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Individuals with Down syndrome are genetically predisposed to developing acute
megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome
(ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed
hematopoiesis already presenting in utero, facilitating the acquisition of additional driver
mutations such as truncating GATA1 variants, which are pathognomonic to the disease.
Consequently, the affected individuals suffer from a transient abnormal myelopoiesis
(TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we
focus on the molecular mechanisms of the different steps of clonal evolution in Down
syndrome leukemogenesis, and aim to provide a comprehensive view on the complex
interplay between gene dosage imbalances, GATA1 mutations and somatic mutations
affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.

Keywords: ML–DS, transient myeloproliferative disorder of Down syndrome, TAM, genetic predisposition, Trisomy
21 (Down syndrome), acute myeloid leukemia, acute megakaryoblastic leukemia
BACKGROUND: LEUKEMIC PREDISPOSITION
IN DOWN SYNDROME

Trisomy 21 (T21), which results in the development of Down syndrome (DS), is the most frequent
numeric chromosomal aberration with an incidence of approximately one case in 1,000 births (1).
Besides many complications resulting from T21—such as craniofacial dysmorphia, cognitive
deficits, and congenital heart defects—DS individuals are known to have a 150-fold increased
risk of suffering from myeloid leukemia within their first years of life (2). In contrast, the risk of
developing solid malignancies is significantly decreased in DS individuals (3, 4), arguing against DS
being a general cancer predisposition.

Myeloid leukemia associated with DS (ML–DS) phenotypically reflects acute megakaryoblastic
leukemia (AMKL) observed in patients without DS. However, unlike non-DS-AMKL, patients with
ML–DS harbor an excellent prognosis (5).

ML–DS displays a model of step-wise leukemogenesis. T21 already perturbs hematopoiesis in
utero, causing pronounced megakaryocytic and erythroid lineage commitment and proliferation (6–
10). As early as during fetal liver hematopoiesis, mutations in the hematopoietic master regulator
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GATA1 are acquired, leading to the exclusive expression of a N-
terminal truncated isoform (GATA1s) and loss of the full length
transcription factor (11–20). GATA1s mutations are indispensable
for ML–DS leukemogenesis, as they are found in almost all ML–
DS individuals (12). The consequence of the GATA1s mutations
are uncontrolled expansion of fetal megakaryocytic cells and
perturbed terminal erythroid differentiation (6, 21–23). This
leads to a disease called transient abnormal hematopoiesis
(TAM), which is usually diagnosed within the first week after
birth and occurs in about 10–30% of DS individuals (24, 25). TAM
is a pre-leukemic state as the course of disease is usually self-
limiting within the first months of life (25). However, TAM clones
can persist, acquire additional somatic driver mutations, and
finally give rise to ML–DS.

To date, it is not fully understood why some patients with
TAM progress to ML–DS and others do not. However, large
sequencing studies of TAM and ML–DS samples shed new light
on the molecular landscape of ML–DS (26–28) and give insight
into the transformative character of many somatic mutations
(27). On the other hand, the role of “third hit” mutations that
also occur in TAM patients who do not develop ML–DS needs to
be established (27). In addition, the molecular mechanisms of
T21-driven genetic predisposition to myeloid leukemia have
been extensively studied, but still need further characterization.

In this review article, we summarize what we have learned
from studies on the molecular background of T21-driven genetic
predisposition to myeloid leukemia and from analyzing the
consecutive steps during DS leukemogenesis, and how this has
increased our knowledge of the pathogenesis of leukemia beyond
ML–DS. We also include the most recent insights into the
molecular landscape of ML–DS and outline what are the
remaining open questions to fully understand the role of T21
in leukemia.
IMPACT OF T21 ON HEMATOPOIESIS

Previous studies have shown that T21 severely affects hematopoiesis
in utero, even in the absence of additional mutations (e.g. GATA1
mutations). Due to difficulties in the accessibility of primary
material, induced pluripotent stem cells (iPSCs) have been used to
model hematopoiesis during embryogenesis and fetal development.
In an iPSC model of primitive hematopoiesis derived from yolk sac
progenitors, T21 and euploid controls formed comparable
proportions of hematopoietic progenitors. However, the T21 cells
were biased towards erythropoiesis, producing erythroblasts and
normoblasts at higher percentages, while neutrophils were reduced
compared to euploid samples (29). This iPSC model—mirroring
pr imit ive hematopoies i s—did not show increased
megakaryopoiesis, suggesting that embryonic hematopoiesis is
unlikely to be the origin of ML–DS development (29). In
contrast, other studies investigating the impact of T21 on
definitive fetal liver hematopoiesis demonstrated enhanced
megakaryopoiesis in addition to the increased erythroid
differentiation of T21 iPSC and primary T21 fetal liver
hematopoietic stem cells (HSCs) (6–10). This pronounced
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megakaryocyte–erythroid differentiation was accompanied by an
increased frequency and clonogenicity, not only of HSCs but also of
megakaryocytic–erythroid progenitors (MEPs) (8, 9, 23). As a result
of the enlarged MEP compartment during fetal liver hematopoiesis,
the proportion of common myeloid progenitors (CMP) and
granulocytic-monocytic progenitors (GMP) was reduced (7, 10).
Additionally, germline T21 led to a differentiation block in B cell
development (9).

The observed differences during distinct steps of in utero
hematopoiesis point toward a developmental stage-specific effect
of T21 on hematopoietic stem and progenitor cells (HSPCs),
which might be even increased by the shift of hematopoiesis to
the fetal liver and a consequent change of the microenvironment.

