellets
within each capsule. Data of three features from distinct structure-related categories were used to build clas-
sification models with an accuracy of more than 99.55% and a minimum precision of 86.20% validated with a
test dataset of 886 pellets. This approach to extract quantitative information on particle quality attributes
combined with advanced data analysis strategies has clear potential to directly inform manufacturing processes,
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accelerating development and optimisation.

1. Introduction

The measurement of morphological descriptors and structural
properties is widely applied in the pharmaceutical industry to evaluate
quality attributes of solid products that affect their performance in the
manufacturing process or upon final administration to the patient.
Methods to aid understanding the effect of process and material para-
meters on the final product characteristics enable a Quality by Design
(QbD) approach to achieve consistent, safe and effective quality pro-
ducts (Yu, 2008). The diversity of structure-related critical quality at-
tributes has led to a broad range of analytical techniques being used to
investigate size, shape and porosity of pharmaceutical products and
drug product intermediates (Fonteyne et al., 2014; Markl et al., 2018).
Employed analysis techniques are often limited to bulk information or
to the characterisation of individual particles when working with multi-
particulate systems. Commonly, multiple complementary techniques
are required to achieve a full characterisation of all the relevant

structural properties (Michie et al., 2012; Brown et al., 2018). Often the
techniques are destructive or require larger quantities of sample ma-
terial for a successful characterisation.

X-ray microtomography (micro-XRT) can be applied to investigate
non-destructively a wide range of particle properties for (multi-) par-
ticle systems. The reconstructed cross-sections of the micro-XRT image
data allow three dimensional visual inspections of the scanned object.
The smallest structural attribute that can be resolved typically requires
multiple pixels/voxels (volume pixel) due to the partial volume effect
which describes the blurring of intensity edges in digital micro-XRT
images (Soret et al., 2007). Nowadays, commercial micro-XRT systems
commonly achieve spatial resolutions of around 1 pm - 10 pm which
corresponds to the projected sample size on a minimum of 3-5 pixels
(Wildenschild and Sheppard, 2013; Schoeman et al., 2016). Image
processing capabilities can be further used to extract quantitative in-
formation simultaneously on bulk and single particle properties. Spe-
cific applications of micro-XRT with subsequent image processing have
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been reported for (multi-) particle systems targeting structural features
related to particle size (Doerr et al., 2018; Fang et al., 2017), surface
(Doerr et al., 2018; Fang et al., 2017), morphology (Doerr et al., 2018;
Fang et al., 2017; Zheng and Hryciw, 2015; Zhou et al., 2017; Su and
Yan, 2018; Asachi et al., 2018), porosity (Doerr et al., 2018; Fang et al.,
2017; Dadkhah and Tsotsas, 2014; Farshchi et al., 2019) and attributes
of the local micro-structure (Perfetti et al., 2010; Sondej et al., 2015).
The image processing strategies are often tailored to meet specific
analysis requirements to further relate individual sample properties to
the manufacturing process or product performance (Asachi et al., 2018;
Perfetti et al., 2010). The quality of the collected micro-XRT image data
and the applied image processing algorithms can both have an impact
on extracted quantitative information (Yip and Aerts, 2016). A sensi-
tivity analysis allows the user to evaluate the risk for data variability
with changing parameters during collection and image processing
which has been described in details elsewhere (Al-Sarraf et al., 2008).

Extracted quantitative information from collected micro-XRT image
data can be exploited to inform machine learning (ML) models which
are designed to provide answers to complex questions involving auto-
mated decision making processes without the need to provide explicit
instructions. ML approaches can be used effectively to identify patterns
and inference within large feature-based datasets (Hastie et al., 2009).
Support Vector Machines (SVMs) are a class of supervised ML algo-
rithms originally designed to solve binary classification problems to
define decision boundaries in multidimensional feature datasets (Hastie
et al., 2009; Boser et al., 1992). SVM models have since been utilised for
a wide range of applications including solubility prediction (Cheng
et al., 2011) or crystal shape classification (Ochsenbein et al., 2015),
analysis of biomedical data (Dreiseitl et al., 2010; Mourao-miranda
et al,, 2011) and network anomaly detection in computer science
(Perdisci et al., 2006).

For the first time, this study employs a micro-XRT system to access
over 200 structural features for a pharmaceutical multi-particulate
product and presents strategies for the extraction and evaluation of 3D
quantitative morphological descriptors by means of image processing
and analysis. The introduction of translation- and rotation-invariant
object cross-sections additionally enables the reliable application of 2D
image analysis methodologies. The extracted features are used to solve
a classification problem for the detection of broken pellets within the
pellet population of each sample. The selection of reliable structural
features for this classification problem included a micro-XRT sensitivity
analysis to assess the impact of image quality and image processing
parameters as well as a feature selection approach using the popular
ReliefF method described in detail elsewhere (Kira and Rendell, n.d.;
Kononenko et al., 1997; Robnik-Sikonja and Kononenko, 1997; Robnik-
Sikonja and Kononenko, 2003). The micro-XRT investigation of particle
systems is demonstrated on commercially available capsules containing
formulated ibuprofen pellets for oral administration.

