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Abstract

Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear
segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid
gametes. The structural maintenance of chromosome (SMC) proteins aid manipulation of chromosome structures inside
cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5–Smc6 complex. Meiotic roles have been
discovered for cohesin and condensin. However, although Smc5–Smc6 is known to be required for successful meiotic
divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5–Smc6 complex
localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5–Smc6
undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly,
meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least
some chromosome linkages in smc5–smc6 mutants originate from other cellular processes. These results demonstrate that,
as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant
recombination intermediates between homologous chromosomes.
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Introduction

Sexual organisms require a specialized cellular division, known

as meiosis, to reduce their chromosome number by half to produce

gametes [reviewed in [1,2]. This process entails a division with two

rounds of chromosome segregation and only one of DNA

replication. The chromosome-halving event occurs in the first

division, during which homologous chromosomes pair up and

undergo recombination, generating crossovers (CO) between

them. COs give rise to genetic variability but also, importantly,

are crucial for chromosome segregation because they act as the

physical linkages necessary for the correct orientation of

homologues on the first meiotic spindle.

The number of COs and their position is an important issue; if a

chromosome pair fails to establish COs, the homologues may not

segregate to opposite poles and, similarly, if too many COs are

established between homologues, timely separation may not take

place [3]. The formation of COs, therefore, is necessarily a highly

regulated process, promoted by factors such as the ZMM proteins

[4], and antagonized by others, for example the Sgs1 helicase

[5,6,7]. As a consequence, the number of DNA double-strand

breaks (DSBs) initiating recombination far exceeds the number of

COs [8].

Upon DSB induction by the nuclease Spo11 [9,10], breaks

are resected, and the protruding overhangs are able to invade

homologous sequences in the sister and homologue duplexes.

Although it was generally thought that recombination between

homologue duplexes dominates during meiosis, recent evidence

demonstrates that sister duplexes are also used extensively for

the repair of meiotic DSBs [11]. During recombination, single-

end invasions undergo regulation to drive the appropriate

outcomes at different sites [12], including COs and non-COs

[13]. Joint molecules (JM) are precursor intermediates for CO

formation. The Sgs1 helicase and Mus81-Mms4 endonuclease

suppress excessive JMs, including aberrant multichromatid JMs,

as they cause segregation defects during the first division.

[6,14,15].

Sgs1 has also been shown to dissolve inter-chromatid junctions

originating during mitotic recombinational repair [16,17]. Mitotic

chromatid junctions, like meiotic joint molecules, are caused by

defects in recombination and interfere with chromosome segrega-

tion [18]. Sister chromatid junctions accumulate in mutants of the

Smc5–Smc6 complex [18,19,20,21], a conserved multi-subunit

complex involved in DNA repair via homologous recombination

[22]. The complex consists of six non-SMC subunits, named Nse1-

6, in addition to the Smc5 and Smc6 heterodimer [23,24,25].

Nse2, also known as Mms21, has SUMO ligase activity and

promotes the sumoylation of several proteins [26,27,28]. Given its

roles in mitotic recombination and some studies in fission yeast

demonstrating that the Smc5–Smc6 complex is necessary during

meiosis [29], the complex is anticipated to feature prominently in

the metabolism of meiotic DSBs and recombination. However its

exact function remains elusive.
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Results

Smc5–Smc6 localization during prophase I is not
dependent on the formation of Spo11-DSBs

To begin to dissect the meiotic function of Smc5–Smc6, we first

examined the localization of its subunits on chromosomes during

synchronized meioses (Figure 1A). We used Smc6p as a

representative of the complex. A COOH-terminal myc-tagged

allele of SMC6 was incorporated into the endogenous locus,

providing the sole functional copy in the genome. Nuclei from

meiotic cells expressing Smc6p-9myc were spread onto slides and

processed for indirect immunofluorescence. In early meiosis,

Smc6p-9myc is enriched in the nucleolus: a characteristic

localization pattern also found in mitotic cells [18]. As cells

progress into meiosis, Smc6p-9myc redistributes into distinct foci

throughout the rest of the nucleus (Figure 1A). The appearance of

non-nucleolar foci is maximal 4–6 hr after induction, correspond-

ing to the prophase I period (Figure 1A; right panels). Smc6p-

9myc localization in cells arrested in pachytene, by deletion of the

meiotic transcription factor Ndt80 [30], confirms the punctate

nuclear distribution (Figure 1A; left panels). Chromosome spreads

of BR background ndt80D cells expressing SMC6-9MYC confirm

the formation of foci and demonstrate their colocalization with

meiotic chromosomes (Figure 1B). Smc5p-9myc exhibits a similar

pattern (Figure 1C). This pattern of localization is similar to

various markers of meiotic recombination [31,32] which, added to

the fact that the Smc5–Smc6 complex is recruited to mitotic DSBs

[33,34,35], prompted us to test whether the punctuate nuclear

distribution of Smc5–Smc6 is dependent on meiotic DSBs.

