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Introduction
The gut hormone glucose-dependent insulinotropic poly-
peptide (GIP), secreted postprandially from enteroendocrine 
K cells, has been linked to the aetiology of obesity-related type 
2 diabetes mellitus (T2DM) through its actions as a key regu-
lator of insulin secretion and lipid metabolism.1,2 Remarkably, 
in rodents both activation3,4 and inhibition5,6 of GIP receptors 
(GIPRs) have been associated with benefits in obesity. In 
addition, prolonged administration of a GIPR neutralizing 
antibody was shown to enhance the weight loss induced by 
glucagon-like peptide-1 (GLP-1), the sister incretin of GIP, 
in mice.7 In some contrast, a stable GIPR agonist was recently 
demonstrated to augment GLP-1-induced body weight 
reduction.8 Further to this, competitive inhibition of the 
GIPR by (Pro3)GIP had no additional impact on body weight 
when administered together with the GLP-1 receptor 
(GLP-1R) agonist, exendin-4, in mice.9 Taken together, it is 
clear from these rodent-based studies that there are still many 
unanswered questions as to the exact role of GIPR signalling 
in the pathophysiology of obesity.

Studies in humans have attempted to answer some of these 
uncertainties, but the picture is far from clear. Excess consump-
tion of fat is known to be a potent stimulus of GIP secretion.10 
As such, in obesity circulating GIP levels are elevated,11 which 
is believed to be partially linked to excessive deposition of 

visceral and subcutaneous fat. Thus, increased secretion and 
action of GIP can predispose individuals to obesity.12 In keep-
ing with this, bariatric surgery, the only proven method to 
result in sustained weight loss in humans, points to decreased 
GIP secretion as a primary beneficial metabolic effect of the 
surgical process.13-15 On the contrary, GIPR activation was 
recently evidenced to enhance the weight-reducing and appe-
tite suppressive effects of GLP-1 in T2DM patients.16,17 Yet in 
some contrast, GLP-1 infusion in obese men decreased energy 
intake, with simultaneous GIP infusion having no impact on 
this.18 This uncertainty in the physiological role, and potential 
therapeutic application, of GIP necessitates generation of use-
ful tools to provide unambiguous answers, such as specific and 
potent GIPR antagonists.

Fortunately, there have already been some advancements in 
this area. Several peptide-derived prospective GIPR antagonists 
have been produced, using N-terminally truncated GIP pep-
tides19-21 as well as amino acid substituted analogues.22-25 
Originally, human (h) h(Pro3)GIP was indicated as the lead 
candidate GIPR antagonist.26 Indeed, numerous studies have 
described beneficial weight-reducing effects of sustained 
h(Pro3)GIP administration in obese-diabetic rodents, linked  
to impairment of GIPR signalling,27,28 with no weight- 
reducing effects in normal mice.29 However, more recent 
research has revealed h(Pro3)GIP to be a partial GIPR 

Characterisation of Glucose-Dependent Insulinotropic 
Polypeptide Receptor Antagonists in Rodent Pancreatic 
Beta Cells and Mice

RA Perry, SL Craig , MT Ng, VA Gault, PR Flatt and N Irwin
SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, UK.

ABSTRACT: Hypersecretion and alterations in the biological activity of the incretin hormone, glucose-dependent insulinotropic polypeptide 
(GIP), have been postulated as contributing factors in the development of obesity-related diabetes. However, recent studies also point to weight-
reducing effects of GIP receptor activation. Therefore, generating precise experimental tools, such as specific and effective GIP receptor (GIPR) 
antagonists, is of key significance to better understand GIP physiology. Thus, the primary aim of the current study was to uncover improved GIPR 
antagonists for use in rodent studies, using human and mouse GIP sequences with N- and C-terminal deletions. Initial in vitro studies revealed 
that the GIPR agonists, human (h) GIP(1-42), hGIP(1-30) and mouse (m) GIP(1-30), stimulated (P < 0.01 to P < 0.001) insulin secretion from 
rat BRIN-BD11 cells. Analysis of insulin secretory effects of the N- and C-terminally cleaved GIP peptides, including hGIP(3-30), mGIP(3-30), 
h(Pro3)GIP(3-30), hGIP(5-30), hGIP(3-42) and hGIP(5-42), revealed that these peptides did not modulate insulin secretion. More pertinently, only 
hGIP(3-30), mGIP(3-30) and h(Pro3)GIP(3-30) were able to significantly (P < 0.01 to P < 0.001) inhibit hGIP(1-42)-stimulated insulin secretion. 
The human-derived GIPR agonist sequences, hGIP(1-42) and hGIP(1-30), reduced (P < 0.05) glucose levels in mice following conjoint injection 
with glucose, but mGIP(1-30) was ineffective. None of the N- and C-terminally cleaved GIP peptides affected glucose homeostasis when 
injected alone with glucose. However, hGIP(5-30) and mGIP(3-30) significantly (P < 0.05 to P < 0.01) impaired the glucose-lowering action of 
hGIP(1-42). Further evaluation of these most effective sequences demonstrated that mGIP(3-30), but not hGIP(5-30), effectively prevented GIP-
induced elevations of plasma insulin concentrations. These data highlight, for the first time, that mGIP(3-30) represents an effective molecule to 
inhibit GIPR activity in mice.

