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Even as the field of microbiome research has made huge strides in mapping microbial

community composition in a variety of environments and organisms, explaining the

phenotypic influences on the host by microbial taxa—both known and unknown—and

their specific functions still remain major challenges. A pressing need is the ability to

assign specific functions in terms of enzymes and small molecules to specific taxa

or groups of taxa in the community. This knowledge will be crucial for advancing

personalized therapies based on the targeted modulation of microbes or metabolites that

have predictable outcomes to benefit the human host. This perspective article advocates

for the combined use of standards-free metabolomics and activity-based protein profiling

strategies to address this gap in functional knowledge in microbiome research via the

identification of novel biomolecules and the attribution of their production to specific

microbial taxa.
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WHO IS DOING WHAT? THE CONUNDRUM OF LINKING
TAXONOMY AND FUNCTION

A number of studies have shown that the microbiome composition in an individual’s gut and
other body sites is inherently dynamic and changes over time due to many factors, such as dietary
changes, medical interventions (e.g., antibiotic use), other environmental exposures, childhood
maturation, normal aging, and illness. A widespread approach in microbiome research has been
to associate different diseases with alterations in the microbiome (dysbiosis), but directionality is
often unknown and it is not clear if these changes are causal or simply associative (Olesen and Alm,
2016). Fluctuations in community composition do not necessarily indicate changes in community
function or metabolic activity (Whidbey et al., 2019). In order to be able to design microbiome-
modulation based therapies to improve human health, a deeper functional knowledge is required
and comprising of (A) complete biochemical characterization of microbiome metabolites, (B) the
proteins involved in their production, conversion or transport, (C) the microbial populations
responsible for producing, utilizing or otherwise interacting with these molecules, and (D) their
effect on host physiology.

The Human Microbiome Project characterized the microbial communities present in multiple
body habitats in a large cohort of healthy subjects with both 16S and shotgun metagenomic data.
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Although extensive variability was observed in the taxonomic
diversity, metabolic pathways were evenly encoded across both
individual and body habitats, revealing functional plasticity
in these ecosystems (Human Microbiome Project Consortium,
2012). The variation between individuals can arise from a large
number of co-varying factors (e.g., host lifestyle, diet, cultural
habits, host genetics, age, disease states, maternal transmission,
family members, local environment etc.), (Schmidt et al., 2018).
Population based analyses have shown that known factors that
correlate with shifts in microbiome composition and structure
collectively explain only a fraction of the interindividual variance
(Falony et al., 2016; Zhernakova et al., 2016), underscoring the
complexity of molecular mechanisms that likely govern host-
microbiome interactions. The chemical space spanning these
interactions is massive, dynamically changing and shaped by
multiple, often confounding, factors. Humans are continually
exposed to a large number of substances that are foreign to the
body. Human milk is an important first “exposure” for breast-fed
infants, rich in biologically active components (oligosaccharides,
hormones, lipids etc.) and harboring its own microbiome. The
milk microbiome has recently attractedmuch scientific attention,
given its role in early establishment of the infant gut microbiome
and maternal health (McGuire and McGuire, 2017; Ramani
et al., 2018; Moossavi et al., 2019). Other exposures include
a variety of chemical compounds present in the foods we eat
and xenobiotics such as pharmaceutical drugs, cosmetics, and
environmental pollutants. Some of these molecules that may not
be bioactive in their original form make their way through the
digestive tract and are bio-transformed by the gutmicrobiota into
products that are biologically active and may have a beneficial
or detrimental effect to the host. Enterohepatic circulation of
drugs, bile acids, and other chemicals through biliary excretion,
gut microbial biotransformation, and intestinal reabsorption
can result in altered pharmacology and toxicology (Klaassen
and Cui, 2015; Winston and Theriot, 2020). Many commonly
prescribed drugs are known to be metabolically altered by the
microbiome, significantly impacting their biological activity.
Thus, the interindividual variability in gut microbial composition
means that a drug’s efficacy or toxicity can vary depending on an
individual’s unique microbiome.

DIRECT CHARACTERIZATION OF
TAXON-SPECIFIC FUNCTION

Microorganisms interact with each other and the host physiology
via small molecule metabolites. These include exogeneous
small molecules, metabolites produced by the host, microbial
biotransformation products and molecules synthesized de
novo by the microbes. Metabolomics is a powerful tool for
characterizing the diverse array of small molecule metabolites
that take part in the complex interplay between the microbiota,
host, and environment.

