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Abstract: Organophosphorus agents are potent inhibitors of acetylcholinesterase. Inhibition involves
successive chemical events. The first is phosphylation of the active site serine to produce a neutral
adduct, which is a close structural analog of the acylation transition state. This adduct is unreactive
toward spontaneous hydrolysis, but in many cases can be reactivated by nucleophilic medicinal
agents, such as oximes. However, the initial phosphylation reaction may be followed by a dealkylation
reaction of the incipient adduct. This reaction is called aging and produces an anionic phosphyl adduct
with acetylcholinesterase that is refractory to reactivation. This review considers why the anionic aged
adduct is unreactive toward nucleophiles. An alternate approach is to realkylate the aged adduct,
which would render the adduct reactivatable with oxime nucleophiles. However, this approach
confronts a considerable—and perhaps intractable—challenge: the aged adduct is a close analog
of the deacylation transition state. Consequently, the evolutionary mechanisms that have led to
transition state stabilization in acetylcholinesterase catalysis are discussed herein, as are the challenges
that they present to reactivation of aged acetylcholinesterase.
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1. Introduction

Figure 1 outlines the various chemical reactions that ensue when acetylcholinesterase (AChE)
is exposed to organophosphorus (OP) inhibitors. These reactions are of considerable medicinal and
national security interest, since OP agents that inhibit AChE (such as sarin in Figure 1) are acute
neurotoxins. Events in recent years underscore this concern: Iraq used tabun against Iranian troops in
the Iran–Iraq war [1], terrorists have used sarin against civilians [2], tyrants have used sarin to mass
murder their own people [3], and a dictator ordered the execution of his own brother with VX [4].

The seminal chemical reaction between sarin and AChE in Figure 1 is attack of the active site serine
at phosphorus with concomitant displacement of the fluoride leaving group. This initial neutral adduct
is an analog of the transition states in the acylation stage of AChE catalysis [5], and its production is
accelerated by the catalytic machinery of the active site; i.e., the Ser-His-Glu catalytic triad, the oxyanion
hole, and the acyl binding site [6,7]. The initial adduct is trenchantly unreactive toward spontaneous
hydrolysis (cf. Figure 1, Nu: = H2O), a reaction that therefore is of no medicinal import. The lack
of hydrolytic reactivity of the initial adduct is rationalized herein in terms of the resemblance of
the adduct to the transition states of the acylation stage of AChE catalysis. However, judiciously
designed oxime nucleophiles can readily dephosphylate the initial adducts, as shown in Figure 1
(Nu: = ArCH=NOH). 2-Pyridinealdoxime methiodide (2-PAM) is a component of the FDA approved
standard countermeasure that is in use in the United States [8]. Unfortunately, the initial neutral
adduct may convert to a monoanionic aged adduct via a dealkylation reaction, as shown in Figure 1.
This aging reaction is accelerated by cation-π interaction between Trp86 of the active site and the
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alkyl fragment that departs in the carbocationic transition state [9]. The aged adduct is remarkably
unreactive. Despite considerable efforts over the last two generations, no practicable means for
reactivating the aged adduct have been found, and therefore no medicinal agents are available for aged
AChE. Why is aged AChE so difficult to reactivate? The answers to this question are framed in the
following passages in terms of the structural and energetic features of the aged AChE adduct, and will
hopefully inform future efforts to solve the knotty problem that reactivation of aged AChE poses.
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Figure 1. Inhibition of AChE by the organophosphorus nerve agent sarin. 