KeywoRDS: Glucose-dependent insulinotropic polypeptide (GIP), insulin secretion, glucose homeostasis, species specificity

ReCeIVeD: August 14, 2019. ACCePTeD: August 21, 2019.

TyPe: Peptide based Therapies in Diabetes - Original Article

FunDInG: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work was supported by a PhD 
studentship (awarded to RAP) from the Department for the Economy (DfE) Northern 
Ireland and University of Ulster strategic research funding.

DeClARATIon oF ConFlICTInG InTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPonDInG AuTHoR: SL Craig, SAAD Centre for Pharmacy and Diabetes, Ulster 
University, Coleraine, BT52 1SA, UK. Email: craig-s11@ulster.ac.uk

875453 END0010.1177/1179551419875453Clinical Medicine Insights: Endocrinology and DiabetesPerry et al
research-article2019

https://uk.sagepub.com/en-gb/journals-permissions
mailto:craig-s11@ulster.ac.uk


2 Clinical Medicine Insights: Endocrinology and Diabetes 

agonist,20 with species-specific activity also noted in different 
mammalian systems.30 In addition, (Pro3)GIP was also revealed 
to exert partial GIPR agonist activity in human embryonic kid-
ney cells,31 suggesting possible additional tissue-specific actions. 
Nonetheless, further work has identified hGIP(3-30) as a cred-
ible GIPR antagonist in humans,32,33 but not rodents.34 Given 
that much knowledge on the physiology of GIP stems from 
work in rodents, such as rats and especially mice, it is vitally 
important that a potent and specific GIPR antagonist be devel-
oped for these species studies. Therefore, the present study aims 
to assess the GIPR antagonistic characteristics of various N- 
and C-terminally truncated GIP peptides, of both human (h) 
and mouse (m) lineage, in a rodent pancreatic beta cell line and 
mice. We focused predominantly on human sequences for pos-
sible translation of observations to the human setting. However, 
the current results suggest that mouse-derived GIP sequences 
are likely to provide more effective GIPR antagonists for rodent 
studies than human sequence counterparts.

Materials and Methods
Peptides

All peptides (Table 1) were purchased from Syn Peptide 
(Shanghai, China) at greater than 95% purity. In-house confir-
mation of peptide purity and molecular weight was carried out 
by Reversed-phase high-performance liquid chromatography 
(RP-HPLC) and matrix-assisted laser desorption/ionization–
time-of-flight mass spectrometry (MALDI-ToF MS), as pre-
viously described.35

Acute effects of peptides on in vitro insulin secretion 
from BRIN-BD11 cells

The in vitro insulin secretory activity of test peptides was 
examined in BRIN-BD11 cells, cultured and maintained as 
previously described.36 For experimentation, BRIN-BD11 
cells were seeded in 24-well plates at a cell density of 150 000 
cells/well and allowed to attach overnight at 37°C. Following 
preincubation with Krebs-Ringer bicarbonate buffer (KRBB) 
(pH 7.4) supplemented with 0.5% (w/v) bovine serum albumin 
and 1.1 mM glucose (40 min; 37°C), cells were then incubated 
with hGIP(1-42), hGIP(1-30) and mGIP(1-30) (10-6 to 10-12 
M) at 5.6 mM glucose for 20 minutes, to confirm GIPR ago-
nist activity. Importantly, we have routinely shown that 5.6 
mM glucose has stimulatory effects in BRIN-BD11 cells, 
which are significantly augmented by GIP.19,20,22,23,26 In a sepa-
rate set of experiments, cells were seeded as before and incu-
bated with N- and C-terminally truncated human and mouse 
GIP test peptides (10-12 to 10-6 M), namely hGIP(3-30), 
mGIP(3-30), h(Pro3)GIP(3-30), hGIP(5-30), hGIP(3-42) 
and hGIP(5-42), alone and in the presence of hGIP(1-42) (10-

