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ABSTRACT With the development of high-throughput genomic technologies, large, genome-wide datasets
have been collected, and the integration of these datasets should provide large-scale, multidimensional, and
insightful views of biological systems. We developed a method for gene association network construction
based on gene expression data that integrate a variety of biological resources. Assuming gene expression
data are from a multivariate Gaussian distribution, a graphical lasso (glasso) algorithm is able to estimate the
sparse inverse covariance matrix by a lasso (L1) penalty. The inverse covariance matrix can be seen as direct
correlation between gene pairs in the gene association network. In our work, instead of using a single penalty,
different penalty values were applied for gene pairs based on a priori knowledge as to whether the two genes
should be connected. The a priori information can be calculated or retrieved from other biological data, e.g.,
Gene Ontology similarity, protein-protein interaction, gene regulatory network. By incorporating prior knowl-
edge, the weighted graphical lasso (wglasso) outperforms the original glasso both on simulations and on data
from Arabidopsis. Simulation studies show that even when some prior knowledge is not correct, the overall
quality of the wglasso network was still greater than when not incorporating that information, e.g., glasso.
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A key challenge for biology is to understand the complex molecular
interactions of genes in a living cell (Barabasi and Oltvai 2004). Anal-
ysis of gene networks provides a global view of these interactions and
can provide biologists with a better understanding of complex biolog-
ical systems (Friedman 2004; Karlebach and Shamir 2008). Also, by
the use of gene networks, the guilt-by-association paradigm can be
applied to infer the biological function of unknown genes (Wolfe et al.
2005).

Gene expression data, which is relatively easy to generate or to
collect from databases, has been used to infer gene networks. A variety
of gene network reconstruction methods based on gene expression
data have been developed, e.g., regression, mutual information, corre-
lation Bayesian network, meta predicators, and others (Marbach et al.
2012). Here, we focus on the Gaussian graphical model (Dempster

1972). In this approach, gene expression is assumed to follow a mul-
tivariate Gaussian distribution N(m, S), and Gaussian Markov ran-
dom fields have been used to infer the structure of networks from
gene expression data (Liu and Ihler 2011). A gene association network
can be seen as an undirected graph G = (V, E), where V = {vp} is the
vertex set representing genes and E = {eij} is the edge set representing
association relations between pairs of genes. In an unweighted net-
work, if eij = 0, genes i and j are conditionally independent given all
other genes. The Hammersley–Clifford theorem implies that zeros in
the inverse covariance matrix of a multivariate Gaussian distribution
indicate absent edges in the corresponding graphical model (Besag
1974; Lauritzen 1996). Therefore, the problem of estimating the gene
association network based on gene expression data can be transferred
to estimating S21 or selecting nonzero entries in S21. Many studies,
however, have used Pearson correlation coefficients between pairs
of genes to infer network structure; Pearson correlation coefficients
correspond to the covariance matrix S and cannot infer the true
structure.

An accurate inference of biological network using Gaussian
graphical model is challenging for two main reasons. The first is
that most genome-scale datasets are highly dimensional. Given
p genes, there are possible p(p 2 1)/2 edges, but gene expression
data often have a limited number of samples. When the gene or
locus number is much higher than the sample size in a dataset,
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a traditional maximum-likelihood estimate for covariance variance
is often not appropriate (Schafer and Strimmer 2005; Uhler 2012).
Alternative methods have been developed for highly dimensional
datasets (Meinshausen and Buhlmann 2006; Friedman et al. 2008;
Yuan 2010; Cai et al. 2011; Ravikumar et al. 2011), most of which
have used Lasso, a shrinkage and selection method using L1 regu-
larization, a popular approach to deal with highly dimensional
datasets (Tibshirani 1996; Hastie et al. 2009). These methods have
been shown to be able to asymptotically and consistently estimate
the set of non-zero elements of S21.

The second major difficulty is the lack of efficient methods to
integrate multiple levels of biological data to enhance model accuracy.
Increasing amounts of biological data have been collected, especially
with the development of high-throughput technologies, e.g., micro-
arrays and next-generation sequencing, which provide an unprece-
dented opportunity to explore biological systems. We now have
access to genomic, epigenomic, transcriptomic, proteomic, metabolo-
mic, and phenomic data, and careful analysis and integration of these
genome-scale datasets should provide large-scale, multidimensional,
and insightful views into biological systems (Joyce and Palsson 2006;
Hawkins et al. 2010). Also, we have a variety of resources that serve as
indicators of the functional association of any two genes, e.g., Kyoto
Encyclopedia of Genes and Genomes pathway, Gene Ontology (GO)
similarity, protein2protein interaction, co-occurrence in literature,
gene network generated from other methods, and association of
orthologous genes. Integrating potentially reliable information from
other sources should increase the accuracy of network reconstruction
(Imoto et al. 2004; Mostafavi et al. 2008; Christley et al. 2009; Wang
et al. 2013; Chen et al. 2014). Here, we present a statistical algorithm
based on the Gaussian graphical model for gene association network
reconstruction using gene expression data, which is able to solve these
two challenges to allow a more thorough understanding of complex
biological systems.

