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This study aimed to investigate the beneficial effect of baicalin–zinc complex (BZN) on

intestinal microorganisms in deoxynivalenol (DON)-challenged piglets and the association

between intestinal microorganisms and host immunity and hormone secretion. Forty

weaned piglets were randomly divided into four treatments with 10 piglets in each

treatment: (1) control (Con) group (pigs fed basal diet); (2) DON group (pigs fed 4mg

DON/kg basal diet); (3) BZN group (pigs fed 0.5% BZN basal diet); and (4) DBZN group

(pigs fed 4mg DON/kg and 0.5% BZN basal diet). The experiment lasted for 14 days.

The BZN supplementation in DON-contaminated diets changed the intestinal microbiota

composition and increased intestinal microbial richness and diversity of piglets. The BZN

supplementation in DON-contaminated diets also alleviated the inflammatory responses

of piglets and modulated the secretion of hormones related to the growth axis. Moreover,

microbiota composition was associated with inflammatory and hormone secretion. In

conclusion, BZN alleviated inflammatory response and hormone secretion in piglets,

which is associated with the intestinal microbiome.

Keywords: baicalin-zinc complex, deoxynivalenol, intestinal microbiome, hormone secretion, inflammatory

responses, weaned piglets

INTRODUCTION

Deoxynivalenol (DON), originally known as vomitoxin, can cause vomiting, diarrhea, anorexia,
neurological disorders, and immune dysfunction in humans and animals (1, 2). DON was reported
to be the most common food-related mycotoxins all over the world (3–5). A study shows that DON
was detected in 73 and 92% of wheat and corn in the USA (6). In another study in China, the
detection rate of DON in corn was 93.2%, and the average concentration was 1,356.9 µg/kg (7).
The DON detection rate in each region is shown as follows: East Asia (84.8%), Northern Europe
(74.2%), Central America (70.0%), Central Europe (69.8%), North America (64.1%), South Africa
(63.2%), Eastern Europe (59.9%), Southern Europe (52.9%), sub-Saharan Africa (49.5%), Middle
East/North Africa Region (47.8%), Southeast Asia (42.5%), Oceania (34.5%), South America
(26.9%), and South Asia (23.1%) (8). Pigs are very sensitive to the toxic effects of DON, and
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the long-term consumption of DON in pig can delay growth
and reduce immune performance (9, 10). Therefore, repairing
intestinal damage induced by DON is an important subject in the
livestock production.

At low DON concentrations, DON promotes the production
of immune factors, thereby increasing the risk of chronic
immune disease or infection susceptibility (11, 12). DON induces
secretion of serum immunoglobulin M (IgM), immunoglobulin
A (IgA), immunoglobulin E (IgE), and immunoglobulin G (IgG)
in mice or farm animals (13–15). DON induces a significant
increase in tumor necrosis factor-α (TNF-α), interleukin-8 (IL-
8), interleukin-1α (IL-1α), interleukin-1β (IL-1β), and gene
expression in porcine intestinal epithelial cells (IPEC-1 cell
line) (16). Furthermore, some studies also showed that DON
can interfere with immune response by altering intestinal
microbiome balance (17, 18). Previous studies reported that
the growth retardation induced by DON is associated with
the secretion of satiety hormones, such as peptide YY (PYY),
cholecystokinin (CCK), and 5-hydroxytryptamine (5-HT), and
growth hormone (GH) (19, 20). Therefore, we intend to develop
a feed additive to reduce the toxic effects of DON. Baicalin–
zinc complex (BZN) is a complex of baicalin and zinc. Although
there are few studies on BZN at present, it has been proved to
have good anti-inflammatory and antioxidant properties, which
suggest that it may relieve the toxic effects of DON in pigs
(21, 22). Moreover, zinc is an essential trace element for animals.
It is involved in a multitude of body functions, ranging from
the metabolism of nutrients to bone development, and as an
activator to mediate the immune function of pigs (23, 24). It is
generally added at 2,000 mg/kg in swine production to reduce
diarrhea and promote pig growth. Baicalin (5,6-dihydroxy-
2-phenyl-4H-1-benzopyran-4-one-7-O-D-β-glucuronic acid) is
an extract from Scutellaria baicalensis Georgi and Oroxylum
indicum (L.) Kurz, and it is commonly used in the cure of
gastrointestinal infections and inflammatory diseases (25, 26).
The dietary baicalin supplementation is tightly correlated to the
intestinal microbiota composition, and it was also reported that
baicalin has good antioxidant and anti-inflammatory in some
studies (26–28).