Comparable to the observations in human primary material,
murine Down syndrome models consistently display perturbed
hematopoiesis with expansion of HSPCs and the megakaryocytic
department (30–32). Ts65Dn mice—a model with partial
trisomy of murine chromosome 16 which contains about two
third of the homologues on the human chromosome 21—even
develop a myeloproliferative disease with dysplastic
megakaryopoiesis (33). However, this phenotype is only
observed in aged mice, and the relevance of these findings for
our understanding of ML–DS—a fetal disease—remains unclear.
MOLECULAR MECHANISMS OF
PERTURBED HEMATOPOIESIS IN
T21 INDIVIDUALS

The molecular basis of T21-driven perturbation of hematopoiesis
has been intensively studied, but remains to be fully understood.
Early genotype–phenotype correlations—especially of cases with
partial T21—suggested that a circumscribed region on
chromosome 21 is essential for the majority of DS phenotypes,
which resulted in the concept of a Down syndrome critical region
(DSCR) (34–38). Initially the DSCR was mapped to the bands
21q22.2–21q22.3 including ~6 Mb and 25–50 genes (35–38).
However, with an increasing number of studies, it became clear
that there might be different critical regions on chromosome 21
for distinct phenotypes, rather than one region being responsible
for all phenotypes (39–42). Concerning ML–DS, an around 4 Mb
segment was identified that seems to be essential for T21-driven
leukemogenesis (Figure 1). This segment comprises ~20 genes
including RUNX1, ERG, and ETS2 (Figure 1), which play a
pivotal role in hematopoietic differentiation (23, 42). To further
understand the molecular mechanisms of T21 altered
hematopoiesis, multiple studies analyzed the expression of
those and other genes in T21 HSPCs. These investigations
consistently demonstrated only slight increases in gene
expression not exceeding a two-fold upregulation, which is at
least partially explained by increased gene dosages resulting from
T21 (7–9, 29).

This supports the concept of only mildly elevated expression
of a plurality of genes having extensive effects on downstream
targets and regulatory circuits and thereby cooperating to
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perturb hematopoiesis in individuals with T21. In the following,
we focus on specific genes on chromosome 21, which seem to
p l a y p i vo t a l r o l e s i n th e pa thog ene s i s o f T21 -
driven leukemogenesis.

RUNX Family Transcription Factor 1
RUNX1 is an indispensable transcription factor for hematopoiesis,
and forms the core binding factor transcription complex together
with its subunit CBFb (43). Complete Runx1 deficiency is
incompatible with life, since Runx1−/− murine embryos die
around E12.5 in the absence of fetal liver hematopoiesis (44, 45).
There are at least three different RUNX1 isoforms resulting from
alternative splicing: RUNX1a, RUNX1b, and RUNX1c. While
RUNX1b and RUNX1c contain the DNA binding Runt
homologous domain and the transactivation domain, RUNX1a
lacks the latter (46). Previously, imbalance of the RUNX1 isoforms
was implicated in leukemogenesis, with RUNX1a exhibiting a pro-
leukemic effect in vivo (47).

Additionally, RUNX1 is a translocation partner contributing
to numerous fusion oncogenes in AML, of which RUNX1-ETO
resulting from t(8;21) is the most common, presenting in 12% of
cases with de novo AML (48).

RUNX1 seems to be essential for lineage programming, as its
upregulation precedes megakaryocytic differentiation, while it
becomes downregulated upon erythroid lineage commitment
Frontiers in Oncology | www.frontiersin.org 3
(49). In this context, RUNX1 cooperates with GATA1 in the
promoter activation of megakaryocytic genes through direct
protein-protein interaction (49).

It was shown that perturbation of hematopoiesis in T21
individuals is at least partially executed via upregulation of
RUNX1 expression. In a T21 iPSC model, increased RUNX1
gene dosage caused an expansion of the HSPC pool, especially in
early fetal hematopoiesis (23). In contrast, in the Ts65Dn murine
DS model, restoring disomy of the Runx1 locus reduced the
number of megakaryocytic colonies but did not completely
abrogate the myeloproliferative disease observed in elderly
mice, pointing towards the cooperation of multiple genes in
DS leukemogenesis (33).

ETS Transcription Factor ERG and ETS
Proto-Oncogene 2
The ETS transcription factor ERG is a proto-oncogene that is
essential for HSC maintenance and megakaryocytic differentiation
(50–54). Along with its transcription factor family member ETS2,
ERG was shown to be upregulated in AML with complex
karyotypes involving chromosome 21 and in patients with
AMKL with or without DS (55, 56). Overexpression of ERG as
well as ETS2 caused a switch from erythroid to megakaryocytic
differentiation in K562 cells (50, 56). In the regulation of
megakaryopoiesis, ETS transcription factors might cooperate
with GATA1, since many genes essential for megakaryopoiesis
harbor GATA along with ETS binding motifs in their promoters
(57, 58). Ectopic expression of ERG or ETS2 together with GATA1
knock-down induced immortalization of fetal liver cells, as
demonstrated in serial replating assays (53).

In vivo, increased expression of ERG during fetal hematopoiesis
led to an expansion of MEPs while GMPs were reduced,
comparable to changes observed in T21 individuals (59). Ectopic
expression of ERG in Gata1 mutated cells further amplified
megakaryocytic differentiation while terminal erythroid
differentiation was blocked. Additionally, these ERG/Gata1s
mice demonstrated liver fibrosis and postnatal transient
expansion of megakaryocytic progenitor cells, demonstrating
that interaction between increased ERG expression and Gata1s
is sufficient to cause a disease with key features of TAM in a
murine model (59).