In addition to direct characterization of microbial metabolites,
which are the downstream products of metabolism, it is
imperative to link these metabolites back to enzymes and
other functional proteins expressed by the microbiota and

that interact with these molecules in some fashion. Although
many core functions can be performed by a number of
different microbial members of the community (functional
redundancy), other specialized functions have been attributed
to specific taxa. For example, the Cgr2 protein from a
single species in the gut, Eggerthella lenta has been found to
inactivate digoxin, a plant toxin, and a cardiac drug (Koppel
et al., 2018). Speculations about the genesis of microbial
metabolites can be made through employing conventional
omics approaches such as metagenomics, metatranscriptomics,
global metaproteomics, and metabolomics, to find correlative
relationships, but abundance measurements do not establish a
direct functional connection. Distinguishing active populations
within themicrobiome is important from ametabolic perspective
because there may be microbial candidates that have all the
prerequisites for a given activity, but conventional methods
cannot determine if the system is functionally competent. The
value of function based approaches is illustrated in the case of
E. lenta where the mere presence of the microbe in the gut was
not found to correlate with levels of drug inactivation (Saha et al.,
1983; Haiser et al., 2013). Chemoproteomic tools that require
activity for a protein to appear in the final readout can be used
to investigate the functionally active proteome.

Next generation standards-free metabolomics can provide
comprehensive coverage of the metabolome from a variety
of sample types including feces, blood plasma, milk etc.
Candidate metabolite features that are capable of indirectly
or directly modulating the host phenotype can be selected
from the metabolome using a variety of strategies that include
statistical significance using comparative study design, pathway,
and systems analysis (Guijas et al., 2018). Standards-free
metabolomics can enable comprehensive, putative compound
identification, greatly accelerating the selection of metabolites
implicated in a disease state for example, which have shown
strong correlation to dysbiosis in the microbiome, indicating
their possible involvement in causing the host phenotype.
These molecules are then targets for activity-based probe
design for use in profiling aliquots of the same or similar
samples to identify the microbes that make the enzymes or
transporters that act on the molecules of interest. One can
envision that a similar workflow could be used to understand
the effect of a drug or a dietary compound of interest on
the microbiome and host, where activity-based probes can be
custom-designed for the drug and standards-free metabolomics
along with molecular networking strategies can be used to profile
downstream products of microbial and host metabolism of the
compound. In this perspective review, we provide a detailed
vision for the integration of metabolomics and activity-based
protein profiling for identifying novel molecules in microbiomes
and the organisms responsible for their synthesis or metabolism.

STANDARDS-FREE METABOLOMICS AND
COMPUTATIONAL LIBRARY BUILDING

An in-depth understanding of the human microbiome’s effect
on host physiology at the biomolecular level will require
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tools to predict and measure molecules metabolized by the
microbes. Untargeted mass spectrometry-based metabolomics
measurements enable thousands of metabolite signals to be
measured from a sample, which is helpful when investigating
a very diverse and largely uncharacterized chemical space like
the human gut. Comprehensive compound identification is a
significant, long-standing bottleneck faced by the metabolomics
community. Accurate identification of small molecule structures
will be fundamental to understanding the role of various
metabolites in modulating biological processes in the microbes
and the host. In recent years, there has been growing interest
in integrating ion mobility spectrometry (IMS) into current
MS-based analytical methods (Lanucara et al., 2014; May and
McLean, 2015; Paglia et al., 2015; Metz et al., 2017; Dodds and
Baker, 2019). Using a multidimensional analytical platform
such as LC-IMS-MS/MS, which combines IMS and tandem
mass spectrometry, not only provides improved separation and
dynamic range of detection but also gives the user an additional
dimension of structural information for high confidence
identifications. IMS is capable of separating stereoisomers
and isobaric compounds and measures the physical-chemical
property of collision cross section (CCS), which has been shown
to be highly reproducible (Stow et al., 2017). For features
detected in the human microbiome, for example, defined by
relative retention time, CCS, m/z, and mass fragmentation
patterns in LC-IMS-MS/MS, a putative identification can be
made, or a candidate list narrowed, using reference values of
known molecules (Paglia and Astarita, 2017; King et al., 2019;
Nuñez et al., 2019). Armed with multiple pieces of experimental
information on an unknown molecule, the next step is to
query in-house reference libraries. Traditionally, these have
been determined experimentally through analyses of authentic
reference materials: purified and concentrated compounds of
interest are analyzed for relevant chemical properties (Castle
et al., 2006; Sumner et al., 2007). The number of standards
that can be analyzed by any single laboratory is inherently
limited due to a variety of reasons including cost, availability
of authentic reference materials, and instrument time. As a
work-around, commercial reference libraries and freely available
online spectral databases exist to aid researchers in metabolite
identification. However, even as databases with reference spectra
continue to grow, the metabolome coverage represented is
still only a fraction of all the possible molecules that can be
detected in biological and environmental samples. Building
these reference libraries experimentally is slow and expensive,
particularly when considering chemical space has been estimated
to contain up to 1060 unique molecules (Dobson, 2004).
Community wide sharing and curation of metabolomics data
and associated metadata, reference databases, computational
tool development, and knowledge dissemination will continue
to be crucial for accelerating metabolomics research (Wang
et al., 2016, 2020; Picache et al., 2020) but the challenge of
identifying unknown molecules, especially those for which
reference standards do not exist, remains a major roadblock.
As a result, there has been growing interest in what has been
termed “standards free” approaches, wherein reference values
are determined through in silico methods, including quantum