Deletion of the SPO11 gene prevents DSB formation but not

sporulation and, in the absence of meiotic recombination, random

segregation renders spores from spo11D cells largely inviable [36].

Smc6p-9myc forms chromosomal foci in spo11D cells (Figure 1D),

demonstrating that Smc5-Smc6 relocalization to prophase chro-

mosomes is DSB-independent.

Meiotic nuclear divisions require Smc5–Smc6
SMC6, like all identified subunits of the Smc5–Smc6 complex, is

an essential gene. Temperature sensitive (ts) alleles of Smc6 have

been employed to study the function of the complex in mitosis

[18]. We followed the same approach in diploid cells and replaced

both copies of SMC6 with the conditional mutant allele smc6–9.

The sporulation efficiency of smc6–9 was compared to that of the

wildtype at different temperatures, since meiosis is inherently

temperature-sensitive. We found sporulation in smc6–9 to be

significantly lower than in wildtype cells at all temperatures

(Figure 2A). Reduced sporulation frequencies were also found for

other smc5–smc6 ts alleles, including smc5–6, nse3–12 and nse5–1

(Figure S1). Despite the reduction in the quantitiy of spores

produced (Figure 2A), analysis of kinetics of meiosis in synchro-

nized smc6–9 cultures showed that the onset of meiotic divisions

was not significantly delayed in the mutant (Figure 2B). However

the number of cells undergoing both divisions was considerably

lower than that observed for wild-type cells (Figure 2B) thus

explaining the reduced sporulation (Figure 2A).

We next examined whether the few tetrads formed in smc6–9

(,15% at 32.5uC) (Figure 2A), contain viable meiotic products. A

reduced viability was observed for smc6–9 tetrads, with only 45%

containing four viable spores (Figure 2C). In addition, we suspect

this spore viability to be an overestimate because many smc6–9

tetrads, which appear immature (Figure 2D), are unlikely to

survive zymolyase treatment pre-dissection.

The spore viability pattern (4, 2, 0 viable spores .3 and 1) is

consistent with high levels of meiosis I nondisjunction (Figure 2C)

and many smc6–9 nuclei fail to divide at all (Figure 2A–B).

Furthermore, some smc6–9 cells undergo partial divisions with the

appearance of fragmented nuclei (Figure 2D). This is indicative of

a defect in the segregation of chromosomes. To evaluate this

possibility in a direct manner, we scored the segregation of

chromosome V marked with tet operator repeats 1.4 kb away from

the centromere (CEN5 dots). To simplify the analysis we scored

only tetranucleated cells (Figure 2E). We found no defects in

premeiotic pairing in smc6–9 (data not shown). However, over

20% of smc6–9 cells harbour nuclei lacking chromosome V

(Figure 2E), compared to only 3% of wildtype cells, confirming a

missegregation phenotype.

The large proportion of mononucleated cells in smc6–9 mutants

(Figure 2B) suggests a failure to enter meiosis or an arrest in

prophase I. Flow-cytometry analysis of synchronized meiotic smc6–

9 cultures shows that the majority of cells enter meiosis and

complete pre-meiotic replication (Figure 2F).

The pachytene checkpoint [37], dependent on Pch2p [38], acts

to prevent the first nuclear division when meiotic recombination or

synapsis is incomplete. We therefore tested whether pch2D smc6–9

meiotic cultures contain mononucleated cells. Although a small

reduction in mononucleated cells was observed in pch2D smc6–9

compared to smc6–9 (Figure 3A), the majority of mononucleated

cells in smc6–9 are not arrested by the Pch2-dependent checkpoint.

The independence of smc6–9 from the Pch2-dependent

checkpoint prompted us to investigate whether the spindle

checkpoint, known to be functioning during the first meiotic

division [39], is activated in these cells. Deletion of MAD2 in smc6–

9, however, did not reduce the number of mononucleates

(Figure 3B), hence activation of the spindle checkpoint is not

responsible for the accumulation of this cell type. Similarly, no

mononucleate suppression in smc6–9 meioses was observed when

the DNA damage checkpoint adaptor RAD9 was deleted

(Figure 3C), demonstrating that meiotic DNA damage checkpoints

[40] are not activated in smc6–9 mutant meioses.