Dual Specificity Tyrosine Phosphorylation
Regulated Kinase 1A
DYRK1A was shown to be a key regulator of calcineurin/NFAT
signaling, which is involved in many developmental processes,
such as organogenesis, neuronal growth and T cell function (60–
63). Moreover, Nfatc2−/− and Nfatc4−/− double knockout mice
develop typical craniofacial features comparable to the changes
observed in human DS (64).

Upon cellular Ca2+ intake, calcineurin is activated leading to
the dephosphorylation of NFATc proteins. Consequently, NFATc
is transported into the nucleus where it activates transcription
together with other binding partners (65). NFATc is exported to
the cytoplasm upon rephosphorylation, which is executed by
FIGURE 1 | Schematic overview of human chromosome 21 (HSA21) and the
proposed Down syndrome critical region (DSCR), along with the location of
the genes discussed in this article which are suggested to be involved in the
dysregulated hematopoiesis observed in individuals with trisomy 21.
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glycogen synthase kinase 3 (GSK3) and DYRK1A (60, 64, 66, 67).
Hence, DYRK1A and DSCR1 encode inhibitors of calcineurin/
NFAT signaling and are both located in the DSCR on
chromosome 21 (Figure 1). It was shown that a 1.5-fold
increase of DYRK1A and DSCR1 expression drastically reduced
calcineurin/NFAT pathway activity (64, 68).

Increased Dyrk1a gene dosage was previously linked to
megakaryocytic leukemogenesis in the Ts1Rhr Down syndrome
mouse model (32). Overexpression of Dyrk1a in the bone marrow
of these mice led to megakaryocytic expansion, which was even
more pronounced in the presence of the Gata1s mutation. In
addition, inhibition of the calcineurin/NFAT pathway by
treatment with ciclosporin A in T21 and euploid samples
suggested that increased Dyrk1a expression causes megakaryocytic
expansion at least partially by downregulating the calcineurin/
NFAT signaling (32).

Chromatin Assembly Factor 1 Subunit B
CHAF1B encodes the subunit of the chromatin assembly factor 1
complex (CAF1), which is essential for nucleosome assembly
during S phase (69, 70). It is located in the DSCR on
chromosome 21 (Figure 1) and was shown to be overexpressed
in ML–DS compared to non-DS-AMKL (32). Additionally,
CHAF1B overexpression promotes murine megakaryopoiesis
(32). In KMT2A-rearranged AML, CHAF1B overexpression
induces a differentiation block and promotes HSPC proliferation
(71). Taken together these findings suggest that increased
CHAF1B gene dosage due to T21 might contribute to the
megakaryocytic differentiation block observed in TAM and
ML–DS.

miR-125b-2
MicroRNAs are 21 to 23 nucleotide long non-coding RNAs,
which execute post-transcriptional regulation of gene expression
by binding to the 3′UTR of their target mRNA and leading to
mRNA degradation (72). MiR-125b-2 is encoded on
chromosome 21 (Figure 1) and its overexpression in MEPs
and megakaryocytic progenitors was shown to enhance self-
renewal capacity and proliferation (73). When overexpressed in
HSPCs, miR-125b-2 caused a myeloid differentiation block. The
expansion of megakaryocytic cells induced by miR-125b-2 was
even more pronounced in Gata1s fetal liver cells, pointing
towards synergistic properties in DS leukemogenesis (73). It
remains open, whether the other members of the miR-
99a~125b-2 tricistron (miR-99a and let-7c) on chromosome 21
further enhance or inhibit the oncogenic effects of miR-125b in
concert with GATA1s (74).
DEVELOPMENT OF TAM: THE ROLE OF
GATA1S IN DS LEUKEMOGENESIS

The origin of TAM in utero marks the second step in DS
leukemogenesis. Acquiring a GATA1 mutation—leading to the
loss of full length GATA1 expression—in T21 fetal HSPCs is
both sufficient and essential for TAM pathogenesis.
Frontiers in Oncology | www.frontiersin.org 4
Natural History of GATA1s Mutations in
TAM and ML–DS
Exclusive translation of the short isoform of GATA1 is found in
over 90% of TAM and ML–DS cases (12). Thus, we can infer that
GATA1s mutations occur very early during leukemogenesis,
most likely during fetal hematopoiesis (11, 15, 17, 18). To date,
it is not clear whether the presence of certain GATA1smutations
increases the risk of progression to ML–DS. While Alford et al.
showed that the type of GATA1s mutation is not predictive for
transformation from TAM to ML-DS (12), Kanezaki et al.
demonstrated a correlation between the mutation type and
GATA1s expression levels and that low GATA1s expression in
TAM patients is significantly associated with a higher risk of
progression to ML-DS (75). In most cases, the GATA1smutation
identified in the TAM sample is also detectable after progression
to ML–DS (13, 16), suggesting clonal evolution from TAM to
ML-DS. This is even the case if the GATA1s clone was not
detectable during complete remission. However, new GATA1s
clones can also arise and contribute to the dominant clone in
ML-DS (26). Hence, the dominant GATA1s clone can differ
between TAM and ML–DS, indicating that evolution from
minor TAM clones is a mechanism of ML–DS development
(11, 26). GATA1s mutations are hardly found in euploid
individuals who develop AMKL, underlining the specificity for
DS leukemogenesis (11, 76).

