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Accurately Measuring Preventable Ventilator-associated Pneumonia
Deaths Using Observational Data: It’s about Time
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Ventilator-associated pneumonia (VAP) is
the most commonly diagnosed infection
among critically ill patients, with associated
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Editorials

all-cause mortality rates of 20-50% (1-3).
Prevention of VAP represents a cornerstone
of infection prevention efforts and is a
benchmark for hospital performance
reporting (4). Although absolute mortality
associated with VAP diagnosis is
substantial, the excess mortality directly
conferred by VAP itself remains a matter
of debate (5, 6). VAP is fundamentally

a complication of critical illness; thus,

the substantial mortality experienced by
patients with VAP is in no small part a
consequence of their underlying critical
illness.

In this issue of AnnalsATS, Steen and
colleagues (pp. 830-837) set out to identify
rates of preventable mortality due to VAP (7).
Prior studies have produced disparate

estimates of VAP-attributable mortality,
in part because of heterogeneity in VAP
definitions and therapeutic approaches as
well as potential confounding by severity
of illness and other underlying differences
between those who do and those who do
not develop VAP. As the authors note,
identifying deaths attributable to VAP
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Other time—dependent confounders (T1)

Respiratory dysfunction (T1)

Respiratory dysfunction (T2)

Other time—dependent confounders (T2)
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In-hospital death
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Figure 1. Directed acyclic graph featuring time-dependent confounding, time-independent (e.g., baseline) confounding, and exposure—confounder
feedback (20). T1 =Time 1; T2=Time 2; VAP = ventilator-associated pneumonia.

is challenging for several additional
reasons, impacting study design. First, the
cumulative risk of VAP increases over time
after intubation. This time dependence leads
to biases, including immortal time bias,
given that patients developing VAP must
necessarily remain alive and under follow-
up long enough to be diagnosed (8). Second,
the outcome, death, is subject to the
competing “risk” of discharge home. Failing
to account for this competing risk leads

to inflated estimates of VAP-associated
mortality (9). Third, measuring the causal
effect of perfect VAP prevention requires
adjusting for factors associated with

both VAP development and with death
(i.e., confounders). Many such confounders
(e.g., severity of respiratory dysfunction)
also vary over time and, importantly,

are themselves affected by VAP. This
necessitates the use of analytical methods
that are robust to such time-dependent
confounding and exposure-confounder
feedback (Figure 1) (10).

Identifying the decrement in mortality
that would result if all cases of VAP were
successfully prevented requires comparing
the observed mortality among those with
VAP to the unobserved (i.e., counterfactual)
rate of mortality that would have occurred
had those patients not developed VAP. To
accurately identify this counterfactual rate
while illustrating the consequences of the
sources of bias described above, the authors
conduct four sequential analyses that differ
in their consideration of both the time
dependence of VAP onset and the temporal
ordering of relevant confounders. Their
ultimate approach is state of the art for
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addressing such complex temporal causal
structures. Through its application, the
authors found that fewer than 1 in 25
deaths among ventilated patients could be
eliminated with perfect VAP prevention,
with a majority of these occurring in the first
30 days of mechanical ventilation.
Importantly, the authors also find that
failure to address the time dependence both
of VAP and of relevant confounders leads to
potentially inflated estimates of VAP-
attributable mortality.

These findings are not without
important caveats. First, measured mortality
attributable to VAP is dependent on both
the incidence of VAP and on observed
mortality among patients developing VAP.
That VAP occurred in only 7.7% of patients,
with more than 80% of these patients
surviving to Day 60, is a testament to the
existing quality of VAP prevention efforts and
other supportive care in the study intensive care
units (ICUs). Put another way, a quick way to
increase the attributable mortality due to VAP
would be to reverse decades of progress in ICU
supportive care and VAP preventative efforts.
Second, the authors leverage rich, longitudinal
clinical data to account for a number of
potentially important baseline and time-variant
confounders. Their findings are contingent on
the untestable assumption that patients
developing VAP and those not developing
VAP are otherwise comparable with respect to
their mortality risk after accounting for these
differences. Lastly, the principal determinant of
VAP outcomes is timing of appropriate
antimicrobial therapy (11). VAP mortality rates
may therefore be contingent on local
antimicrobial resistance rates and prescribing

patterns, and thus generalization of a single-
center experience is challenging.

Despite these limitations, this work
has several important implications. The
findings by White and colleagues are an
important contribution to the ongoing
question of the extent to which patients
die with rather than of VAP. The low
attributable mortality observed in this
study should fuel ongoing conversation
regarding the cost-effectiveness of VAP
preventative strategies (12). Importantly,
however, these results should not
deemphasize the importance of VAP
prevention efforts as a whole. For one,
data from prospective randomized
controlled trials of VAP prevention
strategies have produced higher estimates
of attributable VAP mortality than those
reported in this study, ranging from 9% to
13% (13, 14). Second, although the excess
mortality conferred by VAP may indeed
be more modest than historically
estimated, VAP remains a major source of
morbidity, resource use, and healthcare
expense among mechanically ventilated
patients. In addition, treatment of
pneumonia accounts for 50-70% of
antibiotic usage within the ICU, and
thus VAP prevention may curb both
antimicrobial exposures and consequent
rates of drug resistance (15, 16).

The results of this study also
underscore the present limitations of
our ability to confidently diagnose VAP.
Studies using multidisciplinary expert case
review or autopsy findings as reference
gold standards demonstrate that a
substantial portion of ICU patients treated
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for VAP are, in fact, misdiagnosed (17,
18). Multiple interventional studies have

evolving illness severity, transfer a patient
to the ICU in the setting of an acute decline,

structures to arrive at more accurate
conclusions.

demonstrated significant reductions in
VAP rates without any associated declines
in outcomes such as duration of
mechanical ventilation, hospital length
of stay, or mortality (19). Prevention
efforts may therefore lead to reductions
in what we believe is VAP but are in
fact antibiotic-nonresponsive VAP
mimics, seemingly diluting the

potential magnitude of attributable VAP
mortality.

More broadly, investigators focused on
the quality of hospital and ICU care are
likely to encounter such time-dependent
causal structures frequently. Decisions to
start or stop a medication in response to

or intubate and initiate mechanical
ventilation in response to worsening
oxygenation all present complex temporal
relationships between exposures or
treatments, potential confounders, and
outcomes. As the authors demonstrate,
observational analyses naive to these
relationships risk yielding biased,
incorrect results. Such results might
misinform later prospective trials, or, for
topics in which such trials are difficult or
impossible, lead to confusion, inefficiencies,
and potential harm. Rich, longitudinal
data with high temporal resolution are
increasingly available, enabling the use of
methods attentive to these complex causal

Accurately appraising the true
burden of VAP has been a central
challenge to infection prevention efforts
over the past few decades. Although
this study does not definitively close
the debate on VAP-attributable mortality,
it offers a novel and nuanced contribution
to our appraisal of the issue. The time
for such analyses to become more
commonplace—those attending to
time-dependent confounding in
health care-associated infections—is long
overdue. M

Author disclosures are available with the text
of this article at www.atsjournals.org.
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