Defective meiotic recombination is not the sole cause of
chromosome segregation defects in smc6–9 meioses

Analysis of meiotic progression in smc6–9 mutant cells revealed

a defect during nuclear division that manifests as severe

chromosome missegregation (Figure 2D–E). In vegetative cells,

smc6–9 lethality is suppressed when homologous recombination is

Figure 1. Smc5–Smc6 complex relocalises to specific regions during meiotic prophase I. (A) SK1 nuclei from ndt80D cells expressing
SMC6-9MYC (CCG2422) harvested at different time points in meiosis (0 and 8 hrs) were surface spread and stained with anti-myc antibodies and DAPI
(left panel). Synchronously sporulating SK1 nuclei from wildtype cells expressing SMC6-9MYC (CCG1508) harvested at the time points indicated were
surface spread and stained with anti-myc antibodies and DAPI (right panel). (B) BR nuclei from ndt80D cells expressing SMC6-9MYC (CCG5019)
harvested at different time points in meiosis (0 and 24 hrs) were surface spread and stained with anti-Zip1 (Synaptonemal Complex; 24 hrs), anti-Nsr1
(nucleolus; 0 hrs) and anti-myc antibodies. (C) Synchronously sporulating SK1 nuclei from wildtype cells expressing SMC5-9MYC (CCG1103) harvested
at 0 and 4 hours of meiosis were surface spread and stained with anti-myc antibodies and DAPI. (D) SK1 nuclei from spo11D cells expressing SMC6-
9MYC (CCG3830) harvested at 4 hrs after meiotic induction (prophase I) were surface spread and stained with anti-myc antibodies.
doi:10.1371/journal.pone.0020948.g001
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blocked [18]. To investigate the interplay between Smc5–Smc6

and recombination in meiosis, we first investigated whether smc6–

9 mutants are able to synapse homologous chromosomes

normally. Mutants that fail to undergo effective meiotic recom-

bination often show a redistribution of the Synaptonemal

Complex (SC) protein Zip1p into polycomplexes during pachytene

[41]. We probed wildtype and smc6–9 pachytene-arrested nuclei

(by ndt80D) with an antibody raised against Zip1p. The pattern of

Zip1p distribution is similar in wildtype and smc6–9 spreads

(Figure 3D); binding is linear and confined to the central region of

pachytene chromosomes, moreover Zip1p is absent from the

rDNA (Figure 3D; arrows).

To determine at the molecular level whether the meiotic

catastrophe in smc6–9 is caused by meiotic recombination defects

at the molecular level, we monitored the DNA events of meiotic

recombination using the HIS4-LEU2 physical assay system

[9,42,43]. Wildtype and smc6–9 mutant cells were induced to

sporulate synchronously and samples collected at hourly intervals

for assessment of the recombination status of the HIS4-LEU2 locus

(Figure 3E). In wildtype cells, DSBs are first detected 3 hr after

transfer to sporulation medium and disappear by 6 hr (Figure 3E).

In smc6–9 cells, DSB dynamics are similar but delayed by

approximately an hour (present between 4 and 7 hrs) (Figure 3E).

In both wildtype and smc6–9 cells, crossover levels rise as the

amount of DSBs decline (Figure 3E), indicating that smc6–9 cells

are able to process meiotic DSBs into recombinant products.

Furthermore, recombination at the locus (between HIS4 and

URA3), measured genetically in the 4 spore-viable tetrads, revealed

no significant differences between wildtype (Figure 3F; with a

frequency of 0.6) and smc6–9 (Figure 3F; with a frequency of 0.47).

In addition, we measured crossing over in four intervals on

chromosome XV [44] by tetrad analysis. In all intervals, crossing

over in the smc6–9 mutant is comparable to wildtype (Fig. S2),

however, we found an increase in gene conversion events (Fig. S2)

demonstrating that recombination is upregulated in smc6–9 cells.

sgs1D and mms4D mutants incur catastrophic divisions during

meiosis [7,45,46,47,48,49,50]. Previous analyses of meiotic Sgs1p

and Mms4p depletion [6,14,15] revealed no changes in recom-

bination at the HIS4-LEU2 hotspot, yet showed suppression of

nuclear division defects when meiotic Spo11-dependent DSBs

were abolished [14,15]. Similarities in the phenotypes of sgs1D and

smc6–9, both in mitosis and meiosis, together with the increase in

gene conversions (Fig. S2), prompted us to analyse the effect of

DSB abrogation on spore viability in smc6–9. Meiotic DSBs were

precluded by deletion of SPO11 or by its replacement with a

catalytically inactive allele, spo11-Y135F [51] (Figure 4A–B).