GATA1 in Normal Hematopoiesis
Altogether there are six GATA genes, all of which encode for
DNA binding proteins that play a pivotal role in transcriptional
regulation (77, 78). The six members of the GATA family all
harbor two zinc fingers as their common structure. While the C-
terminal zinc finger binds DNA via recognition of the GATA
motif, the N-terminal zinc finger interacts with important
cofactors such as FOG1 (79–82).

GATA1 is located on the X chromosome and encodes an
essential transcription factor for hematopoiesis—especially for
the erythroid and megakaryocytic lineages, but also for the
development of eosinophil and basophil granulocytes and mast
cells (83).

To ensure proper megakaryocytic and erythroid differentiation,
the tight transcriptional regulation of GATA1 and its family
member GATA2 is crucial, and is also referred to as the “GATA
switch”. While the expression of GATA2 is mandatory for the self-
renewal capacity of HSPCs, high GATA1 levels are needed for the
transition to MEPs and the subsequent differentiation of the
megakaryocyte–erythroid lineage (84, 85). This switch between
GATA transcription factor expression is realized through the
direct transcriptional regulation of GATA1 by GATA2 and vice
versa, as well as through epigenetic mechanisms, such as DNA
methylation (85, 86). It was already shown that, as a consequence
of the loss of full length Gata1, the “GATA switch” is impaired,
causing perturbation of erythropoiesis (87).

Loss of GATA1 expression leads to an erythroid
differentiation block and apoptosis of erythroid precursors (23,
88–93). GATA1 knock-out in murine embryonic stem cells
results in embryonic lethality between days 10.5 and 11.5 due
March 2021 | Volume 11 | Article 636633
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to anemia (88). Consistently, GATA1 knock-out drastically
impairs megakaryocytic maturation, resulting in reduced
platelet counts. However, immature megakaryocytes undergo
excessive proliferation (27, 94, 95).

These findings underline the pivotal role of full length
GATA1 for megakaryocyte and erythroid differentiation.

Functional Consequences of GATA1
Mutations on Hematopoiesis
In line with the crucial role of GATA1 in physiological
hematopoiesis, germline GATA1 mutations are associated with
hereditary thrombocytopenia, dyserythropoietic anemia, and
Diamond-Blackfan anemia. However, the majority of germline
GATA1 mutations do not increase the probability of developing
leukemia in the absence of T21 (96–100). To date, there is only
one published case of a newborn who was diagnosed with TAM
at birth, who had an N-terminal GATA1mutation but no T21 or
any copy-number alterations conformable with T21. However,
the identified GATA1 mutation was a large deletion resulting in
the loss of the entire N-terminal zinc finger and parts of the
transactivation domain of the transcription factor (101).

In contrast, GATA1 mutations associated with TAM and
ML–DS are typically small insertions or deletions or point
mutations in exon 2, which lead to the introduction of a
premature stop codon or loss of the adjacent splice site (11–
20). As a consequence, only the short isoform GATA1s
(~ 40 kD)—which lacks the first 83 amino acids, including the
N-terminal transactivation domain (12–17, 19)—is translated
from a start codon in exon 3. As a result, GATA1s contains both
zinc finger domains, but possesses reduced transactivation
potential compared to the full length protein (19).

Additionally, GATA1s shows perturbed binding and activation
of important erythroid genes, while its transcriptional activation of
megakaryocytic and myeloid target genes is comparable to full
length GATA1 (6). Other studies suggest that altered gene
expression in the presence of GATA1s might also result from
the loss of transcriptional repression at certain GATA1 target
genes (102, 103). In general, GATA1s induced changes in
transcriptional regulation might be caused by disturbed binding
with co-factors, such as RB1 and E2F (104–106). Of note, in fetal
liver cells, the expression of the GATA1 V205G mutant, which is
unable to interact with FOG1, did not lead to megakaryocytic
hyperproliferation but prevented cells from undergoing terminal
differentiation, while GATA1s rescued the megakaryocytic
differentiation block in GATA1 deficient cells but sustained
uncontrolled expansion (107).

In addition, changes in gene regulation by GATA1s and the
resulting hematopoietic alterations also seem to be
developmental stage-specific, comparable to perturbations
of hematopoiesis caused by T21. In iPSC models of early
hematopoiesis derived from yolk sac progenitors and fetal
hematopoiesis, GATA1s caused impaired erythropoiesis, even
in the presence of T21, thus overriding the pronounced erythroid
differentiation caused by T21 (6, 22). On the contrary, GATA1s
enhanced the proliferation of dysplastic megakaryocytes—a
phenotype which is independent from, but which becomes
Frontiers in Oncology | www.frontiersin.org 5
accelerated in, a T21 background during fetal hematopoiesis
(21–23). When GATA1mutations were introduced into neonatal
HSPCs using a CRISPR-Cas9-system, increased proliferation of
erythroid precursors was observed. However, the accumulation
of immature erythroid cells was only transient and applying the
same method to adult HSPC caused only mildly increased
proliferation of the erythroid lineage (21). These results,
obtained from in vitro studies using primary human material,
are in line with data from GATA1s knock-in mice demonstrating
transient reduction of erythropoiesis and aberrant
hyperproliferation of megakaryocytic progenitors during fetal
hematopoiesis, but normal hematopoietic differentiation in adult
mice (103).