chemical simulations (Paglia et al., 2014; Yesiltepe et al., 2018;
Colby et al., 2019), machine learning (Allen et al., 2014; Hufsky
et al., 2014; Dührkop et al., 2015; Wolfer et al., 2016; Zhou
et al., 2016; Zhou Z. et al., 2017; Zhou Z.W. et al., 2017; Bach
et al., 2018), deep learning (Gómez-Bombarelli et al., 2018;
Kang and Cho, 2018; Colby et al., 2020), and quantitative
structure-activity/property relationship (QSAR/QSPR) models
(Wong and Burkowski, 2009; Schneider and Schneider, 2016;
Miyao et al., 2017). These approaches dramatically accelerate
the library-building process, enabling reference libraries
that are orders-of-magnitude larger than those created from
analysis of authentic reference material. For example, the
IMS-derived molecular property of CCS has been experimentally
determined for only 1,884 unique molecules (Colby et al.,
2019). In silico methods, by comparison, have yielded a
predicted CCS library containing over 53 million molecules
(Colby et al., 2020).

Compared to experimental reference values, the error
inherent in in silico predictions does pose limitations to
comprehensive, unambiguous identification. However,
appropriately modeling this error, as well as the error
associated with experimental measurements, enables
significant downselection to candidate lists amenable to
verification by authentic standards. Further, by leveraging
libraries of much broader chemical space coverage, putative
matches carry better approximations of false discovery,
an until recently ignored metric among the metabolomics
community with potentially problematic ramifications
(Scheubert et al., 2017; Wang et al., 2018).

Though standards-free approaches to identification in
metabolomics studies improve chemical space coverage, and
by extension estimates of false discovery rates, libraries are still
limited to known chemical space, or, as of this publication, 168
billion molecules, determined from the union of all publicly
available databases, including ChEBI, ChEMBL, Enamine,
PubChem, UNPD, HMDB, DSSTox, ZINC, KEGG, and GDB17,
among others. The “chemical dark matter” that remains is
uncharacterizable by techniques discussed thus far. Instead,
“library free” approaches, wherein molecular structures can
be predicted directly from experimental signatures (i.e.,
inverse-QSAR/QSPR), must be employed for these “unknown
unknowns.” For example, SIRIUS 4 is able to predict chemical
structure from mass fragmentation pattern without referencing
a database (Dührkop et al., 2019). In addition, nascent advances
in generative deep learning approaches have shown promise in
Arnold et al. (2016) library free identification (Kadurin et al.,
2017a,b; Blaschke et al., 2018; Dai et al., 2018; De Cao and Kipf,
2018; Gómez-Bombarelli et al., 2018; Gupta et al., 2018; Jin et al.,
2018; Kang and Cho, 2018; Kim et al., 2018; Lim et al., 2018;
Merk et al., 2018; Colby et al., 2020).