Strikingly, inactivation of Spo11 function does not suppress the

catastrophic meiosis of smc6–9 but, in fact, further decreases the

efficiency of nuclear divisions and ascus formation (Figure 4A–B

compared to Figure 2A). Similar results were obtained for other

smc5–smc6 ts alleles, including smc5–6, nse3–12 and nse2DC (data

not shown). These results suggest that the chromosome segregation

defects in smc6–9 cells are largely caused by defects unrelated to

Spo11p-induced recombination. Deletion of SPO13, which enables

viable spore production in a spo11D background via a wholly

equational division [52,53], permits some spore formation in spo11

smc6–9 (Figure 4C compared to 4A). However, the simultaneous

inactivation of Spo11 and Spo13 fails to fully rescue sporulation in

smc6–9 (Figure 4C). Together, these observations imply that the

Spo11-independent problems in smc6–9 cells affect the segregation

of both homologous chromosomes in the first meiotic division and

sister chromatids in the second.

smc6–9 cells undergo pseudosynapsis in the absence of
Zip1

The mitotic phenotype of haploid smc6–9 cells is sister-

chromatid nondisjunction during division, caused by unresolved

recombination and incomplete replication [18,19]. Diploid cells

with compromised Smc5–Smc6 function exhibit a 100-fold

increase in loss of heterozygosity [54], indicating that there is a

significant increase in recombination between homologous

chromosomes in mitosis in the absence of Smc5–Smc6. Our

results demonstrate that the smc6–9 mutant undergoes a

catastrophic meiosis where segregation in both meiotic divisions

is affected (Figure 2A, C, D, E & 4C. Surprisingly, abolition of

meiotic recombination does not suppress this phenotype

(Figure 4A, B & C), suggesting that the meiotic segregation

defects might be a result of unresolved recombination between

homologues that originates, not only from programmed meiotic

DSBs, but also from lesions caused by the lack of Smc6 function

during premeiotic S phase. Furthermore, the increase in gene

conversion (Fig. S2) suggests that increased recombination (Spo11-

dependent or -independent) might be the cause of the smc6–9

catastrophic divisions. To address this possibility, we investigated

whether the smc6–9 mutant exhibits an increase in connections

between homologous chromosomes during prophase I.

In wildtype cells, the absence of SC protein Zip1p leads to

linkage of homologue axes only at sites of crossing over, which are

clearly visible in nuclear spreads of pachytene cells [7] (Figure 4D;

1st panel). Upregulation of recombination between homologues, as

in sgs1D zip1D mutants, restores close association between

homologue axes, which is referred to as pseudosynapsis [7]. To

test whether homologues in smc6–9 are excessively linked, we

deleted ZIP1. We stained Red1p, a component of the chromosome

core [55], to evaluate homologue connections in pachytene (by

ndt80D arrest). As expected, in the zip1D single mutant, individual

chromosome cores are joined only by periodic axial associations

representing sites of crossing over [7] (Figure 4D). In contrast,

most zip1D smc6–9 spreads appear fully synapsed (Figure 4D). We

conclude that, in the absence of Smc6p function, the presence of

excessive homologue linkages causes catastrophic segregation. To

further investigate whether chromosomal junctions are present in

the absence of Spo11-dependent DSBs, we compared chromo-

somal associations in nuclear spreads of zip1D spo11D and zip1D
spo11D smc6–9 cells (Figure 4E) arrested in pachytene (by ndt80D).

Red1p staining in zip1D spo11D spreads shows that association

Figure 2. Meiotic catastrophe in smc6–9 cells. (A) SK1 wildtype (CCG2009) and smc6–9 (CCG1985) cultures scored after 3 days on solid
sporulation media at the indicated temperatures for meiotic products. The analysis includes meiotic divisions (MI + MII) and sporulation (tetrads,
triads and dyads) in the cultures. (B) Timing and efficiency of meiotic divisions in parallel cultures of SK1 wildtype and smc6–9 strains at 30uC. MI + MII
represents cells that have completed one or both meiotic divisions. (C) Spore viability, assessed by dissection of tetrads for SK1 wildtype and smc6–9
strains after 24 hrs sporulation in liquid media at 30uC. (D) DAPI fluorescence and bright-field images of cells from wildtype and smc6–9 cultures
sampled 24 hrs after meiotic induction at 30uC. Arrows indicate immature asci: the filled arrow highlights an uncondensed ascus and the open arrow
designates spores with immature spore walls through which DAPI bodies are visible.(E) Quantification of nuclei carrying GFP dots at CEN5 for SK1
wildtype (CCG6864) and smc6–9 (CCG6937) cells containing four nuclei only. Representative micrographs show CEN5 GFP, DAPI fluorescence and
bright-field images. (F) Flow cytometry analysis of SK1 wildtype (CCG2009) and smc6–9 cultures (CCG1985) at the indicated times after meiotic
induction at 30uC.
doi:10.1371/journal.pone.0020948.g002
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Figure 3. Meiotic recombination is unaffected in smc6–9 cells. (A) Analysis of meiotic divisions (mononucleates, MI+MII) and sporulation
(spores) in parallel cultures of SK1 wildtype (CCG2009), smc6–9 (CCG1985), pch2D (CCG2425) and pch2D smc6–9 (CCG2424), sporulating at 32.5uC on
solid media. ‘‘Spores’’ indicates cells that contain at least two spores. (B) Analysis of meiotic divisions (mononucleates, MI+MII) and sporulation
(spores) in parallel cultures of SK1 smc6–9 (CCG1985), mad2D (CCG6842) and mad2D smc6–9 (CCG6866), sporulating at 25uC on solid media. ‘‘Spores’’
indicates cells that contain at least two spores. (C) Analysis of meiotic divisions (mononucleates, MI+MII) and sporulation (spores) in parallel cultures
of SK1 smc6–9 (CCG1985), rad9D (CCG7182) and rad9D smc6–9 (CCG7178), sporulating at 25uC on solid media. ‘‘Spores’’ indicates cells that contain at
least two spores. (D) Pachytene BR nuclei from wildtype (BR1919) and smc6–9 (CCG4874) cultures were surface spread and stained with anti-Zip1
(Synaptonemal Complex) and DAPI. Arrows indicate rDNA. (E) Physical analysis of recombination at the HIS4-LEU2 locus at the indicated times after
induction of sporulation at 30uC in SK1 wildtype (CCG3970) and smc6–9 (CCG3976) cultures. Map of the HIS4-LEU2 locus showing diagnostic
restriction sites and position of the probe is shown. Image of a representative 1D Southern analysis, indicating DNA species, and quantitative analysis
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between homologue axes is absent, and individualized chromo-