This study aimed to investigate the beneficial effect of
BZN on intestinal microbiome, inflammatory responses,
and hormone profiles in DON-challenged piglets and the

Abbreviations: 5-HT, 5-hydroxytryptamine; HTR3A1, 5-hydroxytryptamine
receptor 3A 1; HTR3A2, 5-hydroxytryptamine receptor 3A 2; HTR3B2, 5-
hydroxytryptamine receptor 3B; AGRP, agouti-related protein; AKT, AKT
serine/threonine kinase 1; ALB, albumin; BZN, baicalin–zinc complex; BUN,
blood urea nitrogen; CCK, cholecystokinin; CCK-1R, cholecystokinin type A
receptor; CCK-2R, cholecystokinin B receptor; CHOL, total cholesterol; COX-2,
cyclooxygenase-2; DON, deoxynivalenol; GLP-1, glucagon-like peptide 1; GLP-
2, glucagon-like peptide 2; GLU, glucose; GH, growth hormone; hs-CRP, high-
sensitivity C-reactive protein; IgA, immunoglobulin A; IgE, immunoglobulin E;
IgG, immunoglobulin G; IgM, immunoglobulin M; INS, insulin; INR, insulin
receptor; IGF-1, insulin-like growth factor-1; IFN-γ, interferon-gamma; IL-1α,
interleukin-1α; IL-1β, interleukin-1β; IL-2, interleukin-2; IL-6, interleukin-6; IL-
8, interleukin-8; IL-17, interleukin-17; IL-23, interleukin-23; LEP, leptin; LDA,
linear discriminant analysis; NPY, neuropeptide Y; NF-κB, nuclear factor kappa B;
OTUs, operational taxonomic units; PYY, peptide YY; PCA, principal component
analysis; PCoA, principal co-ordinates analysis; PMOC, proopiomelanocortin;
SST, somatostatin; TLR-2, toll-like receptor 2; TNF-α, tumor necrosis factor-α.

association between intestinal microbiome and host immunity
and hormone secretion.

MATERIALS AND METHODS

DON-Contaminated Diet and BZN
Synthesis
Basal diet inoculate with Fusarium graminearum R6576 was
fermented for 14 days to form DON-contaminated diet as
described by Wu et al. (29). F. graminearum R6576 was supplied
by Huazhong Agricultural University and preserved by Institute
of Subtropical Sciences, Chinese Academy of Sciences (30).
Baicalin was fully dissolved in 1% sodium bicarbonate solution,
then equal molar ratio zinc sulfate was added to baicalin solution.
After completion of the reaction, the precipitation was BZN.
The dose of BZN and DON was referred to the previous
literature (31).