7 M) at 5.6 mM glucose for 20 minutes. Following 20-minute 
test incubations, aliquots of assay buffer (200 μL) were col-
lected and stored at –20°C prior to assessment of insulin con-
centrations by an in-house radioimmunoassay (RIA).37

Animals

All animal studies were carried out using male NIH Swiss mice 
(12-14 weeks of age, Envigo Ltd, UK), housed individually in 
an air-conditioned room at 22 ± 2°C with a 12 -hour 
light:12 -hour dark cycle. Animals were maintained on a stand-
ard rodent chow diet (10% fat, 30% protein and 60% carbohy-
drate, Trouw Nutrition, UK), with ad libitum access to diet and 
water. All animal experiments were carried out in accordance 
with the UK Animal Scientific Procedures Act 1986 and 
approved by the University of Ulster Animal Welfare and 
Ethical Review Body (AWERB).

Acute effects on glucose tolerance in mice

Blood glucose and plasma insulin concentrations, where appro-
priate, were determined immediately prior to and 15, 30 and 60 
minutes after intraperitoneal injection of glucose control (18 
mmol/kg bw), as well as glucose together with N- and 
C-terminally truncated GIP peptides (50 nmol/kg bw) alone, 
or in combination with hGIP(1-42) (50 nmol/kg bw), in 
4-hour fasted mice.

Biochemical analysis

An incision to the tail vain of conscious mice was used to 
obtain blood samples for biochemical analysis. Blood glucose 
was measured directly by an Ascencia Contour glucose metre 
(Bayer, Newbury, UK). For plasma insulin analyses, blood sam-
ples were collected into chilled fluoride/heparin glucose micro-
centrifuge tubes (Sarstedt, Numbrecht, Germany) and 
immediately centrifuged using a Beckman microcentrifuge 
(Beckman Instruments, Galway, Ireland) for 1 minute at 13 
000 × g and stored at –20°C prior to insulin RIA.37

Statistical analysis

GraphPad PRISM (Version 5) was used for statistical analyses. 
Results are expressed as mean ± standard error of mean, and 
data compared by 1-way analysis of variance (ANOVA) fol-
lowed by Student-Newman-Keuls post hoc test or 2-way 
ANOVA followed by Bonferroni posttests or unpaired Student 
t test, where appropriate. Incremental area under the curve 
(AUC) data were calculated using the trapezoidal rule with 
baseline subtraction. Significant difference was considered 
between data sets with P < 0.05.

Results
Effects of hGIP(1-42), hGIP(1-30) and mGIP(1-
30) on insulin release from BRIN-BD11 cells

Figure 1 demonstrates the abilities of hGIP(1-42), as well as 
the C-terminally truncated human and mouse GIP forms, 
hGIP(3-30) and mGIP(3-30), to stimulate insulin secretion 
from BRIN-BD11 cells at 5.6 mM glucose. hGIP(1-42) and 
mGIP(1-30) significantly increased (P < 0.01 to P < 0.001) 
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insulin secretion at concentrations of 10-8 M and above 
(Figure 1). hGIP(1-30) was less potent, with significant aug-
mentation of insulin secretion above control levels only 
observed at 10-6 M peptide incubations (Figure 1). In addition, 
mGIP(1-30) was more efficacious (P < 0.05 to P < 0.01) than 
hGIP(1-30) and hGIP(1-42) at 10-8 and 10-6 M (Figure 1).