somes are observed in the majority of cells (Figure 4E; Loose

category). In zip1D spo11D smc6–9 spreads, however, despite the

fact that we do not find pseudosynapsis, individualised chromo-

somes are not observed (Figure 4E; Loose category). Instead, most

nuclei present as an entangled mass of chromosomes (Figure 4E;

Entangled category). This result is consistent with our previous

demonstration that deletion of SPO11 does not rescue smc6–9

defects (Figure 4A–C), and suggests that the presence of Spo11-

independent junctions between chromosomes contributes to the

meiotic segregation defects observed in smc6–9 mutants.

Discussion

Here we have characterized the meiotic phenotypes of several

smc5–smc6 mutants during budding yeast meiosis. Our results

demonstrate that cells lacking functional Smc5–Smc6 undergo

highly aberrant divisions where chromosomes fail to segregate

correctly due to excessive and unresolved linkages between

chromosomes during prophase I. Surprisingly, these defects are

not dependent on meiotic recombination, as smc5–smc6 spo11D
mutants are also affected. We therefore propose that the function

of Smc5–Smc6 is crucial during premeiotic S phase, where the

complex acts to prevent or correct excessive linkages between

chromosomes that interfere with chromosome segregation in the

first meiotic division.

Methods

Strains and Growth conditions
All yeast strains used in this study were from SK1 or BR genetic

backgrounds and are shown in Table S1. The genetic background

of the strains used for each experiment is indicated in each figure

legend. For synchronous meioses (SK1 genetic background),

freshly-streaked large isolated colonies were cultured individually

to saturation in 5 to 10 ml YPD. These cultures were used to

inoculate 50 to 200 ml YP potassium acetate (1%) at pH 5.5 in

10x-volume conical flasks to 0.2 OD595. Flasks were shaken at

25uC or 30uC for 12 to 18 hours at maximum speed and cultures

measuring 1.1,OD595,1.5 and comprising .80% large,

unbudded cells were selected to be meiotically induced. These

were rapidly washed twice in half-volumes of distilled water pre-

equilibrated to 30uC and were resuspended in equal-volumes of

sporulation medium pre-equilibrated to, and subsequently incu-

bated at, 30uC or the appropriate experimental temperature.

Sporulation media was either 0.3% or 1% potassium acetate with

0.02% raffinose or 2% potassium acetate, depending on the lab of

origin of the strains used. Cultures were shaken at maximum speed

in 10x-volume conical flasks.

For meiotic induction of BR genetic background, isolated

colonies were grown in a third-volume of the eventual desired

culture volume of 2x synthetic complete media supplemented with

1 g/l adenine at 30uC for 20 hours, or at 25uC for 24 hours where

thermosensitive strains were used. Cells were then resuspended in

a quarter-volume of the eventual desired culture volume of YPDA

supplemented with 400 mM adenine and 200 mM uracil and were

grown for 8 further hours at the same temperature. After 1 wash in

2% potassium acetate, cells were finally resuspended in 2%

potassium acetate to induce meiosis at 30uC.

For sporulation on solid media, isolated colonies were grown to

saturation in 5 ml YPD, washed twice in distilled water and

resuspended in 1 ml distilled water. Patches, covering approxi-

mately one eighth of a standard petri dish, were made by pipetting

100 ml cell suspension onto sporulation agar supplemented with 1/

4x complete supplement mixture. Plates were incubated for 3 days.

For tetrad dissection, sporulated cells were resuspended in

distilled water with 0.05 mg/ml 100 T zymolyase and incubated

at room temperature for 10 minutes before plating.