Animals, Diets, and Experimental Design
Forty weaned piglets with an average weight of 6.13 ± 0.42 kg
(Landrace× Yorkshire, 21 days of age) were individually housed
in a single column at the New wellful pig farm (New Wellful
Co., Ltd, Hunan, China). Piglets were randomly divided into
four diets, and 10 pigs were fed to each diet. The four groups
were as follows: (1) control (Con) group (basal diet); (2) DON
group (4mgDON/kg basal diet); (3) BZN group (0.5% BZN basal
diet); and (4) DBZN group (4mg DON/kg and 0.5% BZN basal
diet). The composition and nutrient level of the basal diet in
this experiment is shown in Supplementary Table 1, and it meets
nutrient requirements of pigs according to National Research
Committee (NRC) (32, 33). All pigs were acclimated to the room
for 3 days before the experiment, and experimental diets were
provided in four equal daily meals at 7:30, 11:00, 14:30, and
18:00 for 14 days. Piglets housed on a 12-h light-dark cycle with
free access to water, and the barn temperature was maintained
at 30◦C. Randomly selected seven pigs from each group for
sampling after slaughter. After blood was collected by blood
vessel, it was placed at room temperature for 1 h and centrifuged
at 3,000 R for 15min. The pale yellow liquid obtained was the
serum. The intestine was opened in the middle ileum, and an
appropriate amount of chyme was collected in a 50-ml sterile
centrifugal tube. The collected serum and ileal chyme samples
were quickly stored in liquid nitrogen. Serum and ileum chymes
were stored at −80◦C. The experiment was carried out under
the supervision of the experimental animal ethics committee
of the Institute of Subtropical Agriculture (Changsha, Human
Province, China) (29, 34).

16s rRNA Sequencing
The 16s rRNA analysis of ileal chyme was conducted by
Novogene Co., Ltd (Beijing, China) (35). The total DNA
from ileal chyme was extracted by the CTAB/SDS method,
and the DNA concentration and quality met the experimental
requirements. Then, diluted the DNA to 1 mg/ml with sterile
water. PCR was performed with specific primers as forward
primer: ACTCCTACGGGAGGCAGCAG and reverse primer:
GGACTACHVGGGTWTC TAAT (amplification of 16srRNA
gene V3–V4 region); the PCR amplification products were
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detected and purified using a 2% agarose gel, then purified
amplicons were used for the sequencing library. After the
library has passed the quality assessment, it was sequenced on
Ion S5TMXL (Thermo Fisher Scientific Co., Ltd., Waltham,
CA, USA).

Bioinformatics Analysis
Raw reads were demultiplexed and quality-filtered as previously
described (36). Operational taxonomic units (OTUs) were
clustered with 97% similarity for the effective tags of all samples
by using the UPARSE software (version 7.0.1001), then used the
Mothur method (https://www.mothur.org/) and SILVA database
to annotate the species at the level phylum, order, family,
genus, and class. The R software (version 2.15.3) was used to
draw principal component analysis (PCA) chart, principal co-
ordinates analysis (PCoA) chart and heatmap. Alpha diversity
was used to analyze the diversity of intestinal microbiome. Linear
discriminant analysis effect size (LEfSe) analysis was used galaxy
module [linear discriminant analysis (LDA) score >2.5].

Serum Indices (Immunoglobulins,
Cytokines, Biochemical Indices, and
Hormones Profiles)
Serum immunoglobulins: IgM, IgG, IgA, cytokines: TNF-α,
IL-2, IFN-γ, IL-6, IL-1β, and hormones: 5-HT, GH, PYY, LEP,
somatostatin (SST), insulin (INS), neuropeptide Y (NPY),
insulin-like growth factor-1 (IGF-1), proopiomelanocortin
(PMOC), agouti-related protein (AGRP), and glucagon-like
peptide 1 (GLP-1) were determined using the commercially
available ELISA kits from Nanjing Jiancheng Co., Ltd. (Jiangsu,
China) (37).

The CX-4 automatic biochemical analyzer (Beckman Coulter,
Brea, CA, USA) was used to measure the total cholesterol
(CHOL), albumin (ALB), glucose (GLU), and blood urea
nitrogen (BUN) in serum (38).