2. Materials and methods
2.1. Commercial ibuprofen capsule

Capsules with ibuprofen pellets for sustained drug-release
(Galpharm Healthcare Ltd., Lot# 020288) were used as a model phar-
maceutical multi-particulate system. The pellets of each capsule consist
of 200 mg ibuprofen formulated with micro-crystalline cellulose,
Eudragit NE30D, hypromellose, talc and colloidal silicon dioxide. The
capsule shell is made from gelatin, titanium dioxide (E171), patent blue
V (E131) and erythrosine (E127). In total, six capsules were in-
vestigated during this study. Three capsules were used for model
training (references DTR: CO, C1 and C2) with three additional capsules
used to generate the test dataset (references DTT: C3, C4 and C5).
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2.2. X-ray tomography

A Skyscanner 2211 X-ray tomograph (NanoCT, Bruker, Kontich,
Belgium) with cone-beam arrangement was employed for micro-XRT
data collection. The samples were scanned with an image pixel size of
2.5 ym - 6 um, frame averaging of 3 and a rotation step size of 0.2°
(details listed in Table S1, ESI, page S1). The acquisition settings were
varied in order to assess the impact of data acquisition parameters on
the pellet classification model described in Section 2.4. The capsules CO
and C3 were scanned with high image quality. For all other capsules the
data collection was optimised to reduce overall data acquisition times
whilst accepting a decreased sample resolution (C1, C2, C4, C5). The X-
ray acceleration voltage was 40 keV. A reference scan was collected at
the end of each run to enable post-alignment correction and therefore
compensate for potential shifts during the scan. Image reconstruction
included beam hardening corrections and ring artefact reduction which
were performed using NRecon with InstaRecon (version 1.7.1.6,
Bruker, Kontich, Belgium). Visualisations of the image stacks were
rendered using CTVox (version 3.2.0, Bruker, Kontich, Belgium).

2.3. 3D image processing and single particle analysis

Micro-XRT image processing and analysis strategies were im-
plemented in MATLAB R2018a (version 9.4.0.813654, MathWorks,
United States). Structural features were extracted globally for the full
sample from each capsule and for each individual pellet within the
capsules.

Global features were defined as the capsules dimensions (i.e. max.
Length, mean diameter) and internal porosity distribution. The mea-
sured porosities were further separated in order to distinguish inter-
and intra-pellet porosity. This required a custom-made script to estab-
lish a region-of-interest (ROI) for the pellet distribution (V_CP_ROI)
using a 3D-morphological closing operation and a secondary enclosed
background filter integrated in a feedback-loop for detected internal
background volumes previously described to define single particle ROIs
(Doerr et al., 2018). Voxel-based arithmetic operations were used to
calculate the internal capsule volume (V_CS_InV), the total intra-pellet
porosity (V_CP_Poros) and inter-pellet void space (V_CS_Poros) of the
capsule sample. Details on the calculations are included in Section S1.2
(ESI, page S2).

A marker-controlled watershed transformation algorithm (Meyer,
1994) was applied to separate all connected “touching” primary objects
within V_CP_ROI and to allow a subsequent structural analysis of each
individual pellet. The image processing workflow for a successful vo-
lume segmentation using a marker-controlled watershed transforma-
tion of two connected objects is shown in Fig. 1. Reconstructed image
cross-sections (Fig. la) are initially pre-processed using an edge-pre-
serving local contrast image filter to reduce random image noise on
grayscale. Image binarization (Fig. 1b) is performed with a histogram-
based thresholding algorithm to convert the images to a monochro-
matic logic-mask (Ridler and Calvard, 1978). Remaining noise in the
created binary image stack is removed with a series of noise reduction
algorithms including a 3D sweep operation for non-connected binary
object volumes. The image ROI (V_CP_RO]I, Fig. 1c) is transformed into
an Euclidean distance map with primary object markers superimposed
in the local 3D minima (Fig. 1d). The distance-based grayscale image
stack allows the successful application of the marker-supported wa-
tershed transformation to achieve a separation of the primary objects
(Fig. 1e).