Flow cytometry
For analysis by flow cytometry, cells were fixed in 70% ethanol

for 1 hour at room temperature, resuspended in SSC plus 0.1 mg/

ml RNase A and incubated at 50uC overnight. Proteinase K was

added to a final concentration of 0.1 mg/ml and cells were

incubated for a further hour at 50uC. Finally, a five-third volume

of 5 mg/ml propidium iodide in SSC was added and cells were

incubated in the dark at room temperature for 1 hour. Flow

cytometric analysis was performed on a FACScan cytometer

(Becton Dickinson) using CellQuest Pro (Becton Dickinson)

software.

Cytology
For SK1 nuclear spreads, cells were washed in ice-cold KS

buffer (1.2 M sorbitol, 2% potassium acetate), resuspended in ice-

cold KS buffer with 0.01 M DTT and 100 mg/ml 100 T

zymolyase and incubated at 37uC for 20 minutes or until 95%

of the cells were spheroplasted (lysed in 1% SDS). Spheroplasts

were gently washed in ice-cold MS buffer (1.2 M sorbitol, 0.1 M

MOPS, 1 mM EDTA, 0.5 mM magnesium chloride, 1 mM

PMSF) and resuspended in 20 ml per slide MS buffer. For

spreading, 20 ml cell suspension was pipetted onto an acid-washed,

ethanol-rinsed glass slide, rapidly followed sequentially by 80 ml

fixative (4% paraformaldehyde, 4 mM potassium hydroxide,

10 mM MOPS), 40 ml 1% PhotoFlo and 80 ml fixative. A pipette

tip was used to gently smooth the mixture over the surface of the

slide before air-drying.

For immunostaining of SK1 nuclear spreads, slides were washed

for 10 minutes in PBS and blocked for 10 minutes in blocking

buffer (5% w/v BSA, 2% skimmed powdered milk in PBS) in a

humidity chamber, before a 1-hour incubation at room temper-

ature with mouse monoclonal anti-c-myc IgG1k antibody 9E10

(1/1000; Roche) in blocking buffer. After a PBS wash, slides were

incubated in the dark in FITC-conjugated goat anti-mouse (1/

1000; Abcam) in blocking buffer for 1 hour. Following several PBS

washes in the dark, 0.5 ml 0.1 mg/ml DAPI in mounting medium

with Antifade was added to the slide before mounting with a

coverslip.

Nuclear spreads for BR strains were prepared according to a

modified version of the method described by Dresser and Giroux.

Cells from 7 ml culture (per 3 slides) were collected in a round-

bottomed tube, resuspended in 1 ml spheroplasting solution (2%

potassium acetate, 1 M sorbitol, adjusted to pH 7, 10 mM DTT,

0.5 mg/ml 20 T zymolyase, glusulase to a final dilution of 1/200)

and incubated shaking gently at 30uC for 20 minutes or more if

required. Spheroplasted cells (95% lysed in 1% sarcosyl), were

centrifugated at low speed and the cell pellet was drained and

washed gently in 1 ml ice-cold MESSORB (0.1 M MES, 1 M

sorbitol, 1 mM EDTA, 0.5 mM magnesium chloride, adjusted to

of DSBs, crossovers (recombinant), and meiotic divisions (MI +MII). ‘‘% probe signal’’ is percent of total hybridizing DNA per lane. (F) Analysis of
meiotic recombination frequency at the HIS4-LEU2 locus between HIS4 and URA3 in SK1 wildtype and smc6–9 tetrads after 24 hrs sporulation at 30uC.
doi:10.1371/journal.pone.0020948.g003
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pH 6.4). The pellet was then resuspended by pipetting 200 ml ice-

cold MES buffer (0.1 M MES, 1 mM EDTA, 0.5 mM magnesium

chloride, adjusted to pH 6.4) onto the wall of the tilted tube and

adding 720 ml 4% paraformaldehyde to ‘‘push’’ the mixture down

to the pellet at the bottom of the tube, before swirling gently. The

suspension was poured onto 3 slides, covered with a large coverslip

and left for 30 minutes. The coverslip was then discarded and the

slide rinsed gently in 2 ml 0.4% PhotoFlo and air-dried.