Two recent studies in murine embryonic stem cells (ES) and
human T21 iPSCs narrowed down the search for the cellular
origin of TAM to a population of immature megakaryocytic
progenitors characterized by high CD41 expression (108, 109).
During step-wise hematopoiesis in vitro, these cells showed
delayed and aberrant megakaryocytic differentiation, reduced
erythroid differentiation and gave rise to an increased number
of myeloid cells upon GATA1s expression (108, 109).

IGF Signaling as Mechanisms of
Developmental-Stage Specific Effects of
GATA1s Mutations
Perturbation of hematopoiesis caused by GATA1s mutations as
well as T21 show strong dependency on the stage of
development. The fact that GATA1s knock-in mice display
normal hematopoiesis in adult life (103) along with the self-
limiting course of TAM in the majority of patients (25) suggests
an important role of the fetal liver microenvironment, since
hematopoiesis is shifted from the fetal liver to the bone marrow
after birth. It was previously shown that fetal liver stromal cells
secrete a variety of cofactors supporting the expansion of HSCs,
e.g. IGF2 (110, 111).

In contrast to equivalent adult cells, fetal megakaryocytic
progenitors depend on the IGF/IGFR1/mTOR pathway for
proliferation and differentiation, which is constantly active in
the fetal liver microenvironment (104). In the presence of
continuous IGF/IGFR1 signaling, megakaryocytic expansion
needs to be tightly controlled, which is at least partially
realized by regulation of the E2F transcription factor. While
E2F is activated by the IGF/IGFR1/mTOR cascade, direct
interaction with GATA1 inhibits E2F and consequently its
downstream targets, e.g. MYC (104, 105). However, GATA1s
shows reduced binding to the E2F factors and the inhibitory RB1
protein, resulting in an overactivation of E2F target genes and
uncontrolled expansion of megakaryocytic progenitors (104).
Consistently, another study demonstrated insufficient
repression of the E2F transcription network and MYC as
reasons for increased proliferation of eosinophil precursors
after ectopic GATA1s expression in fetal HSPC (112).

These data suggest that the hyperproliferative phenotype in
the presence of GATA1s mutations results from the overactivity
of pro-proliferative genes as a consequence of ineffective
suppression of the E2F transcription factor, and deregulated
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IGF signaling, which might be even further pronounced in a T21
genetic background and fetal liver microenvironment.

Synergy Between T21 and GATA1s in
TAM Pathogenesis
Given that a GATA1smutation in the T21 genetic background is
mandatory for the development of TAM, cooperative effects
between both aberrations have to be assumed. As previously
discussed, T21 causes an expansion of MEPs during fetal liver
hematopoiesis (8, 9, 23). This enlarged pool of cells with
increased proliferative capacity might be especially susceptible
to the acquisition of GATA1s mutations. GATA1s leads to
hyperproliferation of the megakaryocytic lineage – an effect
that is increased in the presence of T21, as previously shown
(21–23). Thus, the hypothesis of a positive selection for
randomly emerging GATA1s mutations in the megakaryocyte–
erythroid compartment during T21 fetal liver hematopoiesis
seems rational.

Further supporting the idea of cooperation between T21 and
GATA1s, it was shown that GATA1s expression is elevated in
T21 iPSCs compared to euploid cells (23). In the T21
background, increased gene dosage of RUNX1, ERG, and ETS2
upregulate GATA1s expression, which itself further enhances
transcription of RUNX1, ERG, and ETS2 (23, 87). Besides a direct
interaction between Gata1s and Runx1, another mechanism of
increased Runx1 expression in Gata1s erythroid cells is the
reduction of the repressive H3K27me3 mark and higher
chromatin accessibility at the Runx1 locus (87). As a
consequence of this, gene levels rise two to three-fold
compared to euploid cells, leading to the hyperproliferation of
aberrant megakaryocytic cells (23).

GATA1 was implicated along with RUNX1, ERG, FLI-1,
TAL1, LYL1, and LMO2 to be part of a heptad of transcription
factors which cooperatively control gene transcription via DNA
and protein-protein interaction upon differentiation of HSPCs
(113). Increased gene dosages of RUNX1, ERG, and ETS2 together
with exclusive GATA1s expression might lead to disruption of this
regulatory network, resulting in the pronounced megakaryocytic
and impaired erythroid differentiation observed in TAM.

However, further studies are needed to completely
understand the difficult interplay between gene dosage changes
due to T21 and the disruption of regulatory circuits, and to
determine how these alterations translate into leukemogenesis
(Figure 2).
CLINICAL CHARACTERISTICS AND
MANAGEMENT OF TAM

About 10% of neonates with DS experience TAM—characterized
by the clonal proliferation of myeloid blasts with a
megakaryoblastic or erythroblastic phenotype, which are
detected in peripheral blood (24, 114, 115). Morphologically,
TAM blasts cannot be distinguished from ML-DS blasts.
Typically, the abundance of TAM blasts in the peripheral
Frontiers in Oncology | www.frontiersin.org 6
blood is not accompanied by a high bone marrow infiltration
(116, 117).

TAM is usually diagnosed within the first week after birth,
underlining that the disease originates in utero. Although
stringent diagnostic criteria for TAM do not exist, the
diagnosis is usually confirmed by the presence of typical TAM
blasts in peripheral blood and the presence of T21 and a GATA1s
mutation (11, 18). Still, defining TAM is complicated by the fact
that the percentage of TAM blasts in the peripheral blood highly
varies during the course of the disease, and that individuals
without clinical signs of TAM might also harbor GATA1s
mutations and thus be at risk for developing ML–DS (11).