2. Discussion 

Consideration of the selective pressure that guided the evolution of the catalytic power of AChE 
provides a framework for understanding the hydrolytic stability of the initial phosphyl adduct and 
the remarkable unreactivity of aged AChE. The physiological context in which AChE operates is 
cholinergic neurotransmission in the central and peripheral nervous systems. Since cholinergic 
neurotransmission occurs on a millisecond to second time scale, it is apparent that the evolution of 
the catalytic power of AChE has been beset with the “need for speed”. Indeed, AChE is among the 
most potent of biocatalysts that accelerate hydrolysis reactions. The second-order rate constant kcat/Km 
exceeds 109 M−1·s−1 at low ionic strength [10], while the turnover number kcat > 104 s−1 [11]. For kcat/Km, 
the rate constant is prominently diffusion controlled; i.e., the enzyme is functioning at the “speed 
limit” of biological catalysis [12]. A yet more telling analysis arises from consideration of rate 
constants in the thermodynamic cycle of Figure 2. The cycle is numerically informed by the catalytic 
constants of AChE catalysis, and by Wolfenden’s determination of the rate constant for nonenzymic 
neutral hydrolysis of acetylcholine, kun = 7.2 × 10−9 s−1 [13]. These values allow one to calculate the 
catalytic acceleration effected by the enzyme when substrate concentration is << Km, a ratio that 
Wolfenden calls the catalytic proficiency of the enzyme [14]: 

Catalytic	Proficiency = kୡୟ୲ K୫ൗk୳୬ = 1.4 × 10ଵ Mିଵ (1) 

The reciprocal of the catalytic proficiency is the thermodynamic dissociation constant of the 
acylation transition state, KTS, from which one can calculate the free energy of dissociation of the 
acylation transition state at T = 298 K, as in Equation (2): 
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2. Discussion

Consideration of the selective pressure that guided the evolution of the catalytic power of AChE
provides a framework for understanding the hydrolytic stability of the initial phosphyl adduct and
the remarkable unreactivity of aged AChE. The physiological context in which AChE operates is
cholinergic neurotransmission in the central and peripheral nervous systems. Since cholinergic
neurotransmission occurs on a millisecond to second time scale, it is apparent that the evolution
of the catalytic power of AChE has been beset with the “need for speed”. Indeed, AChE is among
the most potent of biocatalysts that accelerate hydrolysis reactions. The second-order rate constant
kcat/Km exceeds 109 M−1·s−1 at low ionic strength [10], while the turnover number kcat > 104 s−1 [11].
For kcat/Km, the rate constant is prominently diffusion controlled; i.e., the enzyme is functioning at the
“speed limit” of biological catalysis [12]. A yet more telling analysis arises from consideration of rate
constants in the thermodynamic cycle of Figure 2. The cycle is numerically informed by the catalytic
constants of AChE catalysis, and by Wolfenden’s determination of the rate constant for nonenzymic
neutral hydrolysis of acetylcholine, kun = 7.2 × 10−9 s−1 [13]. These values allow one to calculate
the catalytic acceleration effected by the enzyme when substrate concentration is << Km, a ratio that
Wolfenden calls the catalytic proficiency of the enzyme [14]:

Catalytic Proficiency =
kcat
Km

kun
= 1.4 × 1017 M−1 (1)
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The reciprocal of the catalytic proficiency is the thermodynamic dissociation constant of the
acylation transition state, KTS, from which one can calculate the free energy of dissociation of the
acylation transition state at T = 298 K, as in Equation (2):

∆GTS = −RTlnKTS = 98 kJ/mol (23 kcal/mol) (2)

This analysis shows that, for AChE, and indeed for any enzyme catalyzed reaction, catalytic power
must derive from transition state stabilization. For AChE, the acylation transition state is 98 kJ/mol
more stable than the transition state of the spontaneous hydrolysis of acetylcholine, an observation
that can be interpreted in terms of the elements of molecular recognition that the enzyme brings to
bear on the acylation transition state [6]. A similar analysis can be considered when AChE operates
under conditions of substrate saturation; i.e., kcat is rate limiting:

Catalytic Acceleration =
kcat

kun
= 1.4 × 1012 (3)