To immunostain BR nuclear spreads, slides were washed in PBS

for 3 minutes with gentle agitation and blocked in 200 ml fetal bovine

serum under a coverslip for 1 hour at room temperature in a

humidity chamber. Coverslips were displaced and slides drained for 1

minute before incubation with the appropriate primary antibody or

antibodies (mouse monoclonal anti-c-myc IgG1k antibody 9E10 (1/

333; Roche), rabbit anti-Zip1 (1/200; a gift from Shirleen Roeder),

goat anti-c-myc (1/333; Abcam), rabbit anti-Red1 (1/200; a gift from

Shirleen Roeder) or mouse anti-Nsr1 2.3b (1/20; a gift from Michael

Snyder)) in 75 ml 3% BSA in PBS overnight at 4uC. Slides were

washed 3 times in PBS for 5 minutes and incubated with the

appropriate secondary antibody or antibodies (FITC-conjugated

donkey anti-rabbit (1/200; Jackson ImmunoResearch), Alexa FlourH
594-conjugated goat anti-mouse (1/200; Molecular Probes, Invitro-

gen), FITC-conjugated goat anti-mouse, FITC-conjugated donkey

anti-mouse or Cy3- conjugated donkey anti-goat (all three 1/333;

Abcam)) in 75 ml 3% BSA in PBS for 1 hour at room temperature.

Following 3 5-minute washes in PBS, slides were drained for 1 minute

and DAPI/Antifade was added before mounting.

For fluorescence microscopy, series of z-focal plane images were

collected on a Leica IRB using a Hamamatsu D742-95 digital

camera and OpenLabTM software (Improvision). A tuneable light

source (Polychrome IV (Photonics)) with a Xenon lamp or an

ultraviolet mercury lamp (Leica) were used. Images in different z-

axis planes were flattened into a two-dimensional projection and

processed in OpenLab. To visualise the nuclei of intact cells, cells

were resuspended in a final concentration of 1% TritonH X-100

and 25 ng/ml DAPI/Antifade.

DNA Physical assays
Extraction of DNA from synchronously sporulating cells was

performed according to a protocol based on the method described

by Cao et al. [9]. Approximately 22 OD595 cells, fixed in 70%

ethanol at 220uC, were washed twice with spheroplasting buffer

(1 M sorbitol, 10 mM sodium phosphate buffer at pH 7), 50 mM

EDTA) and were incubated for 30 minutes at 37uC in 500 ml

spheroplasting buffer with 0.006% b-mercaptoethanol and 10 mg/

ml 100 T zymolyase. Spheroplasts (95% cells disrupted in 1%

SDS), were centrifugated at 4000 rpm for 3 minutes and

incubated in 500 ml lyse solution (50 mM EDTA, 0.3% SDS,

200 mg/ml proteinase K) at 65uC for 30 minutes. After cooling on

ice, 200 ml 5 M potassium acetate was mixed in by inversion and

the suspension was incubated on ice for 20 minutes. Cell debris

was removed by centrifugation and the supernatant was phenol

chloroform extracted with an equal-volume of phenol chloroform

3 times, and chloroform extracted once, in the same way, rocking

for 30 minutes to mix rather than vortexing. DNA was ethanol

precipitated at 220uC for at least 1 hour by adding a tenth-

volume of 3 M sodium acetate at pH 5.2, then a double-volume of

ethanol, and was finally resuspended in 40 ml 10 mM Tris pH 8.

DNA concentration was measured and 40 mg was digested per

sample with XhoI overnight in a 35 ml reaction volume. Digested

DNA was electrophoresed for 24 hours at 70 V in a 6% agarose

gel in 1x TBE with an electrode distance of 30 cm.

Gels were stained in 0.25 mg/ml ethidium bromide in TBE for

1 hour and were visualised in a Biorad Gel Doc 2000 using

Quantity One(R) software (Biorad). Gels were prepared for

Southern blot by a 10-minute incubation with agitation in

0.25 M HCl and at least a 30-minute incubation with agitation

in 0.4 M sodium hydroxide. DNA was transferred onto positively-

charged nylon transfer membrane (Hybond-N+, Amersham

Biosciences) by capillary action in 0.4 M sodium hydroxide for

at least 24 hours. The blot was UV-crosslinked by the auto-

crosslinking function of the UV StratalinkerH 2400 (Stratagene)

and was washed in 2x SSC before air-drying. To make the

radiolabelled probe, a DNA fragment amplified from wildtype

genomic DNA, using primers 59-CTCGTTGGTGTGTAAA-

TACG and 59-GCAAGCACAATTCCGGCAA, was gel purified

using the QIAquick Gel Extraction Kit (Qiagen) and labelled with

32P by employing the Megaprime DNA labelling system (GE

Healthcare) using dCT32P. The probe was purified with a

SephadexTM G-50 DNA Grade column (NICKTM Column,

Amersham Biosciences), boiled for 5 minutes and quenched on

ice. The probe was hybridised to the blot, which was prehybridised

in Church buffer without BSA (7% SDS, 1 mM EDTA, 0.25 M

sodium phosphate buffer at pH 7.2) at 65uC for at least 2 hours, in

20 ml Church buffer without BSA at 65uC overnight. The blot

was washed at 65uC several times in each of 3 increasingly

stringent wash solutions: 2x SSC with 0.5% SDS, 1x SSC with

0.1% SDS and finally 0.1x SSC with 0.1% SDS, and was then

exposed to a Phosphor Screen (Amersham Biosciences) at least

overnight. The screen was scanned on a Storm 820 phosphor-

imager (Molecular Dynamics) using Storm scanner control

(Molecular Dynamics) software and bands were quantified using

ImageQuant(R) 5.2 (Molecular Dynamics) software.