Real-Time Quantitative PCR
The total RNA was extracted from the hypothalamus and
pituitary using the TRIzol Reagent (Thermo Fisher Scientific
Co., Ltd, CA, USA). Real-time quantitative PCR was performed
with a Roche Light Cycler 480II system (Roche Co., Ltd,
Basel, Switzerland). Primers (PREMIER Biosoft International,
San Francisco, CA, USA) (Supplementary Table 1) were
designed using the Primer 5.0 software and synthesized by
Sangon Biotech Co., Ltd. (Shanghai, China). The RNA extraction
and real-time quantitative PCRwere conducted strictly according
to previous studies [RT-PCR procedure: step 1: predenaturation
program (30 s at 95◦C); step 2: PCR (5 s at 95◦C for denaturation
and 30 s at 60◦C for extension); and step 3: dissociation program
(5 s at 60◦C)] (37, 39, 40). In addition, the relative expression of
target genes was calculated by the formula 2−(11Ct) (41).

Statistical Analysis
In addition to sequencing data, serum indices and mRNA
expression were analyzed by the SPSS software (version 20,
IBM Corp., Armonk, NY, USA). We filled the missing values
with the mean, and the data were logarithmically transformed
while outliers existed. Dietary BZN, DON, and their interactions

were analyzed using two-way ANOVA. If there was a significant
difference, we performed the Bonferroni t-test. At the same
time, the Duncan’s test was used to analyze the significant
difference, and the criterion for significance judgment was p <

0.05. The GraphPad Prism Software (Version 7; La Jolla, CA,
USA) was used to draw the figures, and the column shows mean
± SEM (42–44).

RESULTS

Intestinal Microbiome Composition of
Piglets
To characterize the composition of bacterial communities in
the ileum, we collected a total of 28 piglets’ ileum chymes for
16s sequencing. After quality filtering, 20,694,594 reads that
were clustered into 1,096 OTU remained. At the phylum level
(Figure 1A), Firmicutes was the main phylum in the intestinal
microbiota of piglets among the four groups, and the relative
Firmicutes content in the DON group is much higher (95%). The
LEfSe analysis revealed that the relative Bacteroidetes content in
the DON group was noticeably lower than that in the DBZN
group (LDA > 2.5) (Figure 1D). At the genus level (Figure 1B),
over 43% of reads were identified as unidentified members
of Clostridiales. The LEfSe analysis revealed that the relative
abundance of Intestinibacter, Agathobacter, and Veillonella in
the DBZN group was noticeably higher than that in the DON
group (LDA > 2.5) (Figure 1D). At the species level, for
the Con group, intestinal microbiota was mainly enriched in
genera belonging to Bacteroides (Figure 1C). The BZN group
was mainly enriched by Streptococcus, Clostridium bornimense,
and Actinobacillus minor, and the DBZN group was mainly
enriched by Lactobacillus, Streptococcus, and so on (Figure 1E).
The LEfSe analysis showed that BZN markedly increased the
relative abundance of Clostridium perfringens in basal diet, and
BZN markedly increased the relative abundance of Streptococcus
porcorum in DON-contaminated diet (LDA > 2.5) (Figure 1D).

Diversity Change of Intestinal Microbiome
of the Piglet
To detect the changes of intestinal microbiota composition
during the experiment period, we evaluated the alpha diversity
of piglet gut microbiota. The alpha diversity was first calculated
using ace, chao 1, PD whole tree, and observed species. All
measurements revealed that the BZN supplementation increased
evenness and richness of the ileum microbiota in DON-
contaminated diet (p < 0.05) (Figures 2A–D).