Effects of N- and C-terminally truncated human 
and mouse GIP peptides on secretion from BRIN-
BD11 cells

None of the N- and C-terminally truncated human and mouse 
GIP peptides, hGIP(3-30), mGIP(3-30), h(Pro3)GIP(3-30), 
hGIP(5-30), hGIP(3-42) and hGIP(5-42), stimulated insulin 
secretion from BRIN-BD11 cells at 5.6 mM glucose (Figure 
2A to F). However, hGIP(3-30), mGIP(3-30) and h(Pro3)
GIP(3-30) significantly (P < 0.01 to P < 0.001) inhibited 
hGIP(1-42)-stimulated elevations of insulin secretion under 
these conditions (Figure 2A to C). None of these peptides com-
pletely annulled the insulin secretory effects of hGIP(1-42) 
(Figure 2A to C). In contrast, hGIP(5-30), hGIP(3-42) and 
hGIP(5-42) were completely ineffective in terms of reducing 
10-7 M hGIP(1-42) induced insulin release (Figure 2D to F).

Effects of hGIP(1-42), hGIP(1-30) and mGIP(1-30)  
on glucose homeostasis in mice

As expected, hGIP(1-42) induced significant (P < 0.05 to 
P < 0.01) reductions in individual and 0 to 60-minute overall 
AUC glucose values when administered conjointly with glucose 
to mice (Figure 3A and B). hGIP(1-30) had similar beneficial 
(P < 0.05) glucose-lowering actions, whereas mGIP(1-30) was 
devoid of glucose homeostatic effects (Figure 3A and B). 

Figure 2. Effects of N- and C-terminally truncated GIP peptides alone or in combination with hGIP(1-42) (10-7 M) on insulin release from BRIN-BD11 cells.
BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 M) alone or in combination with hGIP(1-42) (10-7 M) in the presence of 5.6 mM glucose. Insulin 
was measured by RIA. Values are mean ± standard error of mean (n = 8) for insulin release.
Abbreviations: GIP indicates glucose-dependent insulinotropic polypeptide; hGIP, human glucose-dependent insulinotropic polypeptide; mGIP, mouse glucose-dependent 
insulinotropic polypeptide.
***P < 0.001 compared with relevant glucose alone. ∆∆P < 0.01, ∆∆∆P < 0.001 compared with hGIP(1-42).

Figure 1. Effects of hGIP(1-42), hGIP(1-30) and mGIP(1-30) on insulin 

release from BRIN-BD11 cells.
BRIN-BD11 cells were incubated (20 min) with test peptides (10-12 to 10-6 M) in 
the presence of 5.6 mM glucose. Insulin was measured by radioimmunoassay. 
Values are mean ± standard error of mean (n = 8) for insulin release.
Abbreviations: hGIP indicates human glucose-dependent insulinotropic 
polypeptide; mGIP, mouse glucose-dependent insulinotropic polypeptide.
**P < 0.01, ***P < 0.001 compared with 5.6 mM glucose alone. ∆P < 0.05, 
∆∆P < 0.01, ∆∆∆P < 0.01 compared with mouse GIP(1-30).
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Figure 3. Effects of hGIP(1-42), hGIP(1-30) and mGIP(1-30) on glucose tolerance in mice. Blood glucose concentrations (A) were measured before and 

15, 30 and 60 minutes after intraperitoneal injection of glucose alone (18 mmol/kg bw), or in combination with test peptides (each at 50 nmol/kg bw) in 

fasted mice. (B) Blood glucose area under the curve (AUC) values for 0 to 60 minutes post injection.
Abbreviations: AUC indicates area under the curve; hGIP, human glucose-dependent insulinotropic polypeptide; mGIP, mouse glucose-dependent insulinotropic 
polypeptide.
Values represent means ± standard error of mean (n = 5-6). *P < 0.05, **P < 0.01 compared with glucose alone.

hGIP(1-42) appeared to be marginally the most effective glu-
cose-lowering agent in mice (Figure 3A and B). Thus, the abil-
ity of the six N- and C-terminally truncated human and mouse 
GIP peptides to inhibit the glucose homeostatic actions of 
hGIP(1-42) was next assessed.