The segmented pellets from each capsule were further processed
and analysed individually to extract a total of 206 features related to
size, shape, porosity, surface and orientation. A detailed overview of the
extracted features is provided in Table S2 (ESI, page S2). Basic features
are derived from the evaluation of image moments (Hu, 1962). The
zeroth order image moment for a binary digital image gives the total
object voxel volume (3D). The first order moments contain information
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Fig. 1. Image processing sequence to separate connected particle volumes. (a) Raw image data, (b) image binarization, (c) particle ROI, (d) marker-controlled
watershed segmentation using a distance transformation with superimposed region markers and (e) separated particles.

a b

IEV1 IEV2 IEV3

on the object centroid. The central moments include the components of
the image centroid to provide translation invariance. The second order
central moments allow the extraction of information about the object
orientation within the 3D image space. Information on the object or-
ientation and location were further used to isolate translation- and
rotation-invariant 2D cross-sections (IEV) normal to the eigenvectors of
an ellipsoid with matching second order central moment. For this 3D-
to-2D transformation, the eigenvectors were utilised to consistently re-
slice the 3D image stack as visualised in Fig. 2 independent of the pellet
position and its 3D orientation. These 2D cross-sections (IEV1 - IEV3)
enabled additional applications for feature extraction with established
2D image algorithms. 162 features of the total 206 pellet features are
extracted from the analysis of the images IEV1 - IEV3.

2.4. Feature-based particle classification: relieff and SVM

A feature-based particle classification model was implemented to
detect broken objects within the population of pellets. The ReliefF al-
gorithm is a filter-method approach which can be used in conjunction
with a labelled training dataset for the selection of features in catego-
rical multidimensional classification problems (Kira and Rendell, n.d.;
Kononenko et al., 1997; Robnik—éikonja and Kononenko, 1997; Robnik-

_— EV1
) EV3
\\‘\\ ;vr’ Ev2

Fig. 2. 3D-to-2D image transformation: (a) The
image eigenvectors are calculated from the 3D par-
ticle model (V_ROI) based on its second central
image moment. (b) The 3D stack is re-sliced along
the planes normal to the eigenvectors. (c) Three
characteristic translation- and rotation-invariant 2D
cross-sections (IEV1 - IEV3) are isolated [coloured
high-resolution figure available online].

Sikonja and Kononenko, 2003). ReliefF ranks features according to
their correlation with a labelled training dataset using a k nearest
neighbors method. Extracted features were evaluated to identify those
with the highest predictive power for this binary object classification
problem: broken versus non-broken pellets. The ReliefF feature selection
method was available in MATLAB and was performed using the training
dataset (DTR). The number of nearest neighbors was selected to include
the maximum number of labelled training objects providing class bal-
ance (k = min([# non-broken, # broken]) = 23). Including all ob-
servations of the minority class ensures maximum robustness against
noise, but limits the detection of feature dependencies in the context of
nearest neighbor locality to the majority class (Kononenko et al., 1997).

SVMs were employed to build a feature-based object classification
model in order to identify broken pellets within the population (Hastie
et al., 2009). The n-dimensional training dataset (DTR, each observa-
tion x; € R™) was used to build One-Class and Two-Class SVM models in
MATLAB. The feature data were standardized to avoid scale effects on
the classification outcome. The employed SVM kernel function was a
radial basis function (RBF) to better adapt the optimal separating hy-
perplane (OSH) to non-linear data distributions. The One-Class SVM
(OC-SVM) model was generated only considering observations of the
non-broken pellets in the training dataset to create a close decision
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Fig. 3. Full workflow combining micro-XRT analysis and machine learning methodologies for the characterisation of multi-particulate capsule formulations [co-

loured high-resolution figure available online].

Table 1

Quantification of capsule volume distribution and individual measurements including capsule ROI surface area (As, v cs ror), pellets ROI surface area (Ag,
v_cp_ron), outer diameter of the capsule body (d.) and capsule wall thickness (s.).

Absolute volume distribution

Individual measurements

Capsule volume (V_CS_ROI) 603 mm°>
Capsule shell volume (V_CS) 56 mm>

Capsule internal volume (V_CS_InV) 548 mm®
Capsule void space (V_CS_Poros) 279 mm®
Pellet volume (V_CP_ROI) 269 mm®
Pellet solid phase volume (V_CP) 201 mm®
Pellet porosity volume (V_CP_Poros) 68 mm®

Max. Length (Feret) 19.45 mm
Filled Height 16.09 mm
Filled Volume 48.39%

As, v_cs ROl 562.6 mm”

As, v cp RO 1253.9 mm?

d. 6.55 + 0.01 mm
Se 112 = 3 ym

boundary around the majority class. The Two-Class SVM (TC-SVM)
model was built using soft margins and prior probabilities proportional
to the class membership distribution in DTR (broken:non-broken,1:38).
The kernel scale and the box constraints for the TC-SVM model were
selected automatically employing a Bayesian strategy for global opti-
misation using 4-fold cross-validation (Hastie et al., 2009).