MATERIALS AND METHODS
Let Q = S21 and S be the empirical covariance matrix, then by
applying L1 penalty to the original log-likelihood for estimating Q,
the problem of estimating Q becomes finding the Q which maximize
the formula

log ðdetðQÞÞ2 trðSQÞ2 rkQk1 ;
where tr is the trace, i.e., the sum of the elements on the matrix
diagonal, and kQk1 is the L1 norm, i.e., the sum of the absolute
values of the elements of S21, and r is the penalty parameter. When
r = 0, it is the normal maximum likelihood. When r . 0, some
elements in Q will be shrunk to zero. The sparsity of the estimated
graph increases when r increases. For a fixed r, the graphical lasso
(glasso) algorithm can be used to quickly solve the equation using
a block-coordinate method (Friedman et al. 2008). The optimal r
can be chosen empirically or tuned by cross-validation, Bayesian
information criterion (BIC), or other methods (Friedman et al.
2008; Foygel and Drton 2010; Liu et al. 2010).

The Lasso regression can be interpreted as a Bayesian regression
with a Laplace prior distribution, Lp(0, r). In Bayesian statistics, prior
information can be integrated into the model by changing the param-
eter in the prior distribution, and the posterior distribution should
better approximate the true distribution of the data. Therefore, for the
glasso algorithm, instead of using a single penalty parameter, it is
reasonable to specify different amounts of penalties for different ele-
ments in Q based on a priori information as to whether two genes are
associated, or not. A smaller penalty can be given if a priori informa-
tion indicates that they are linked. Then, the log-likelihood becomes

log ðdetðQÞÞ2 trðSQÞ2 rkP �Qk1 ;
where P is the prior information matrix and � indicates component-
wise multiplication, and P2 ½0; 1�. Larger values for an element in

Figure 1 Demonstration of a single simulation using glasso and wglasso. (A) The true network with scale-free property. (B) Heatmap of gene
expression data. The X-axis represents genes and the Y-axis represents samples. (C) The prior network, representing prior information of genes’
associations with precision ratio 0.7. Black edges are correct association information; edges that exist in prior information but not in the true
network are in red, and gray edges are missed associations in the prior information. (D) The estimated network using glasso. The edge colors have
the same meaning as prior network. (E) The estimated network using wglasso. The edge colors have the same meaning as prior network.
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P generate larger penalty values and represent weaker association of
two genes based on priori information. We name this updated ver-
sion of glasso as weighted graphical lasso (wglasso), which is not
only stable for high-dimensional datasets by utilization of Lasso but
also more accurate than the original glasso through the integration
of prior information.

The prior matrix can be obtained in numerous ways. For example,
the GO semantic similarity between genes can be calculated using
tools GOSemSim (Yu et al. 2010) or GOssTo (Yu et al. 2010), Then,
the inverse of similarities can be implemented in the prior matrix, as
a high similarity means a low penalty in our model. Other types of
networks, e.g., protein-protein interaction and gene regulatory net-
works, can be directly transferred to a prior matrix after inverse trans-
formation of the weights of the network. Some databases estimate
the functional association between genes using data mining and
text mining and can be valuable and reliable resources for generating
a prior matrix, e.g., STING (Von Mering et al. 2005) and AraNet (Lee
et al. 2010).

Although previous efforts to use lasso for incorporating a priori
knowledge have been made, none is identical to our proposed method.
For example, most of the previously described algorithms partitioned
the gene network reconstruction into a number of linear regression
problems (Anjum et al. 2009; Charbonnier et al. 2010; Wang et al.
2013); however, it has been shown this type of algorithms is less
accurate than glasso (Friedman et al. 2008).

RESULTS AND DISCUSSIONS

Simulation studies demonstrate that wglasso is more
reliable than glasso
Because most biological networks are scale-free (Barabasi and Oltvai
2004), a scale-free network with p genes and gene expression data with
n samples based on the network topology are generated using the
“huge” package in R (Zhao et al. 2012). A prior network with pre-
cision ratio x, x 2 [0,1] also was generated. A prior network is
a weighted network, in which each edge corresponds to the prior
information that two genes are functionally associated and the edge
weight indicates the strength of the information. Precision ratio = x
with x . 0 means p�100 percent of prior edges are correct, and the
remaining (1 2 p)�100 edges are incorrect. The edge number of the
prior network is set to the same number of true edges. The edge
weights of the prior network were randomly generated from the uni-

form distribution, U(0,1). A special case is precision ratio = 0, which
indicates no prior information and the prior network will not contain
any edges. In this case, wglasso is equivalent to glasso. Once the
empirical covariance matrix S is calculated from the expression data
and the prior information matrix P retrieved from the prior network,
we estimate the true network using glasso and wglasso. In order to
find the optimal penalty parameter, r, wglasso networks were esti-
mated under a sequence of r values from 0 to 1 with 0.01 intervals.
Then we selected the network most similar to the true network. The
Matthews correlation coefficient (MCC) was used to measure the
similarity between the estimated and true networks (Matthews
1975), and was calculated as follows based on 2 · 2 contingency table,

MCC ¼ TP ·TN2 FP · FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ;

where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively. A penalty
parameter that maximized MCC (maxMCC) was considered
optimal. A single simulation with 100 genes, 50 samples and a 0.7
precision ratio is shown in Figure 1 and Figure 2.