To further reveal the differences in intestinal microbiota
composition among the four groups, we evaluated the beta
diversity of piglet intestinal microbiota using the binary Jaccard
indices and weighted UniFrac (Figures 2E,F). PCoA revealed
that although there was no obvious segregation of the BZN
group and Con group, the Con group, DON group, and DBZN
group can be distinguished from each other. Moreover, analysis
of molecular variance (AMOVA) indicated that the differences
in the binary Jaccard index between the DON group and DBZN
group are significant (p < 0.05).
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FIGURE 1 | Effects of BZN and DON on intestinal microbiome composition of piglet. (A) Intestinal microbiome composition at the phylum level. (B) Intestinal

microbiome composition at the genus level. (C) The LEfSe analysis at different gut microbiota taxa between Con and BZN groups (LDA score >2.5). (D) The LEfSe

analysis at different gut microbiota taxa between DON and DBZN groups (LDA score >2.5). (E) Heatmap showing significantly different species. Dietary treatment:

Con, basal diet; DON, 4 mg/kg DON-contaminated diet; BZN, 0.5% BZN supplementation diet; DBZN, 0.5% BZN supplement in 4 mg/kg DON-contaminated diet.

BZN, baicalin–zinc complex; Con, control; DON, deoxynivalenol; LDA, linear discriminant analysis.

Metabolic Functional Change of Intestinal
Microbiome of the Piglet
The Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUST) analysis was
used to predict the function of intestinal microbiota (Figure 3).
The results indicated that 10 pathways, including ATP-binding
cassette (ABC) transporters, translation proteins, general
function prediction only, ribosome Biogenesis, porphyrin and
chlorophyll metabolism, sporulation, chromosome, transcription

machinery, and arginine and proline metabolism were enriched
in the Con group. We also identified seven pathways, such
as two component system, purine metabolism, aminoacyl
tRNA biosynthesis, pyrimidine metabolism, DNA repair and
recombination proteins, methane metabolism, and amino
acid-related enzymes were predicted to be enriched in the DON
group. Seven pathways, including secretion system, transcription
factors, bacterial motility proteins, transporters, fructose and
mannose metabolism, cysteine and methionine metabolism
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FIGURE 2 | Alpha and beta diversity change of gut microbiota. (A) Alpha diversity base on the ACE index. (B) Alpha diversity base on the Phylogenetic diversity (PD)

whole-tree index. (C) Alpha diversity base on the observed species index. (D) Alpha diversity base on the chao 1 index. (E) Principal coordinate analysis (PCoA) based

on the binary Jaccard indices. (F) PCoA based on the weighted UniFrac indices. Dietary treatment: Con, basal diet; DON, 4 mg/kg DON-contaminated diet; BZN,

0.5% BZN supplementation diet; DBZN, 0.5% BZN supplement in 4 mg/kg DON-contaminated diet. *p < 0.05. BZN, baicalin–zinc complex; Con, control; DON,

deoxynivalenol.

and peptidases, were predicted to be enriched in the BZN and
DBZN groups.

Serum Inflammatory Responses
Correlation With the Intestinal Microbiome
Abundance
Serum immunoglobulin and cytokines were significantly
affected by either supplementation of BZN, DON, or interaction
(Figure 4A). Compared with the Con group, the BZN group
increased the level of IgA, IgG, IgM, IFN-γ, IL-6, IL-1β, and
IL-2 in serum (p < 0.05). In the DON-challenged group,
the dietary BZN supplementation decreased the level of
IL-2 and IFN-γ in serum (p < 0.05). The concentration
of CHOL in serum was significantly influenced by the
interaction effect of DON and BZN (p < 0.05). Moreover,
the dietary BZN supplementation significantly increased
the serum concentration of BUN and GLU in serum (p
< 0.05).

The Spearman’s correlation analysis was used to calculate the
relationship between inflammatory and intestinal microbiome
abundance. Intestinal microbiota was significantly associated
with some immunity indices (Figure 4B). Of these, the
abundances of Bacterium AD3011, Phaseolus vulgaris,
Bacteroides vulgatus, or Streptococcus suis was negatively

correlated to IgG, IgM, and IL-1β, and the abundance of
Anaerosalibacter bizertensis, Streptococcus ferus, Oceanobacillus
indicireducens, Bacillus coagulans, Oceanobacillus caeni, or
Streptococcus plurextorum was positively correlated to IL-2 and
IFN-γ. Moreover, the abundance of Lactobacillus ruminis was
negatively correlated to IL-2.