3. Results and discussion

The micro-XRT characterisation of each sample consists of basic
steps of micro-XRT data acquisition, micro-XRT image reconstruction
and an initial optimisation of image processing parameters for noise
reduction (Fig. 3, Stage 1-4). This publication focuses on the subsequent
analysis of the micro-XRT image data. Specific to this sample, the
ibuprofen capsules were initially investigated to describe the multi-
particulate system with specific measurements of size and overall por-
osity distribution (see Section 3.1). The segmentation of the pellet po-
pulation permits an in-depth assessment of the structural attributes for
each isolated pellet related to properties describing object size, shape,
porosity, surface and orientation (Fig. 3, Stage 5-6, see Section 3.2 -
Section 3.3). All extracted features were assessed as part of a sensitivity
analysis to evaluate the feature robustness against changes in micro-

XRT image quality and image processing parameters (Fig. 3, Stage 6, see
Section 3.3). Three features were further identified with a ReliefF fea-
ture selection approach and used within a SVM classification model to
detect broken pellets (Fig. 3, Stage 7-8, see Section 3.4). The features
were selected to target distinct attributes of the pellet related to its size,
shape and surface.

3.1. Capsule - full sample analysis

The dataset CO was initially investigated using two manually de-
fined regions-of-interest of the capsule shell (V_CS_ROI) and the pellet
population (V_CP_ROI). This initial analysis exemplifies potential ap-
plications of micro-XRT extracting information on a global sample level
to obtain an overview of key characteristics for this multi-particulate
system. The results are listed in Table 1. They include a quantification
of the sample's volume distribution as well as measurements of selected
sample attributes which are linked to the capsule production process.
Whilst beyond the scope of this study, this information could ultimately
be used for process optimisation and/or to support a predictive fra-
mework, for instance to assess the product's final performance (Wilson
and Crowley, 2011).

The total internal capsule volume (V_CS_InV) is sub-divided into the
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Fig. 4. Global sample analysis (a) detecting internal
capsule void space (V_CS_Poros, red, — - -), pellet
solid phase volume (V_CP, white, — - - -) and intra-
pellet porosity (V_CP_Poros, blue, ——). (b) The vo-