Since it is likely that kcat is rate limited by the deacylation stage of catalysis [15], one can calculate
the stabilization of the deacylation transition state as −RTln(1.4 × 1012) = −69 kJ/mol (−17 kcal/mol).
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The similarity among angles about the erstwhile carbonyl carbon of the transition state model and 
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Figure 2. Thermodynamic cycle for estimation of transition state stabilization in AChE catalysis. E, EA,
A, P, TSu, and TSE are respectively free enzyme, Michaelis complex, substrate, product, transition state
of the spontaneous hydrolysis reaction, and transition state of the AChE-catalyzed reaction. Km and
kcat are the respective Michaelis constant and turnover number of the AChE-catalyzed reaction; ku and
KTS are respectively the rate constant of the spontaneous hydrolysis reaction and the dissociation
constant of the enzymic transition state.

How is the notable transition state stabilization that AChE effects related to inhibition by OP agents?
This is a question that was posed by Ashani and Green in 1982 [16], and that is approached herein from
structural and energetic perspectives. The analysis that follows is informed by the availability in the
literature of crystal structures of both aged and neutral phosphyl-AChE adducts [17–20]. Consider the
acylation transition state for AChE catalyzed hydrolysis of acetylthiocholine (ATCh). By measuring
β-deuterium secondary isotope effects on kcat/Km, Quinn and collaborators showed that the bond
order between the γO of Ser203 of human AChE and the carbonyl carbon of ATCh is 0.8 ± 0.2 in
the acylation transition state [5]. Moreover, the π-bond of the ATCh carbonyl function is extensively
broken. These respective bonds have bond lengths of 1.45 Å and 1.38 Å, as was found in a simple
computational model of the acylation transition state [5]. The corresponding distances in the neutral
phosphyl adduct that results when T. californica AChE is inhibited by VX are 1.57 Å and 1.47 Å.
The similarity among angles about the erstwhile carbonyl carbon of the transition state model and
the phosphorus of the neutral VX adduct are yet more remarkable. For example, in the transition
state model, the bond angle for nucleophile oxygen to carbonyl carbon to carbonyl oxygen is 106.6◦,
while in the VX adduct the corresponding angle is 109.5◦; in the transition state model the acyl methyl
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to carbonyl carbon to carbonyl oxygen angle is 113.0◦, while in the VX adduct the corresponding angle
is 114.7◦. The notable similarity between transition state structural features and those of the initial
phosphyl adduct suggests that the phosphyl adduct is trenchantly unreactive toward spontaneous
hydrolysis, because AChE stabilizes the adduct in much the same way that it stabilizes the acylation
transition state.

A comparable analysis can be considered for the aged enzyme. Though a detailed structure of the
deacylation transition state is not available, Quinn and coworkers have shown by measurements
of β-deuterium secondary isotope effects on kcat that for the deacylation stage of cholinesterase
catalysis the Michaelis complex that accumulates on the enzyme in the steady state is a tetrahedral
intermediate [21–23]. In nonenzymic ester hydrolysis the tetrahedral intermediate is at least 11 kcal/mol
(46 kJ/mol) less stable than the ester from which it comes [23]. Therefore, the tetrahedral intermediate
in the deacylation stage of AChE catalysis is stabilized by at least 46 kJ/mol (11 kcal/mol). This analysis
shows that the stabilization of the tetrahedral intermediate is a large fraction of the 69 kJ/mol
stabilization of the deacylation transition state that was calculated from the thermodynamic cycle
of Figure 1. Consequently, it is unsurprising that, despite two generations of effort by medicinal
chemists, a nucleophilic antidote for aged AChE has yet to be found. The trenchant unreactivity of
aged AChE arises because the aged adduct is a close structural analog of the tetrahedral intermediate
in the deacylation stage of catalysis, and of the transition states for formation and decomposition of
the intermediate.