Hormone Secretion Correlation With the
Intestinal Microbiome Abundance
As shown in Figure 5A, after 2 weeks of experimental treatments,
the interaction effect of DON and BZN on GH-related hormones
in serum was statistically significant (p < 0.01). As compared
with the Con group, the concentration of INS and GH of the
BZN group was increased (p < 0.05). However, the dietary
BZN supplementation increased in the concentration of SS, and
decreased the concentration of INS in DON-challenged group
(p < 0.05). As revealed in Figure 5, the concentration of PYY,
AGRP, LEP, GLP-1, and NPY in serum was significantly affected
by either supplementation of BZN, DON, or interaction (p
< 0.05).

The Spearman’s correlation analysis was used to calculate the
relationship between hormone secretion and bacterial genera
abundance (Figure 5B). First, the abundance of Lactobacillus
agilis were positively correlated to the AGRP concentration
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FIGURE 3 | BZN supplementation changed the metabolic functions of intestinal microbiome of piglet at KEGG level 3. Dietary treatment: Con, basal diet; DON, 4

mg/kg DON-contaminated diet; BZN, 0.5% BZN supplementation diet; DBZN, 0.5% BZN supplement in 4 mg/kg DON-contaminated diet. BZN, baicalin–zinc

complex; Con, control; DON, deoxynivalenol; KEGG, Kyoto Encyclopedia of Genes and Genomes.

in serum. As the heatmap shows, the abundance of Neisseria
dentiae, Mobilibacterium massiliense, Bacteroides ovatus,
Pasteurella aerogenes, or Clostridium bornimense was negatively
correlated to the INS, GH, PYY, and PMOC concentration
in serum, and the abundance of Anaerosalibacter bizertensis,
Streptococcus ferus, Oceanobacillus indicireducens, Lactobacillus
agilis, Bacillus coagulans, Bacillus thermoamylovorans, Weissella
thailandensis, Oceanobacillus caeni, Streptococcus plurextorum,
or Rothia nasimurium was positively correlated to the IGF-1,
INS, GH, LEP, AGRP, and NPY concentration in serum.

Relative mRNA Expression in
Hypothalamus and Pituitary
As shown in Figure 6, among the 13 hormones or their receptor
genes assayed in the hypothalamus, eight genes were affected
by dietary DON, BZN, or their interaction. Specifically, dietary
DON exerted a main effect on the mRNA relative levels of insulin
receptor (INR), AKT, 5-hydroxytryptamine receptor (HTR)3A1,

HTR3A2, HTR3B2, and cholecystokinin (CCK)-2R (p < 0.05).
The BZN supplementation exerted the main effect on the mRNA
levels of SST and HTR3B2 (p < 0.05), whereas there were no
genes significantly influenced by an interaction between the
DON supplementation and the BZN supplementation (p> 0.05).
Among the 14 hormones or their receptor genes assayed in the
pituitary, four genes were affected by dietary DON, BZN, or their
interaction. Specifically, dietary DON exerted a main effect of
NPY, and the mRNA expression of INR and AKT in the pituitary
was affected by dietary BZN (p< 0.05). Notably, themRNA levels
of INR, GLP-2, and AKT in the pituitary were influenced by
the interaction between the DON supplementation and the BZN
supplementation (p < 0.05).

DISCUSSION

Deoxynivalenol is the most common mycotoxin in grains and
its products, and it can cause growth retardation, anorexia,
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FIGURE 4 | BZN- and DON-mediated inflammatory responses and correlations with intestinal microbiome. (A) Serum inflammatory indices. abDifferent letters mean

significantly difference. (B) The Spearman correlations between the intestinal microbiome and serum inflammatory indices. *p < 0.05, **p < 0.01. Dietary treatment:

Con, basal diet; DON, 4 mg/kg DON-contaminated diet; BZN, 0.5% BZN supplementation diet; DBZN, 0.5% BZN supplement in 4 mg/kg DON-contaminated diet.