20 lume distribution along the capsule height is quan-
~~~~~ = tified through the detected local cross-section area in
18 Tt~ the micro-XRT image stack [coloured high-resolution
S figure available online]. (For interpretation of the
16 4 v references to colour in this figure legend, the reader
""""""""" - amE e BT - is referred to the web version of this article.)
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pellet volume occupied by its solid phase (V_CP), large inter-pellet void
space (V_CS_Poros) and intra-pellet porosity (V_CP_Poros). The pellets
account for 48.39% of the internal capsule volume, less than half of
V_CS_InV, corresponding to a fill height of 16.09 mm. The capsule di-
mensions are expressed using its maximum length (Feret) and the outer
diameter of the capsule body (d.) which are 19.45 mm and 6.54 mm,
respectively. Additionally, the capsule wall thickness (s.) and its surface
area (As, v csro) were quantified with the associated variation in
thickness across the sampled regions which are 112 = 3 um and 562.6
mm?, respectively.

Fig. 4 shows the distribution of the pellet solid phase volume
(V_CP), the pellet porosity volume (V_CP_Poros) and inter-pellet capsule
void volume (V_CS_Poros) as a function of the capsule length. This data
representation allows a quick assessment of the overall solid phase
homogeneity within the capsule. In the distribution of V_.CP and
V_CS_Poros, the capsule head-space can be easily identified at a capsule
height of 16.09 mm defined by a sharp decrease of V_CP and
V_CP_Poros. The measured length of the capsule body is 16.78 mm and
therefore, the pellets reach 95.89% of its maximum filling height.

3.2. Capsule - pellet segmentation

The extraction of structural features from individual pellets of the
capsules' population requires the successful separation and isolation of
all connected “touching” objects in the total pellet volume (V_CP_ROI,
Fig. 5a). A marker-controlled watershed transformation was applied to
enable a robust volume segmentation of V_CP_ROI. The calculated
watershed lines indicate the optimised separation planes determined
within the 3D image and are shown in Fig. 5b. Region markers greatly
improve overall robustness against risks of over-segmentation, a
common problem associated with applications of the watershed algo-
rithm (Meyer and Beucher, 1990). The watershed algorithm is most
robust for structures with large, uniform object bodies and light

touching zones since the optimisation of the separation planes is based
on the 3D distance map of the object ROL The spherical pellets max-
imise these attributes, hence, its application is particularly effective for
this sample. The separation of the pellet population in CO resulted in
300 individual pellets. Across all capsules (DTR and DTT) the popula-
tion consisted of 294 + 9 pellets. The watershed-transformation was
validated through a visual inspection of the segmented image data and
the isolated single pellets.

3.3. Capsule - pellet characterisation

Following the successful pellet segmentation (Section 3.2), the in-
dividual pellets were subject to individual analysis aimed at extracting
quantitative information using 206 structural features. The features
(n = 206) were categorised in terms of their relation to key particle
attributes of size (n = 61), shape (n = 104), surface (n = 12), porosity
(n = 14) and orientation (n = 15). An overview of all the features is
provided in Table S2 (ESI, page S2). Each feature is calculated either
directly from the 3D image stack of each pellet or from three char-
acteristic translation- and rotation-invariant IEV cross-sections as de-
scribed in Section 2.3.

Fig. 6 shows four selected features commonly used to describe the
quality attributes of pellets from extrusion-spheronization processes
that can be related to process parameters and input material attributes
(Yu et al., 2014; Bryan et al., 2015): equivalent sphere diameter (deqsph,
vror €[90um,1408um], Fig. 6a), absolute surface area (Ass v ror
€[0.02 - 10%um?3,4.35 - 10%um?], Fig. 6b), solidity as a measure of in-
ternal porosity (SV €[0.55,0.99], Fig. 6¢) and particle sphericity (W,
v rot €[0.74,0.99], Fig. 6d). The distribution of each of the four features
is visualised to provide an indication of the range of values across all
pellets in the capsule. Comparing the results of the analysis, the dis-
tributions are highly consistent for deqsph, v_row, Ast, v_ror, and Wei v ror
across all capsules. However, the distributions of SV in Fig. 6¢ show
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Fig. 5. The segmentation of all “touching” pellets was achieved after applying a marker-supported watershed transformation to (a) the pellet ROI (V_CP_ROI). (b) The
volume separating watershed lines are superimposed on the original image data to identify individual pellet volumes.

statistically significant differences (Two-sample t-test rejects Hp of
equal means at 5% significance level). This is however a consequence of
the sensitivity of the measurement to the specific micro-XRT acquisition
and image analysis parameters used. The changes in SV correlate with
changing data acquisition parameters between capsules with high
micro-XRT image quality (slow acquisition, CO and C3) and low micro-
XRT image quality (fast acquisition, C1, C2, C4 and C5). Accelerated
micro-XRT image acquisition leads to an average increase of the mea-
sured solidity (SV) from 68.71 + 4.72% to 95.88 + 1.48%.

The quantification of features from image data is often subject to
variability in the image data quality and the selection/optimisation of
image processing parameters (Yip and Aerts, 2016; Al-Sarraf et al.,
2008). Therefore, a sensitivity analysis was performed to assess the
robustness of extracted features within the micro-XRT analysis work-
flow using a customised sampling method targeting implemented al-
gorithms for noise reduction and binarization as described in Table S3
(ESI, page S9). Changes in micro-XRT image quality were simulated
using a Gaussian filter to systematically introduce image blurring.
Sensitivity analysis was carried out with a dataset of five randomly