In addition, the use of in silico metabolism prediction tools
will be valuable in expanding the aforementioned databases or
chemical search-space to include putative biotransformations of
metabolites that result from human or gut microbial metabolism
of xenobiotic compounds (Djoumbou-Feunang et al., 2019).
Computational strategies that access biosynthetic gene clusters
encoded in metagenomic data will be useful for guiding the
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discovery of novel small molecules from the microbiome
(Sugimoto et al., 2019).

FUNCTIONAL CHARACTERIZATION OF
THE GUT MICROBIOME USING
ACTIVITY-BASED PROTEIN PROFILING

The need to provide direct attribution of microbiota-derived
metabolites to specific taxa has brought activity-based protein
profiling (ABPP) to the forefront of microbiome science
(Whidbey andWright, 2019; Keller et al., 2020). ABPP exclusively
selects for active proteins through function-dependent covalent
labeling with small molecule activity-based probes (ABPs),
(Cravatt et al., 2008). The ABP-labeled proteins can be
subsequently analyzed using mass-spectrometry methods, SDS-
PAGE, and live-cell imaging. A new ABP may be hypothetically
tailored for any metabolic protein of interest by taking advantage
of chemical reactivity or physical binding interactions. The
modular nature of an ABP allows for flexibility in post-labeling
analysis. ABPP will be an indispensable tool in understanding
how microbiome metabolism modulates the host response to
external factors, such as diet or environmental exposures.

ABPP acts as a complementary strategy to metaproteomics
by circumventing some of the challenges for its application
(Heyer et al., 2017; Lee et al., 2017). Metaproteomic profiling
provides more functional clues than metagenomics or
metatranscriptomics, but the current technologies are
not as sensitive as sequencing-based methods. As a result,
metaproteomic approaches are biased toward highly abundant
proteins, which leaves significant gaps in knowledge. This is
particularly relevant to microbiome samples, where certain
important taxa are often underrepresented in a population.
Sample fractionation and two-dimensional chromatography
(capillary and microchip electrophoresis) have been employed to
reduce sample complexity (Leary et al., 2013; Tanca et al., 2015;
Xiong et al., 2015; Stepanova and Kasicka, 2016). However, this
enrichment is costly and thereby limits the number of samples
that can be analyzed, and biases the results due to the loss of
information (Tanca et al., 2015). However, even with advances
in sensitivity, metaproteomic profiles still cannot definitively
determine the proportion of the functionally active proteome
because many proteins require cofactors, substrates, and post-
translational modifications to be functionally active. Because
ABPP is inherently an enrichment strategy, it simultaneously
retains low abundance proteins and acts as a method to
distinguish activity. However, integrating abundance and activity
profiles provides a rich representation of the proteome. For
example, Wolan and coworkers have shown the potential of
coupling ABPP and stable isotope labeling for the enrichment
of targeted human and microbial proteins for metaproteomics
study in colitis or inflammatory bowel disease mouse model
(Mayers et al., 2017).

ABPP also promises to resolve the problem of poorly
annotated metagenomes that plagues metaproteomic analyses.
It is estimated that 40–70% of the protein coding genes of
the human microbiome cannot currently be predicted (Prestat

et al., 2014). This problem is exacerbated when the genes come
from poorly characterized taxa (uncultured taxa can be up to
40% of metagenomic data). In many cases, genes of unknown
function are excluded from analysis because a method that
requires mapping to an annotated genome is employed. ABPP
can help address this challenge, as ABP-labeling directly signifies
protein function (Adam et al., 2004; Kamat et al., 2015; Xu et al.,
2015; Martell et al., 2016; Ortega et al., 2018; Elahi et al., 2019).
This is especially true when accompanying metabolomics data
can provide added confidence (Jansen et al., 2020). ABPP can
also identify viable whole cells in complex samples based on a
certain function without needing any information beforehand,
which may aid in the study of un-culturable microbes with
poorly characterized genomes. ABPP has been coupled with
fluorescence-assisted cell sorting (FACS) to identify and isolate
single cell population responsible for enzyme activity (Whidbey
et al., 2019). Hence, combining FACS with ABPP allows for the
enrichment of functionally active cells from microbiome with
reduced sample complexity. Moreover, these sorted cells can be
submitted for further analysis using other omics techniques with
a less complex system (Jansson and Baker, 2016).