IL-1β, interleukin-1β; IgG, immunoglobulin G; IFN-γ, interferon-gamma γ; IL-6, interleukin-6; IgA, immunoglobulin A; GLU, glucose; IgM, immunoglobulin M; CHOL,

total cholesterol; IL-2, interleukin-2; TNF-α, tumor necrosis factor-α; ALB, albumin; BUN, blood urea nitrogen; BZN, baicalin–zinc complex; Con, control; DON,

deoxynivalenol.
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FIGURE 5 | BZN- and DON-mediated hormone secretion and correlations with gut microbiota. (A) The concentration of serum hormone. (B) The Spearman

correlations between the gut microbiota and serum inflammatory makers. *p < 0.05, **p < 0.01. Dietary treatment: Con, basal diet; DON, 4 mg/kg DON-contaminated

diet; BZN, 0.5% BZN supplementation diet; DBZN, 0.5% BZN supplement in 4 mg/kg DON-contaminated diet. IGF1, insulin-like growth factor 1; NPY, neuropeptide Y;

SST, somatostatin; INS, insulin; GH, growth hormone; 5-HT, 5-hydroxytryptamine; PYY, peptide YY; PMOC, proopiomelanocortin; AGRP, agouti-related protein; LEP,

leptin, GLP1, glucagon-like peptide-1; BZN, baicalin–zinc complex; Con, control; DON, deoxynivalenol. a,bdifferent letters means significantly difference (P < 0.05).
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FIGURE 6 | Effect of DON and BZN in mRNA levels of hormone genes in hypothalamus (A) and pituitary gland (B). Column was mean ± SEM (n = 7). Different letters

mean significant differences. Dietary treatment: Con, basal diet; DON, 4 mg/kg DON-contaminated diet; BZN, 0.5% BZN supplementation diet; DBZN, 0.5% BZN

supplement in 4 mg/kg DON-contaminated diet. SST, somatostatin; INR, insulin receptor; CCK-2R, cholecystokinin B receptor; NPY, neuropeptide Y; AKT, AKT

serine/threonine kinase 1; HTR3A1, 5-hydroxytryptamine receptor 3A 1; HTR3A2, 5-hydroxytryptamine receptor 3A 2; HTR3B2, 5-hydroxytryptamine receptor 3B;

COX-2, cyclooxygenase-2; CCK-1R, cholecystokinin type A receptor; GLP-2, glucagon-like peptide 2; BZN, baicalin–zinc complex; Con, control; DON,

deoxynivalenol. a,bdifferent letters means significantly difference (P < 0.05).

and immune abnormalities. In addition, DON also changes the
composition of intestinal microbiota, and intestinal microbiota is
closely associated with growth and immunity (17, 45). This study
showed the impact of BZN supplementation on the intestinal
microbiome composition, inflammatory, and hormone secretion
in DON-challenged piglets.

Intestinal microbiota is the primary target of DON in animals.
Dietary ingestion of DON impaired intestinal homeostasis and
changed the composition of intestinal microbiome in mice,
especially, DON reduced the abundance of Streptococcus (46, 47).
Moreover, baicalin regulates intestinal microbiota homeostasis
and participates in liver–gut axis interaction (48, 49). Our study
showed that dietary BZN in DON-contaminated diet increased
intestinal microbial richness and diversity of piglets. Increased
intestinal microbial diversity indicates a better resistance to
stress. This is similar to the argument that baicalin can
reverse intestinal microbiota dysfunction in rats. Moreover,
our results showed that there was a significant difference in
beta diversity between DON and DBZN groups, which means
that dietary BZN in DON-contaminated diets changed the
intestinal microbiota structure of piglet. Heatmaps showed that

Lactobacillus ruminis and Lactobacillus agilis were enriched in
the DBZN group, and they were able to inhibit Escherichia
coli, which means BZN may treat intestinal pathogen infection
(50, 51). PICRUST showed that the dietary BZN supplementation
in DON-contaminated diet enriched peptidases pathway and
dietary BZN supplementation in basal diet-enriched secretion
system and bacterial mobility protein pathway. In conclusion,
the dietary BZN supplementation in DON-contaminated diet
relieved the imbalance of the intestinal microbiome caused
by DON.