Additional simulations were performed with a variety of sample
sizes and precision ratios in order to systematically evaluate wglasso.
The simulation was repeated 100 times for each combination of
sample size and precision ratio. The results show that reconstructed
networks with a priori information had a significantly greater
maxMCC than without a priori information, indicating superior per-
formance of wglasso (Figure 3). In most cases, wglasso outperformed
glasso, even when most of the prior knowledge was incorrect. If the
sample size was high and the precision ratio low, e.g., sample size =
300 and precision ratio = 0.2, it is possible that an excess of incorrect
prior information would be harmful. However, in real situations, the
sample size is often much lower than the gene number and misleading
a priori information based on experimental studies is likely to be low.
Moreover, highly accurate prior knowledge results in more accurately
reconstructed networks. In practice, it would be possible to integrate
multiple resources to increase the reliability of prior information.

Tuning the penalty parameter using BIC
In real situations, the true network is unknown; thus, maxMCC
cannot be used to select the optimal penalty parameter. Instead, one

Figure 2 Parameter selection process of glasso and wglasso Matthews
correlation coefficient (MCC; solid lines) and Bayesian information
criterion (BIC; dashed lines) values of the estimated networks under
different penalty parameters (Rho) using glasso (blue lines) and
wglasso (red lines). Triangles are points that maximize MCC values
and minimize BIC values under the corresponding penalty parameters,
considered to be optimal penalty parameters.

Figure 3 Simulation to compare glasso and wglasso. The simulation
was repeated 100 times for each combination of sample sizes (n) and
precision ratio of the prior information. Gene number = 100. In each
simulation, the maximum Matthews correlation coefficient (maxMCC)
of estimated networks from different penalty parameters is recorded.
The Y-axis shows the mean of maxMCC from the 100 simulations. The
error bars are 95% confidence intervals.
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can use cross-validation, BIC, extended BIC (Foygel and Drton 2010),
and a stability approach for regularization selection (Liu et al. 2010).
Cross-validation, stability approach for regularization selection, and
BIC conduct many subsampling or permutations and thus are com-
putationally intensive. Extended BIC tends to select very sparse net-
works, and often no edges are found. For a scale-free network, another
method is to test whether the log transformed degree distribution has
a linear relationship (Langfelder and Horvath 2008). The R-squared
values from linear regressions generally increase as the network gets
sparser, and the optimal fit is selected at the point where the increase
trend slows down. The selection is usually done visually, so the
method is not practical for simulations. Also, the optimal parameter
varies by dataset and individual interpretation.

BIC is one of the standard methods for choosing the regularization
parameter, and works well in our scale-free network simulations
(Figure 2 and Figure 4). The BIC for Gaussian graphical model takes
the form

BIC ¼ 2 2lnðQÞ þ jEjlog ðnÞ;
where jEj is the edge number, n the sample size, and lnðQÞ the log-
likelihood function simplified from

lnðQÞ ¼ n
2
½logðdetðQÞÞ2 trðSQÞ�:

Simulation showed that the difference between the MCC of
reconstructed networks based on BIC and the maxMCC was small,
especially when sample size was relatively small (Figure 2 and
Figure 4).

Application to experimental data
We applied wglasso to gene expression data from the Eukaryotic
species, Arabidopsis thaliana. Gene expression data of 795 genes re-
lated to isoprenoid pathways from 118 microarray experiments were
collected (Wille et al. 2004). Prior information was obtained from
AraNet, a probabilistic network of functional associations among
19,647 Arabidopsis genes (Lee et al. 2010). A total of 701 of 795 genes

have functional associations in AraNet. The edge weight is the likeli-
hood score, calculated from variety of resources that indicates a func-
tional association between two genes. The likelihood scores range
from 0 to 5, so they were rescaled to a range of 0.5 to 1 using the
formula,

X new ¼ 0:5 ·
maxðXÞ2X

maxðXÞ2minðXÞ þ 0:5:

High likelihood scores will become low penalty values after rescaling.
Pairs of genes without prior information have zero values in the
prior matrix. The optimal penalty parameter was selected based on
BIC. The network reconstructed using wglasso has 16,759 edges,
whereas the glasso network has 19,331 edges. The MCC values were
calculated by comparing the reconstructed networks with an
independent benchmark network, which is the same benchmark set
that was used to test the prediction performance of AraNet (Lee
et al. 2010). The MCC of the estimated network with wglasso was
0.184, higher than that with glasso, which was 0.033.

By incorporating prior knowledge, weighted graphical lasso
(wglasso) outperforms glasso both on simulation studies and data
from Arabidopsis. Simulation studies showed that even when some
prior knowledge was incorrect, the overall quality of network from
wglasso network was higher than that from glasso. Moreover, the
more accurate the prior knowledge, the better the reconstructed net-
work. This method increases gene network reconstruction accuracy
and will allow researchers to better study networks in complex bi-
ological systems and their interaction with external factors, e.g., the
environment.
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