The clinical presentation ranges widely, from asymptomatic
children to fatal cases resulting in early death due to organ
complications. The early death rate in TAM ranges between 11
and 23% (118–120). Typical clinical signs are leukocytosis,
anemia, thrombocytopenia, and hepatosplenomegaly as an
indicator of liver infiltration and fibrosis (25, 116, 119, 120). In
severe cases, the progressive infiltration can cause liver failure
accompanied by coagulopathy (121). TAM can also lead to
hydrops fetalis and cause the miscarriage of DS fetuses
(122–127).

In the majority of TAM patients, the course of disease is self-
limiting. However, intervention is needed for individuals with
severe TAM-related clinical symptoms, which carry a high risk of
causing early death. Since the hyperproliferative TAM blasts are
very susceptible to cytarabine, various studies investigated the
use of cytarabine in high risk TAM patients (25, 116, 128).
Although the application of cytarabine might increase survival
rates in TAM patients with critical disease, the dosing scheme
and indications for chemotherapy differ between study groups
(25, 116, 128, 129).

With about 13–33%, a high portion of TAM patients progress
to ML–DS, usually before they reach the age of four years (2, 116,
118, 130). Unfortunately, measurable residual disease (MRD)-
monitored low-dose cytarabine treatment of TAM patients was
not able to reduce this high progression rate (25, 129).
FROM TAM TO ML–DS: CLONAL
EVOLUTION IN DS LEUKEMOGENESIS

Once progressed from TAM to ML–DS, the disease course is no
longer self-limiting, and all patients need intensive
chemotherapy to achieve long-term survival (5).

Evolution from TAM to ML–DS seems to depend on the
acquisition of additional mutations in persistent GATA1 mutant
cells. Somatic mutations in ML–DS patients most frequently
affect cohesin complex genes, JAK family kinases, and epigenetic
regulators, but mutations frequently observed in AML, such as
FLT3 or TP53 mutations, can also be found (Table 1) (26–28).
While TAM samples harbor on average 0.4 mutations in
addition to the GATA1s mutation, ML–DS samples had 1.6
detectable variants per sample (26). Although at a low
frequency, some TAM patients were shown to harbor somatic
variants in addition to the GATA1s mutation. However, “third
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FIGURE 2 | Perturbation of fetal liver hematopoiesis caused by trisomy 21 and loss of full length GATA1. (A) In euploid individuals the balanced gene dosages of
chromosome 21 and the presence of full length GATA1 contribute to normal fetal liver hematopoiesis. (B) In contrast trisomy 21 causes expansion of hematopoietic
stem and progenitor cells (HSPC), megakaryocytic and erythroid cells via increased gene dosages. (C) When an additional GATA1 mutation, which leads to the
expression of only the short isoform of GATA1 (GATA1s), is acquired immortalized megakaryocytic blasts rapidly expand at the expense of erythropoiesis. This is
known as transient abnormal myelopoiesis which typically originates during fetal liver hematopoiesis.
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hit” TAM mutations were not necessarily associated with
progression to ML–DS (27).

Mutations in Cohesin Complex Genes
The cohesin complex is essential for the controlled course of
mitosis, as it holds the replicated chromosomes together during
metaphase. Still, in recent years, the role of the cohesin complex
in transcriptional regulation has been recognized, as it organizes
higher order chromatin structure. It was shown that the cohesin
complex brings together enhancer and promoter regions by
forming DNA loops (135). In this process, CTCF is known to
cooperate with the cohesin complex to form DNA loops within
topologically associated domains (130, 135).

Mutations in the four main components of the cohesin
complex—SMC1, SMC2, RAD21, STAG2—are frequently
found in ML–DS patients, but also in other myeloid neoplasms
and solid cancers (26, 28). Cohesin complex mutations are
mutually exclusive and in the majority of cases are loss of
function mutations (136, 137). Additionally, recurrent CTCF
mutations were identified, which are unique to the molecular
landscape of ML–DS (28). In a murine GATA1s model using
CRISPR-Cas9 to recreate the clonal evolution from TAM to ML–
DS, cohesin complex and Ctcf loss-of-function mutations were
significantly underrepresented compared to human ML–DS
samples (26). Since this model lacked the presence of T21,
these data might underline the importance of a T21 genetic
background for the oncogenic effect of cohesin complex
mutations. Moreover, species-specific functions of the cohesin
complex during hematopoiesis cannot be excluded—an
alternative explanation that requires further investigations.
Previously, cohesin complex mutations were demonstrated to
block differentiation in human HSPCs while increasing their self-
renewal capacity, in line with data from a murine model (138,
139). Consistently, loss of rad21 in zebrafish causes impaired
hematopoiesis during embryonic development by preventing the
expression of runx1 (140). Deletion of Smc3 resulted in severe
pancytopenia and 100% mortality in mice (141). Of note,
haploinsufficiency of Smc3 led to a proliferative advantage over
Smc3 wild-type bone marrow cells and cooperated with Flt3-ITD
in AML progression (141).

In addition to transcriptional regulation through the looping
of DNA, changes in chromatin accessibility were observed in
cohesin mutant and knock-down models (138, 139, 141). In
contrast to a global reduction of chromatin accessibility, ERG,
RUNX1, and GATA2 motifs displayed increased accessibility in
cohesin mutant cells, suggesting that these transcription
factors—which are also implicated in DS leukemogenesis—
largely contribute to an enhanced transcriptional stemness
program observed in cohesin mutant HSPCs (138).
TABLE 1 | Summary of somatic mutations identified in ML–DS samples in
addition to the mandatory GATA1s mutation.