selected pellets of each class (non-broken and broken) from CO. Features
related to the particle porosity (V_P_Poros), the absolute particle vo-
lume (V_P) and its orientation exhibit the highest variability for dif-
ferent micro-XRT image data qualities and image processing para-
meters. This variability is linked predominantly to difficulties in the
detection of micro-porosities with a local thickness below 25 um (de-
tails are provided in Table S4, ESI, page S9). These micro-porosities
contribute to 98.82 = 1.56% of the total pellet porosity. Their critical
length scale of 25 um corresponds to a minimum of 4-5 pixels in the
low resolution (C1, C2, C4 and C5) and 10 pixel in the high resolution
(CO and C3) micro-XRT images, respectively. Failing to detect internal

micro-porosities decreases the measured V_P_Poros and simultaneously
gives an apparent rise in V_P. Small variations in V_P can further have a
significant impact on the determined orientation, especially for highly
isotropic objects. In total, 132 features exhibit values above a 10%
variability threshold comparing the feature residuals at individual
sampling points relative to the user defined ground truth (visual vali-
dation). The remaining 74 features are assumed to be robust within the
employed image analysis framework. Details of the sensitivity analysis
are presented qualitatively and quantitatively in Section S1.4 (ESI, page
S7 - S16, Fig. S1 and Fig. S2). Depending on the objective for the micro-
XRT analysis, features with a high-sensitivity to micro-XRT image
quality and parameters of the image processing/analysis workflow re-
quire careful validation with complementary sample characterisation
techniques. The variability of individual features depends significantly
on the nature of the sample which may have to be monitored and re-
evaluated for changing specimens. Here, features with a variability of
more than 10% were excluded from the feature-based object classifi-
cation models. Details on features removed on this basis are listed in
Table S5 (ESI, page S11).

3.4. Capsule - pellets classification

Extracted features were utilised as part of a classification model for
the automatic detection and quantification of broken pellets within the
population. The successful implementation included a feature selection
approach (Section 3.4.1). Selected features were used to build and va-
lidate SVM classification models (Section 3.4.2). The training dataset
(DTR) combined pellet information from three capsules, CO (high re-
solution mode), C1 and C2 (fast acquisition mode). The remaining data
(C3, C4 and C5) were included in a test dataset (DTT) to validate and
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Fig. 6. Normalised number density distributions (q0) of four selected features describing the pellet populations regarding (a) pellet size (deqsph, v.roD, (b) pellet
surface area (Agg, v.ron, () pellet porosity (SV) and (d) pellet shape (Wg, v roD) [coloured high-resolution figure available online].

evaluate the model performance.

3.4.1. Feature selection

74 structural pellet features were assessed using a feature selection
approach to identify a subset best suited for a feature-based pellet
classification model for the reliable detection of broken pellets within
the population. The feature selection approach aims to reduce the di-
mensionality of the captured feature space removing redundant or
noisy features. Features with a limited positive impact on the classifi-
cation performance can be excluded from future micro-XRT image
analysis, accelerating routine characterisation as well as improving
model accuracy and robustness against overfitting. The identification
and selection of predictive features is particularly important for data-
sets with imbalanced class membership distributions to include features
that provide inter-class discrepancy and to exclude features with high
intra-class noise (Chawla et al., 2004).

A ReliefF feature selection approach was utilised to evaluate and
rank the correlation of all features with the class membership of DTR. A
high correlation of individual features with the assigned broken/un-
broken class membership suggests a high predictive power for the
subsequent feature-based classification model. The top 5 features of the
ReliefF ranking relate to shape properties. As expected for this sample
with highly spherical pellets, the highest ranking feature describes the
overall pellet sphericity comparing the pellet volume to a sphere with
equal maximum Feret diameter (SFmaxreretsph, F, v_rop, Tank 1, Fig. 7a).
Additional high-ranked features from other structure-related categories
are quantitative information on the pellets' size (SFgips, sa, r3, v_ro1, Tank
6, Fig. 7b) and surface attributes (SVcy, v roi, ev1, rank 7, Fig. 7c).
Interestingly, SVcy, v roi, 1ev1 is closely related to SVcy, v, 1rva Which
captures particle porosity information using a 2D Convex-Hull. Applied
to V_ROI, the same algorithm quantifies concave areas on the object
surface (Doerr et al., 2018). Therefore, SVcy, v roi, 1Ev1 can be regarded
as a measure of surface roughness. SFgps sa, 3, vror is linked to the

pellet size and is an absolute measure of the shortest characteristic
length of a surface-fitted ellipsoid to V_ROL In contrast, the other re-
maining characteristic lengths of this ellipsoid, SFgips, sa, r1, v.ror and
SFEips, sa, r2, v.rop are at position 39 and 36 of the ReliefF ranking,
respectively. The high performance of SFgjps, s, r3, v.ror N0t only relates
to the expected smaller absolute sizes of the broken pellets, but also to
its ability to capture specific shape-related aspects with an increasing
deviation between SFgips, sa, r1, v.ror and SFgips, sa, r3, v.ror for non-
spherical objects. The combination of both, aspects of size and shape, is
beneficial to distinguish between broken and non-broken pellets. The
results of the ReliefF ranking align well with calculated p-Values for
DTR, where 72 of the 74 features show a statistically significant de-
viation between the feature distribution of non-broken and broken pel-
lets (Two-sample t-test rejects Hy of equal means at 5% significance