Supporting Information

Figure S1 Reduced sporulation efficiency in various
smc5–smc6 mutants. Analysis of sporulation efficiency in SK1

wildtype (CCG2009), smc6–9 (CCG1985), smc5–6 (CCG1981),

nse2DC (CCG3818), nse3–12 (CCG2407) and nse5–1 (CCG2132)

strains sporulated at 25uC on solid media.

(TIF)

Figure 4. spo11D does not rescue smc6–9 despite pseudosynapsis in zip1D smc6–9 mutants. (A) Analysis of sporulation efficiency (left
graph) and meiotic divisions in unsporulated cells (right graph) in SK1 spo11D (CCG2396) and spo11D smc6–9 (CCG2429), sporulated at 25uC for 3
days on solid media. (B) Analysis of sporulation efficiency (left graph) and meiotic divisions in unsporulated cells (right graph) in SK1 spo11-Y135
(CCG3733) and spo11-Y135 smc6–9 (CCG4498), sporulated at 25uC for 3 days on solid media. (C) Analysis of sporulation efficiency in SK1 spo11D
spo13D (CCG4678) and spo11D spo13D smc6–9 (CCG4680), sporulated at 25uC for 3 days on solid media. (D) BR pachytene-arrested ndt80D zip1D
(DP428) and ndt80D zip1D smc6–9 (DP687) nuclei were surface spread and stained with anti-Red1 (chromosome cores) and DAPI. Representative
micrographs for the different categories of axial association are shown. Quantification of axial association is shown (graph). The number of nuclei
scored was 119 for ndt80D zip1D and 122 for ndt80D zip1D smc6–9. (E) BR pachytene-arrested ndt80D spo11D zip1D (DP728) and ndt80D spo11D
zip1D smc6–9 (DP727) nuclei were surface spread and stained with anti-Red1 (chromosome cores) and DAPI. Representative micrographs for the
different categories of chromosome association are shown. Quantification of chromosome association is shown (graph). The number of nuclei scored
was 100 for ndt80D spo11D zip1D and 102 for ndt80D spo11D zip1D smc6–9.
doi:10.1371/journal.pone.0020948.g004
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Figure S2 Analysis of recombination frequency in wild-
type and smc6–9 strains. Schematic of the genetic assay

described in [44] and shown in tables (top panel). Parallel cultures

of wildtype (CCG6844) and smc6–9 (CCG6585) were sporulated

at 25uC on solid media for 3 days. Tetrads were dissected and

spore clones genotyped using auxotrophic markers for analysis of

recombination in four consecutive genetic intervals on chromo-

some XV. Spore viability data for the 100 wildtype and 241 smc6–

9 tetrads dissected are summarised in the upper panel with the

percentage of tetrads in each spore viability category detailed.

Recombination frequencies are shown on the left hand side of the

lower panel. Due to low numbers of 4 spore-viable tetrads in smc6–

9, recombination frequencies for the indicated intervals reflect the

pooled individual spore data from all tetrads, regardless of their

spore viabilities. Rf refers to the recombination frequency in single

spores, determined as recombinant/(parental+recombinant), and

Rf x 100 values are comparable to the conventional measurement

of genetic recombination in centiMorgans (cM), which is

calculated from 4 spore-viable tetrads. The mean number of

crossovers in the whole URA3-HIS3 interval per spore is also

shown (CO/spore). Gene conversion events in 4 spore-viable

tetrads obtained for wildtype (n = 77) and smc6–9 (n = 84) are

shown in the lower right hand panel. In smc6–9, the gene

conversions shown represent 1 triple gene conversion event, 1

double gene conversion event and 8 single gene conversion events.

Analysis of crossover interference in wildtype and smc6–9

strains.Crossover interference, refers to the phenomenon whereby

the presence of a crossover decreases the probability that a

crossover will form in adjacent regions. A crossover interference

value of 1 indicates that there is no interference. Due to low

numbers of 4 spore-viable tetrads in smc6–9, crossover interference

was calculated from individual spore data from all tetrads,

regardless of their spore viabilities, rather than from the

conventional non-parental ditype observed/expected ratio, which

is measured in 4 spore-viable tetrads. COC refers to coefficients of

coincidence and is the ratio of the observed number of double

crossovers in adjacent genetic intervals to the predicted number of

double crossovers based on the Rf values. This is calculated by the

formula COC = number of double crossovers in 2 adjacent

intervals A and B/(Rf for interval A x Rf for interval B).

(TIF)

Table S1 Yeast strains used in this study.

(DOC)
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