Deoxynivalenol also induced the activation of nuclear factor
kappa B (NF-κB) and trigger an inflammatory response, thus
selectively inducing the expression of some genes, includes
a series of cytokines, chemokines, and other inflammatory
factors (17, 52). Studies have also shown that with a high
dose of DON, the total serum IgA, IgG, and IgM levels are
significantly different from those in the Con group (13, 53).
Studies have shown that baicalin treatment can reduce the
serum inflammatory biomarkers of spontaneously hypertensive
rats, such as IL-6, IL-1β, and high-sensitivity C-reactive protein
(hs-CRP). In addition, baicalin treatment can also significantly
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reduce the expression of toll-like receptor 2 (TLR2), IL-1β, TNF-
α, and interleukin-23 (IL-23) in the colon in Spontaneously
Hypertensive Rats (SHRs) (54). Baicalin can significantly reduce
the serum interleukin-17 (IL-17), IL-6, and IL-1β expression
in Ulcerative Colitis (UC) rats (55). In addition, it can also
reduce the expression of CD14 and IL-6 in colonic mucosa and
alleviate the severity of ulcers (56). The results of these studies
have shown that baicalin treatment can inhibit the inflammatory
symptoms of the intestinal tract. Our research found that DON
and BZN and their interaction groups can make the expression
levels of IL-2, IL-6, IgG, IgA, IgM, and IFN-γ significantly
different from those of the Con group. Among them, BZN
reduced the expression of IL-2 and IFN-γ caused by DON,
which was in accordance with the results of a previous study
(52). We also observed that the dietary BZN supplementation
increased the serum IL-2, IFN-γ, and INS concentration in
normal piglets. These results indicate that the effects of DON in
normal piglets and DON-induced piglets are different. According
to the Spearman correlation analysis, the concentration of IL-2
and IFN-γ was correlated to the abundance of Anaerosalibacter
bizertensis, Streptococcus ferus, Oceanobacillus indicireducens,
Bacillus coagulans,Oceanobacillus caeni, Lactobacillus ruminis, or
Streptococcus plurextorum.

Previous literature studies have shown that the growth
retardation and anorexia caused by DON may be related to
the regulation of hormone secretion, such as 5-HT, GH, and
IGF1 (19, 57, 58). Our experiment showed that the dietary
BZN supplementation in DON-contaminated diets significantly
increased the SS concentration in serum and significantly
decreased the INS concentration in serum. SST is a kind
of tetrapeptide that can inhibit the secretion of GH and
control the secretion of pituitary hormone. It is assumed that
the increase of somatostatin concentration will cause growth
inhibition. However, it was also noted that the addition of
DON and BZN could increase the secretion of GH. Therefore,
we conclude that DON unbalanced the growth axis hormone
secretion, and the supplementation of BZN can rebalance
growth axis hormone secretion induced by DON. Notably, the
concentration of GH was positively related to the abundance of
Bacillus coagulans, Oceanobacillus indicireducens, Streptococcus
plurextorum, and Rothia nasimurium and was negatively
related to the abundance of Clostridium bornimense and
Neisseria dentiae.

CONCLUSION

Taken together, these data suggested that BZN was correlated to
the change in intestinal microbiota composition and modulated
inflammatory and hormone secretion in piglet after the DON
exposure. Moreover, the regulation of BZN on inflammation and
hormone secretion was related to the change of the abundance of
intestinal microbiota.
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