level). F-scores are an alternative approach to select features for SVM
classifiers (Chen and Lin, 2006) and were compared to validate the
feature selection approach. They show a similar feature ranking, how-
ever, fail to address important feature-feature dependencies. The full
ReliefF ranking of the 74 investigated pellet features and their calcu-
lated ReliefF weights, p-Values and F-scores are listed in Table S6 (ESI,
page S16).

Three features, SFmaxFeretSph, F, V_ROD SFElps, SA, r3, V_.ROI and SVCH,
v Rroy, 1Ev1, from distinct structure-related categories describing shape,
size and surface properties were included in the selected feature subset
for a pellet classification model. Each feature is presented in Fig. 7 a-c
with representative examples of its extreme values (first and fourth
pellet from the left) as well as an example at the population mean of
each, non-broken and broken pellets (second and third pellet from the
left). Scatter-plots of all feature combinations are provided in Fig. S3
(ESL, page S20). SFmaxreretsph, F, v_ror a0d SFgipg sa, 3, v_ror have both a
broad distribution in comparison to SVcy, v ror, 1Ev1- The narrow dis-
tribution of SVcy, v ror, Eva1 correlates to the high convexity of the
spherical shape and aligns with visual inspections of individual pellets
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Fig. 7. Selected features for a classification of (left) non-broken and (right) broken pellets: (a) sphericity (SFmaxreretsph, F, v.roD, (D) shortest characteristic length of a
fitted ellipsoid (SFgips, sa, r3, v_.ron), and (c) surface roughness (SVcy, v roy, 1v1) [coloured high-resolution figure available online].

which exhibit highly smoothed surfaces, even for broken pellets. This
could indicate that pellet breakage occurs predominantly during the
spheronization process itself, where freshly created broken pellet pieces
experience high attrition and smoothing of their edges. The selected
feature subset from distinct structure-related categories aims to increase
the robustness of the classification model against potential variability in
individual structure-related categories with risks of high feature cor-
relation.

3.4.2. Support Vector machine for binary classification of formulated pellets

The number of broken pellets is expected to be highly under-re-
presented in the overall pellet population with an expected probability
of less than 5%. In case of DTR the broken pellets account for 2.33%
(CO,n = 7),3.77% (C1, n = 11) and 1.75% (C2, n = 5) of the total
pellet population, respectively. The combined training dataset (DTR)
has a class imbalance of 1:38 for broken:non-broken pellets. A One-Class
SVM (OC-SVM) model and a Two-Class SVM (TC-SVM) model are
compared in the following to assess their performance addressing risks
of a high class imbalance. The results are shown in Fig. 8a and b, re-
spectively.

OC-SVMs generate models with highly sensitive decision surfaces
which are often used for outlier-detection, where only very limited or
no training data for outliers, the minority class, are available (Perdisci
et al., 2006). The trained OC-SVM model is shown in Fig. 8a. The OC-
SVM creates a tight decision boundary around the feature data of the

non-broken pellet population of the pre-classified DTR data (n = 854,
dark blue circles). Population outliers in this model are related to ob-
servations of broken pellets (n = 23, red squares). Using a RBF kernel,
the decision boundary can be improved to capture non-linear feature
distributions. Expanding the feature space to include information on the
pellet surface roughness (SVcy, v roy, 1ev1) leads to a re-classification of
5 non-broken pellets (Fig. 8a, X Re-Labelled n-Dim), slightly improving
the OC-SVM model with a total classification accuracy of 99.55%
(precision broken pellets: 86.20%) assessed using test data of a popu-
lation of 886 pellets in DTT. The high sensitivity of the OC-SVM model
decision surface leads to a misclassification of 4 non-broken pellets as
broken, which corresponds to 0.46% of the 861 non-broken pellets in the
DTT. In contrast, all broken pellets were correctly identified. Increasing
the training dataset over time after reviewing and including observa-
tions of pellets in the OSH margin region can further improve the
classification accuracy for non-broken pellets, but might shift the deci-
sion boundary towards the broken pellet population.

Alternatively, the training data (DTR) can be used as part of a TC-
SVM to create a OSH considering feature information from both classes
of broken and non-broken pellets. The trained TC-SVM model with RBF
kernel is shown in Fig. 8b. Prior probabilities were selected propor-
tional to the known class membership distribution of DTR (1:38, bro-
ken:non-broken) specifically penalizing the misclassification of broken
pellets and shifting the OSH towards the majority class. The TC-SVM
models' hyperparameter optimisation yielded changing values for the
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Fig. 8. SVM models with RBF kernels for the feature-based classification of 886
pellets in DTT (—— OSH: SVM score 0, — - — OSH margin: SVM score
€[—1,1]). (a) OC-SVM generates a tight OSH around the feature point-cloud of
all non-broken pellets with a high sensitivity towards data outliers. The OC-SVM
has an accuracy of 99.55% (precision broken pellets: 86.20%). (b) TC-SVM
successfully classified all pellets in DTT. (x) Individual objects were re-clas-
sified after expanding the feature space including SVcy, v roi, 1evi- (Red circles
1-4) Selected TC-SVM support vectors are compared in details in Fig. 9 [co-
loured high-resolution figure available online].
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applied box constraints (BoxC) of both classes with high regularization
for the majority non-broken pellet class (BoxC = 0.29) and low reg-
ularization with hard margins for the minority broken pellet class
(BoxC = 411.39), indicating significant differences in the model cap-
ability to generalize observations of both classes. The TC-SVM model
correctly classified all 886 pellets in the test set (DTT) using feature