In addition to the technical advantages of ABPP, the gut
microbiome offers many opportunities for exciting conceptual
applications because of the diverse chemical transformations
mediated exclusively by microbes and their corresponding
enzymes and transporters. Host enzymes primarily perform
oxidative and conjugative reactions leading to hydrophilic and
higher molecular weight metabolites for elimination. In contrast,
microbial enzymes typically use reductive and hydrolytic
metabolisms to facilitate microbial growth. Many of these
reactions can be beneficial for the host, such as the breakdown of
plant polysaccharides (indigestible by host enzymes) by complex
carbohydrate-active enzymes (>5,000), (El Kaoutari et al., 2013),
which can result in the formation of short-chain fatty acid
products that can positively influence host health (Rios-Covian
et al., 2016). Application of ABPs based on carbohydrates
to delineate the role of fiber diet on gut microbiome has a
tremendous potential to find robust probiotics in the future
(Chauvigne-Hines et al., 2012; Wu et al., 2019).

Function-based profiling will undoubtedly aid in
understanding how microbiome activity can bolster host
resilience, but it will also be useful for comprehending how it can
conversely increase susceptibility to disease. For example, the
microbiome produces proteins that degrade the host-produced
complex polysaccharide, mucin, whose deregulation is linked
to ulcerative colitis (Pullan et al., 1994), and this process has
been successfully characterized using ABPP (Tsai et al., 2013;
Thuy-Boun and Wolan, 2019). ABPs have also been applied to
study the microbiome’s modification of other host-produced
metabolites, such as bile salts (Zhuang et al., 2017; Parasar et al.,
2019), which have implications in the onset of diseases including
cholestatic and inflammatory diseases, diabetes, and obesity
(Wahlstrom et al., 2016). Microbial enzymes such as proteases,
hydrolases, and β-glucuronidases have been labeled using various
ABPs and applied successfully in investigating the changes in gut
microbiome activity in different disease models (Hatzios et al.,
2016; Mayers et al., 2017; Zhuang et al., 2017; Parasar et al., 2019;
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FIGURE 1 | Schematic for the combined use of standards-free metabolomics (blue) and activity-based protein profiling (purple) workflows to functionally characterize

biomolecules, the microbial populations involved and their effect on the host. The colored text boxes (blue, purple, or blue+purple) indicate the data and

understanding gained from either one or a combination of both technologies.

Whidbey et al., 2019; Jariwala et al., 2020). Importantly, these
analyses reveal that change in microbial enzyme activity does
not faithfully correspond to gene abundance, which reiterates
the necessity of function-based analyses such as ABPP for
researchers to harness the chemistry of the microbiome.

CONCLUSION

The objective of this perspective is to highlight the tandem
use of standards-free metabolomics and activity-based protein
profiling to elucidate the metabolic function of specific taxa and
the variety of enzymatic products and small molecule metabolites
that they are capable of producing (Figure 1). Comprehensive,
untargeted characterization of the metabolome can help identify
bioactive metabolites that modulate host phenotype. Activity-
based probes can be tailor made for metabolite targets (or
dietary compounds or drugs) that have been detected and
identified using standards-free metabolomics and implicated
to have an impact on the health of the host and the
microbiome. This opens up the possibility of categorizing gut
microorganisms based on their functional products (enzymes

and metabolites), under a defined set of host and environmental
factors. We expect that the incorporation of experimental
and computationally predicted molecular properties, as part
of metabolomics workflows will result in improved detection
and increased confidence identification. As researchers start to
explore the immense chemical space of human microbiomes
and encounter previously unknown molecules, the field will
start to rely increasingly on computationally generated libraries
containingmultiple molecular descriptors such as retention time,
CCS, accurate masses of precursor, and fragment ions etc. thus
providing increasing confidence of a match as more of these
predicted values match with experimentally measured values
for a molecule of interest. In recent years, ABPP has emerged
as a successful platform to functionally characterize proteins
from incompletely annotated genomes and allow study of shifts
in functional activity of microbiome in case of change due
to external environment, disease, and exposure to chemicals.
Standards-freemetabolomics coupled with ABPP, ushers in a new
era for deciphering the functionally relevant microorganisms in
the microbiome. Determining these functional links provides a
roadmap for unlocking the full potential of probiotics, developing
personalized medicine for individuals based on their unique

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 388

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Couvillion et al. Who Is Metabolizing What?

microbiome, and delineating the relationships betweenmicrobial
metabolites and human health.
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