Genes
mutated

Frequency of mutation in
different studies (%)

References

cohesin
complex

CTCF 16/141 (11.3); 10/49 (20.4) (26, 28)
NIPBL 5/141 (3.5); 3/49 (6.1) (26, 28)
RAD21 16/141 (11.3); 11/49 (22.4) (26, 28)
SMC1A 9/141 (6.4); 2/49 (4.1) (26, 28)
SMC3 1/141 (0.7); 1/7 (14.3); 1/49

(2.0)
(26–28)

STAG2 19/141 (13.5); 9/49 (18.4) (26, 28)
epigenetic
regulators

ASXL1 1/49 (2.0) (28)
BCOR 2/141 (1.4); 2/49 (4.1) (26, 28)
DNMT3A 1/49 (2.0) (28)
EED 1/141 (0.7) (26)
EP300 1/141 (0.7) (26)
EZH2 10/141 (7.1); 1/7 (14.3); 16/

49 (32.7)
(26–28)

KANSL1 17/141 (12.1); 3/49 (6.1) (26, 28)
KDM6A 1/141 (0.7) (26)
KMT2C 1/141 (0.7) (26)
NAT6 1/141 (0.7) (26)
SUZ12 9/141 (6.4); 1/49 (2.0) (26, 28)
TET2 2/141 (1.4) (26)

tyrosine
kinases

GNB1 1/141 (0.7) (26)
JAK1 6/141 (4.3); 1/7 (14.3); 2/49

(4.1)
(26–28)

JAK2 14/141 (9.9); 4/49 (8.2); 1/7
(14.3)

(26, 28,
131)

JAK3 19/141 (13.5); 6/49 (12.2); 2/
13 (15.4); 1/3 (33.3); 1/7

(14.3); 1/14 (7.1)

(26, 28,
131–134)

KIT 2/141 (1.4) (26)
MPL 10/141 (7.1); 3/49 (6.1) (26, 28)
PTEN 1/141 (0.7) (26)
PTPRD 1/141 (0.7) (26)
SH2B3 4/141 (2.8); 4/49 (8.2) (26, 28)

RAS KRAS 7/141 (5.0); 4/49 (8.2) (26, 28)
NF1 4/141 (2.8) (26)
NRAS 6/141 (4.3); 4/49 (8.2) (26, 28)
PTPN11 1/49 (2.0) (28)

transcription
factors

CREBBP 1/141 (0.7) (26)
FLT3 1/7 (14.3); 2/7 (28.6) (27, 131)
MYC 1/141 (0.7) (26)
RUNX1 3/141 (2.1) (26)
TP53 5/141 (3.5); 3/49 (6.1); 2/13

(15.4)
(26, 28,
132)

WT1 1/141 (0.7); 2/49 (4.1) (26, 28)
others CSF2RB 7/141 (5.0) (26)

DCAF7 1/141 (0.7); 2/49 (4.1) (26, 28)
DLEC1 1/7 (14.3) (27)
DHX29 1/7 (14.3) (27)
PI3KC2A 1/7 (14.3) (27)
POLE 1/7 (14.3) (27)
SF3B1 3/141 (2.1) (26)
SRSF2 12/141 (8.5); 1/49 (2.0) (26, 28)

chromosomal
aberrations

del(5q) 3/141 (2.1); 1/7 (14.3) (26, 27)
tetrasomy 14 1/7 (14.3) (27)
tetrasomy 21 1/7 (14.3) (27)
i(7q) 1/7 (14.3) (27)
submicroscopic
del(8q)

1/7 (14.3) (27)

submicroscopic
del(6q)

1/7 (14.3) (27)

trisomy 8 1/7 (14.3) (131)

(Continued)
TABLE 1 | Continued

Genes
mutated

Frequency of mutation in
different studies (%)

References

inv (9)(p11;q12) 1/7 (14.3) (131)
complex
karyotype

1/7 (14.3) (131)
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Mutations in JAK-STAT-Signaling
Pathways
Activating mutations in the tyrosine kinases JAK1, JAK2, and
JAK3 were previously identified in AMKL in individuals with or
without DS (26, 131–133, 142, 143). However, some variants
seem to be exclusive to ML-DS (134). Interestingly, activating
mutations were only identified in ML-DS, while the significance
of JAK mutations in TAM samples was unknown or the variant
caused loss of function, suggesting that aberrant activation of
JAK-STAT signaling is essential for leukemic transformation in
ML–DS (26).

Recently, a new hotspot mutation in CSF2RB was identified in
ML-DS samples (26). CSF2RB encodes the common b chain of
various cytokine receptors, which activate downstream JAK-
STAT and other pathways. The CSF2RBA455D variant is
predicted to lead to a constitutively active cytokine receptor
due to aberrant dimerization of the transmembrane domains of
two b chains or an a and a b chain—a hypothesis which is
supported by the cytokine independent growth of TF1 cells
harboring the CSF2RBA455D mutant (26). When the
CSF2RBA455D mutant was expressed in HSPCs, a differentiation
block in terminal megakaryopoiesis along with an expansion of
immature erythroid cells was observed (26). These changes were
reversed upon treatment with the JAK inhibitor Ruxolitinib,
suggesting that the oncogenic potential of the CSF2RBA455D

variant manifests in aberrant JAK-STAT-signaling. Further
work showed that CSF2RBA455D activates TPOR, to drive
pathogenic TPOR signaling in ML–DS (144).