Effects of N- and C-terminally truncated human 
and mouse GIP peptides on GIP-induced glucose 
homeostasis and insulin secretion in mice

While administration of hGIP(3-30), h(Pro3)GIP(3-30), 
hGIP(3-42) or hGIP(5-42) in combination with hGIP(1-42) 
was associated with marginal inhibitory effects on hGIP(1-
42)-mediated improvements of glucose homeostasis, this failed 
to reach significance in terms of individual or overall glucose 
levels (Figure 4A, C, E and F). Notably, only mGIP(3-30) and 
hGIP(5-30) were effective (P < 0.05 to P < 0.01) in terms of 
completely annulling 0 to 60-minute overall hGIP(1-42)-in-
duced reductions in blood glucose levels (Figure 4B and D). 
As such, the ability of both peptides to counter GIP-induced 
elevations of insulin secretion was also examined (Table 2). 
mGIP(3-30) completely prevented any increase of insulin 
secretion by hGIP(1-42), whereas plasma insulin concentra-
tions increased by 14% when hGIP(5-30) was administered in 
combination with hGIP(1-42) to mice (Table 2).

Discussion
Recent work has revealed hGIP(3-30) as an efficacious GIPR 
antagonist in humans.33 This accords with the view that only 
amino acids from position 3-30 of GIP are necessary for GIPR 
binding.21 However, the same research group has also estab-
lished that hGIP(3-30) is selective for primate, but not rodent, 
GIPRs.34 Given the plethora of potentially translatable infor-
mation acquired from GIP studies conducted in rodents, and 
particularly mice, it is imperative to determine an effective 

GIPR antagonist for such rodent-based studies. Indeed, 
because GIP is regarded as the major physiological incretin 
hormone in man,38 as suggested over 15 years previously in 
rodents,26 the need is even more imperative.

In terms of GIPR agonism, the first two N-terminal amino 
acids of GIP are known to be essential for agonist properties.21 
In keeping with this, and the idea that only amino acids 3-30 
are required for GIPR interaction, several studies have estab-
lished hGIP(1-30) as a full GIPR agonist at rat39-41 and 
human30 receptors. This is despite knowledge that the final 12 
C-terminal amino acid residues of GIP are believed to enhance 
intrinsic receptor activity.19 However, GIP(1-30) is expressed 
in pancreatic α-cells and within some GIP-producing intesti-
nal K cells,42 suggesting physiological importance. In keeping 
with this, hGIP(1-30) and mGIP(1-30) augmented insulin 
secretion from the rodent-derived BRIN-BD11 pancreatic 
beta cell line in the current study. However, in mice, mGIP(1-
30) appeared to be ineffective in terms of regulating glucose 
homeostasis, whereas both hGIP(1-42) and hGIP(1-30) dis-
played good bioactivity. This was unexpected, especially given 
the reported species specificity of the GIPR signalling sys-
tem.21,30 Moreover, mGIP(1-30) is naturally expressed in 
mice42 and long-acting forms display good bioactivity when 
administered subchronically to diabetic mice43,44; thus, our 
observations could relate to the strain of mouse or peptide dose 
employed. Nonetheless, together this suggests that omission of 
the 31-42 C-terminal sequence of GIP should have no detri-
mental effect on GIPR interaction of prospective antagonistic 
GIP-derived peptide sequences.