data of SFmaxreretsph, F, v_rol> SFEIps, sa, r3, v.ror and SVep, v ror, Evi- In
comparison to the OC-SVM model, the classification accuracy is further
improved, however, the TC-SVM model increases risks for the mis-
classification of broken pellets, significantly extending the OSH margins
for non-broken pellets. Especially for areas of the feature space re-
presented by only few or no observations in the DTR, the TC-SVM
model could fail to detect population anomalies with highly unusual
feature combinations. These could result from significant changes in the
manufacturing process and are expected to be located in the OSH
margin. Similar to the OC-SVM model, individual cases in proximity to
the OSH margin can be reviewed in order to identify potential cases of
pellet misclassification and further improve the model robustness over
time. For the TC-SVM model the number of observations in the OSH
margin increases to 40 pellets (non-broken 30, broken 10) compared to 4
pellets (non-broken 4, broken 0) for the OC-SVM model.

Selected pellets acting as support vectors of the TC-SVM model are
shown with their corresponding feature combinations in Fig. 9. These
pellets contain feature combinations located in proximity of the OSH.
The direct comparison supports the selection of features from distinct
structure-related categories to capture the full spread of the broken
pellet population. Pellet 2 has a SFgjps, sa, r3, v.ror Of 421.95 um which is
larger than the smallest non-broken pellet in DTR (Pellet 1, 375.11 pm).
However, Pellet 2 can be easily distinguished using information on
surface roughness (SVcy, v roi, 1vi), Where the population of non-
broken pellets exhibits a narrow distribution of 0.989 + 0.002. In con-
trast, Pellet 3 has a low sphericity quantified using SFaxreretsph, F, v_rOD
but a large absolute size expressed in SFg,s sa, r3, v.ror In general,
smaller broken pellets tend to exhibit a wider distribution of shape- and
surface-related features (i.e. Pellet 4). Here, SFgps, sa, rs, v.ror as an
absolute measurement of the pellet size ensures a robust classification.

The high accuracy and precision of the SVM models suggest a strong
performance of the selected feature space to solve this classification
problem aiming to identify broken pellets in each capsule. The suc-
cessful quantitative characterisation of the population of pellets across
all measured capsules can be used to evaluate the sample against pro-
duct specifications for quality control or to assess the impact of chan-
ging formulation and/or process parameters. Additionally, the non-
destructive nature of the micro-XRT analysis allows a correlation of
extracted information to the sample's performance data which may
explain and ultimately predict final product performance such as dis-
solution where particle breakage may have an effect. The presented
micro-XRT analysis approach has the potential to be translated to other
pharmaceutical systems such as crystallisation, spherical agglomera-
tion, granulation and tableting. Feature selection and classification
models can be adapted to target changing research objectives. The

Fig. 9. Individual (1,3) non-broken and (2,4) broken
pellets with feature combinations associated to sup-
SF ussorstspiiy o1 0.6284 F by e 08257 p.01.'t vectors of the T(.I—SVM classiﬁcationi mocflel de-
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Classimonzbroken size and surface characteristics. Large broken pellets
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f tinguished by their surface characteristics (SVcy,
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extraction of quantitative information from these systems with complex
multi-dimensional structural properties can help to improve the un-
derstanding of product transformations within individual unit opera-
tions to optimise pharmaceutical manufacturing processes and accel-
erate process development. In combination with quality controls for
managing extensive experimental data, ML strategies can be utilised to
identify patterns and inference in the product characteristics.

4. Conclusions

Micro-XRT was successfully employed to characterise a solid phar-
maceutical multi-particulate product quantifying structural attributes
of the entire sample and of its primary particles. The implemented al-
gorithms to reliably extract features of the primary particles were es-
sential to allow an in-depth statistical evaluation of the population and
were utilised in the first instance to assess pellet uniformity. Feature
robustness was further tested against variations in image quality and
image processing parameters showing significant feature-dependent
deviations, hence promoting the importance of a sensitivity analysis for
applications of a quantitative micro-XRT characterisation. The combi-
nation of image analysis with feature selection and ML methodologies
was essential for the recognition of underlying patterns in these high
dimensional datasets with complex structure-related feature combina-
tions. Here, it allowed the automatic detection of all 25 broken pellets
within a test dataset of 886 pellets at a minimum accuracy of 99.55%
and a minimum precision for the classification of broken pellets of
86.20%. The application of this systematic characterisation workflow
combining quantitative micro-XRT analysis with ML models shows
promising performance as a novel approach for an automated analysis
of micro-XRT image data. These analysis frameworks are invaluable
across a wide range of pharmaceutical multi-particle systems, and only
restricted by limitations of the micro-XRT image acquisition system.
Quantitative information on structural particle properties have direct
applicability in quality control and can be utilised to inform product
and process development. The non-destructive nature of this char-
acterisation method permits the additional assessment of the product
performance to gain valuable insights into structure-performance re-
lationships for pharmaceutical systems. Future work will focus on the
translation of the demonstrated capabilities to a wider range of phar-
maceutical solid products.
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