Mutations in Epigenetic Modifiers and
Altered DNA Methylation
ML–DS samples were shown to harbor a genome-wide pattern of
hypomethylation discriminating them from non-DS AMKL,
which in comparison displayed hypermethylation at the
analyzed differentially methylated regions (145). Thus, this
global hypomethylation seems to be driven by T21. Upon
acquisition of GATA1s mutations certain genetic regions gain
aberrant hypermethylation compared to T21-GATA1wild-type fetal
liver cells and pathway analyses revealed that gene networks
involved in cell cycle, cell signaling and proliferation were
especially affected by this local hypermethylation implying
functional relevance of these differentially methylated
regions (145).

The importance of epigenetic changes for leukemic
transformation in individuals with TAM is also underlined by
the frequent identification of mutations in epigenetic modifiers,
such as EZH2, KANSL1, and SUZ12 (26, 28). However, the
spectrum of mutated epigenetic regulators in ML–DS largely
differs from the genes that are frequently mutated in adult AML,
such as DNMT3A, IDH1, IDH2, and TET2.

Role of Non-Coding RNAs in the
Development of ML–DS
MicroRNAs play pivotal roles as post-transcriptional regulators
in leukemogenesis. We already discussed the impact of miR-
125b-2, which is located on chromosome 21 and promotes
Frontiers in Oncology | www.frontiersin.org 9
megakaryocytic expansion upon increased gene dosage in T21
individuals (73).

Another microRNA implicated in DS leukemogenesis ismiR-
486, which is encoded within its host gene ANK1 on
chromosome 8. ANK1 is a known target gene of GATA1 and
miR-486 levels were directly correlated with GATA1s expression
in ML-DS samples (146). Overexpression ofmiR-486 alone failed
to transform fetal liver cells, but increased self-renewal capacity
when expressed together with GATA1s (146). The oncogenic
potential of miR-486 might be exerted through activation of the
PI3K-AKT pathway.

The importance of non-coding RNAs in DS leukemogenesis
was also recently underlined by a large sequencing study
analyzing samples of normal hematopoietic cells and different
AML subgroups, such as ML–DS (147). It was shown that ML-
DS samples harbor a non-coding RNA signature with similarities
to healthy HSCs, characterized by the down-regulation of non-
coding RNAs associated with differentiation (147). The lncRNAs
MONC andMIR100HG are the host genes of themiR-99a~125b-
2 tricistron and its homolog on chromosome 11, respectively and
were also implicated in AMKL and ML–DS pathogenesis, as
knock-down of both lncRNAs resulted in reduced proliferation
in corresponding leukemic cell lines (148). Interestingly,
overexpression of a spliced form of MONC in HSPCs caused
an erythroid lineage bias and expansion of immature erythroid
cells independent from the miR-99a~125b-2 tricistron (148).

Chromosomal Aberrations as Drivers for
ML-DS Progression
In addition to the discussed point and indel mutations, the
acquisition of structural chromosomal aberrations was also
observed in ML–DS samples. These range from small
submicroscopic deletions to tetrasomy of whole chromosomes
(27). For instance, partial deletions of two regions of chromosome
5, which are usually not affected in other hematopoietic
malignancies such as 5q-myelodysplastic syndrome, were found
and resulted in deletion of the tumor suppressor APC (27).

As opposed to ML–DS samples, copy number alterations are
hardly observed at the TAM stage, pointing to the transformative
character of these genomic changes (27, 149). However, another
study involving serial transplantations of primary TAM samples
suggested that structural chromosomal changes may be already
present in very small TAM subclones and expand due to positive
selection upon progression to ML–DS (149).
CONCLUDING REMARKS

T21 predisposes individuals to the development of ML–DS, with
pre-leukemic TAM already originating in utero. ML–DS displays
a step-wise model of leukemogenesis offering the unique
opportunity to investigate clonal evolution in myeloid leukemias.

As discussed in this review, the first step in DS leukemogenesis
is the disruption of hematopoietic transcription factor networks
resulting from the increased gene dosages of some members of
these circuits due to T21, consequently leading to megakaryocytic
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expansion (Figure 2). The acquisition of truncating GATA1
mutations in this susceptible, highly proliferating cell population
during fetal liver hematopoiesis marks the second step in DS
leukemogenesis (Figure 2). Upon exclusive GATA1s expression,
dysplastic megakaryocytic cells undergo uncontrolled expansion,
accompanied by disrupted erythroid differentiation. Again, this
aberrant proliferation facilitates the acquisition and positive
selection of clones with additional somatic mutations, ultimately
paving the way to progression to ML–DS.

Strikingly, recent studies in pediatric non-DS-AMKL also
pointed towards developmental stage-specific effects of fusion
genes essential to this entity (150) and suggested a fetal origin of
the disease (150–152) similar to ML–DS.

In DS leukemogenesis the developmental stage-specific effects
of T21 and GATA1s mutations and the impact of the fetal liver
microenvironment, both contribute to the self-limiting nature of
TAM in the majority of patients. However, further work needs to
be done to better characterize the molecular synergy between T21
and GATA1s in driving ML-DS development, and to unravel the
transformative features of additional somatic mutations, as not all
TAM individuals with “third hit” mutations progress to ML–DS.
The insights gained from such studies will shed light onto the
Frontiers in Oncology | www.frontiersin.org 10
mechanisms of genetic predisposition to cancer development,
which can also be extrapolated to other entities, making ML–DS
a valuable model of leukemogenesis.
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