Consistent with this view, the current study demonstrated 
that GIP peptides retaining C-terminal residues 31-42, 
namely hGIP(3-42) and hGIP(5-42), were unable to counter 
GIP-induced insulin secretion in vitro, or GIP-mediated 
reductions in glucose levels in mice. Interestingly, GIP(3-42) 
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Figure 4. Effects of N- and C-terminally truncated GIP peptides on glucose tolerance and GIP-mediated reductions of blood glucose in mice.
Blood glucose concentrations (A-F) were measured before and 15, 30, and 60 minutes after intraperitoneal injection of glucose alone (18 mmol/kg bw), or in combination 
with test peptides or test peptides combined with hGIP(1-42) (each peptide at 50 nmol/kg bw) in fasted mice. Blood glucose AUC values for 0 to 60 minutes post injection 
are shown in insets.
Abbreviations: AUC indicates area under the curve; GIP, glucose-dependent insulinotropic polypeptide; hGIP, human glucose-dependent insulinotropic polypeptide; mGIP, 
mouse glucose-dependent insulinotropic polypeptide.
Values represent means ± standard error of mean (n = 5-6). *P < 0.05, **P < 0.01 compared with glucose alone. ∆P < 0.05, ∆∆P < 0.01 compared with hGIP(1-42).
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represents the naturally occurring dipeptidyl peptidase-4 
(DPP-4) degradation product of GIP(1-42) and is recog-
nised to circulate at relatively high levels in the bloodstream.45 
It was initially considered as a probable GIPR antagonist and 
postulated to physiologically moderate the insulin secreting 
and metabolic actions of GIP in vivo.46 However, the GIP 
inhibitory effects of hGIP(3-42) are weak, as described here 
and elsewhere,47 discounting it as a pharmacologically useful 
GIPR antagonistic. Given the above, it may be expected that 
GIP(3-30) should also be discoverable in the circulation, 
given the ubiquitous expression of DPP-4,48 but surprisingly 
this has yet to be confirmed. Nonetheless, mGIP(3-30) and 
hGIP(3-30), as well as h(Pro3)GIP(3-30), countered the 
insulinotropic action of GIP in vitro. Thus, although (Pro3)
GIP(1-42) was shown to have agonist activity at hGIP recep-
tors,30 it is considered a competitive antagonist at rat and 
mGIP receptors.20,30 In the same experimental setting, 
hGIP(5-30) was less effective, despite suggestion that it func-
tions as a high-affinity competitive GIPR antagonist.21 
However, such differences could be related to the reported 
species- or tissue-specific actions of GIP peptides.30,31 As 
such, substitution of histidine in human GIP, for arginine in 
mouse and rat GIP at position 18, could have some impor-
tance in terms of modulation of the GIPR in our experimen-
tal systems. In addition, assessment of receptor binding 
affinities of the peptides may also help to further understand 
any differences in GIPR inhibitory activity.

When administered conjointly with GIP to mice, only 
mGIP(3-30) and hGIP(5-30) fully countered the glucose-
lowering action of GIP. Interestingly, hGIP(3-30) and hGIP(5-
30) have previously been identified as competitive antagonists 
of the human GIPR.21 Given the primary physiological action 
of GIP is glucose-dependent insulin secretion,49 we further 
investigated the ability of mGIP(3-30) and hGIP(5-30) to 
modulate this response in mice. In keeping with species speci-
ficity of GIP-mediated biological actions,30 only mGIP(3-30) 

effectively prevented GIP-induced elevations of insulin secre-
tion in mice. Thus, hGIP(5-30) is perhaps less useful as a 
GIPR antagonist in murine systems. Indeed, rat GIP(3-30) is 
recognised as a high affinity competitive antagonist at the level 
of the rat, but not human, GIPR.32 It may also have been inter-
esting to consider the effect of mGIP(3-30) and hGIP(5-30) 
on GIP-induced glucagon secretion,50 and further studies in 
this regard would be required.

As well as being useful tools to enable better understanding 
of GIP physiology, there is important possible therapeutic 
application of GIPR antagonists for obesity.12 For instance, 
studies employing GIPR blockade in rodents through genetic 
deletion of the GIPR,51,52 active or passive immunisation,7,9,53 
small molecular weight receptor antagonists54,55 or peptide-
based GIP inhibitors19,20,23,56 all provide clear evidence for anti-
obesity effects of attenuation of GIPR signalling. In humans, 
GIP induces cytokine expression, lipolysis and insulin resist-
ance in adipocytes,57 and hGIP(3-30) inhibits GIP-induced 
increases in abdominal adipose tissue blood flow and decreases 
adipose tissue triacylglyceride uptake.58,59 Furthermore, knowl-
edge that highly effective bariatric weight loss surgeries are, in 
part, linked to surgical removal of GIP-secreting K cells and 
compromised GIP secretion13,14 strongly suggests translatable 
benefits of GIPR antagonists for human obesity. Notably, the 
dose of GIPR antagonists employed for the current study is well 
beyond normal circulating levels of GIP,60 implying that such 
regimens would effectively annul the biological actions of 
endogenously released GIP.

In conclusion, the current studies support the concept of 
species-specific activity of GIP in different mammalian sys-
tems.21,30,32,34 Given the potential therapeutic application of 
peptide-based GIPR antagonists in human obesity and diabe-
tes,61 the origin of such GIP peptides needs to be carefully con-
sidered. In this regard, we present mGIP(3-30) as a highly 
effective molecule to inhibit GIPR activity in mice. Utilisation 
of mGIP(3-30) for murine studies should better reflect the 
expected impact of GIPR inhibition with human GIP 
sequences, such as hGIP(3-30), in the human setting.
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