A seemingly obvious approach to reactivate aged AChE is to synthesize and evaluate putative
medicinal agents that can realkylate the monoanionic aged adduct, which would produce anew
a neutral phosphyl adduct that can be reactivated by nucleophilic medicinal reagents, such as 2-PAM.
Accordingly, Topczewski and Quinn [24] reported that various substituted 2-methoxy-1-methylpyridiniums
were reactive as methyl transfer agents to the methoxyl methyphosphonate anion in the reaction shown
in Figure 3. This reaction was chosen as an analog of methyl transfer to the aged AChE adduct.
The 2-methoxy-1-methylpyridinium agents alkylated the phosphonate anion with a range of rates that
was described by a multiple linear free energy relationship, with the most reactive agent (Y = 3-F in
Figure 3) effecting 40% methyl transfer in 10 min. Despite these very promising model reaction results,
none of the 2-methoxy-1-methylpyridinium reagents gave a 2-PAM reactivatable phosphyl adduct
with aged human AChE.
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The secret behind the unreactivity of aged AChE toward methylation with 2-methoxy-1-
methylpyridinium reagents again surely lies in the fact that the aged adduct is a close structural analog
of the deacylation transition state. Consider the following analysis. The pKa of the conjugate acid
of methoxyl methylphosphonate anion, measured by 31P-NMR spectroscopy, is 1.9 (Topczewski, J.J.;
Quinn, D.M., unpublished observation). As Harel et al. [6] discussed, the contribution of the oxyanion
hole to transition state stabilization in AChE catalysis is at least 21 kJ/mol (5 kcal/mol). One can
reasonably expect that this stabilization will result in a comparable stabilization of the anionic phosphyl
adduct of aged AChE, which would lower the conjugate acid pKa of the aged adduct by 4 pK units.
The decreased pKa of the phosphyl adduct should in turn decrease the reactivity of the adduct as
a methyl transfer nucleophile to an extent that is accommodated by a Brönsted relationship [25]:
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knuc

k0
= 10βnuc∆pKa (4)

In this equation, k0 is the rate constant for methyl transfer measured in the model reaction of
Figure 3, knuc is the expected rate constant for aged AChE, ∆pKa = −4 as discussed above, and β

is a measure of the degree of methyl transfer that has been achieved in the transition state of the
methyl transfer reaction. Since methyl transfer is between oxyanions, it is reasonable to estimate
that β = 0.5. Consequently, in aged AChE, methyl transfer will occur at least 100-fold more slowly
than in the model reaction. For the most reactive of the 2-methoxy-1-methypyridiniums of Figure 3,
which had a half-life of 20 min, this analysis predicts that in aged AChE the half-life will be at least
2000 min = 33 h, which is much too slow to be of use in a therapeutic context. It should be noted that
the aqueous pKa of methoxyl methanephosphonate has been used in this analysis for reactivity in the
model reaction in DMSO. It is well known that conjugate acid pKas of oxyanions are elevated in DMSO
versus aqueous solution, and therefore this analysis certainly underestimates the unreactivity of aged
AChE. Nonetheless, the general conclusion remains. Because the aged adduct is a close structural
mimic of the tetrahedral intermediate in the deacylation stage of catalysis, and of the transition states
leading to and from the intermediate, the intrinsic nucleophilic reactivity of the aged enzyme is
compromised by the elements of molecular recognition that have evolved as the catalytic power of
AChE has evolved.

3. Conclusions

The analysis discussed herein suggests that intrinsic unreactivity is a major factor in the inability
of medicinal chemists to find an antidote to aged AChE over the last 60 years. The challenge that this
problem presents is considerable. As discussed herein, the unreactivity of aged AChE is a result of the
evolution of the catalytic power of the enzyme itself. However, there is reason to be optimistic that
a solution to this conundrum will be found. An integrated effort that involves medicinal chemistry,
biochemistry, and computational chemistry may well reveal additional elements of molecular recognition,
reactivator design, and reactivator mechanism that experimenters can harness to produce agents that
can covalently modify aged AChE, albeit with sufficient reactivity to be useful in a therapeutic context.
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