META-ANALYSIS

Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis

Wentao Hu^{1,2} | Hongyu Liu² | Ze Li² | Jialin Liu² | Ling Chen²

¹School of Medicine, Nankai University, Tianjin, China

²Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China

Correspondence

Ling Chen and Jialin Liu, Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Chinese PLA Institute of Neurosurgery, Beijing 100853, China. Emails: chen_ling301@163.com; liu_00174@163.com

Funding information

This study was supported by the Youth Program of the Natural Science Foundation of Hainan Province of China. Grant/Award Number: 8210N388: National Natural Science Foundation of China, Grant/Award Number: 81672824, 82,172,680, and U20A20380; and the Key Research and Development Program of Liaoning Province, Grant/Award Number: 2019JH2/10300036

Abstract

Background: Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors.

Methods: A quantitative meta-analysis was conducted using the random-effects model. Several potential factors were also reviewed qualitatively.

Results: A total of 39 clinical trials were included after screening 1317 papers. Patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [hazard ratio (HR) for overall survival (OS) = 2.30, p < 0.0001; HR for progression-free survival (PFS) = 2.10, p < 0.0001], gross total resection (HR for OS = 0.70, p = 0.02; HR for PFS = 0.56, p = 0.004), and no baseline steroid use (HR for OS = 0.52, p = 0.0002; HR for PFS = 0.61, p = 0.02) had a relatively significant favorable OS and PFS following immunotherapy. Patients with a Karnofsky Performance Status score < 80 (HR = 1.73, p = 0.0007) and undergoing two prior relapses (HR = 2.08, p = 0.003) were associated with worse OS. Age, gender, tumor programmed death-ligand 1 expression, and history of chemotherapy were not associated with survival outcomes. Notably, immunotherapy significantly improved the OS among patients undergoing two prior recurrences (HR = 0.40, p = 0.008) but not among patients in any other subgroups, as opposed to non-immunotherapy.

Conclusion: Several factors were associated with prognostic outcomes of GBM patients receiving immunotherapy; multiple recurrences might be a candidate predictor. More marker-driven prospective studies are warranted.

KEYWORDS

glioblastoma multiforme, immunotherapy, meta-analysis, predictive factor

Wentao Hu, Hongyu Liu, and Ze Li are co-first authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

1 | INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and aggressive central nervous system malignancy with an age-adjusted incidence of approximately 3–4 per 100,000 population per year.¹ The median overall survival (OS) of newly diagnosed GBM is about 15–17 months under the standard of care (SOC) including maximal safe surgical resection or a diagnostic biopsy, followed by concurrent chemoradio-therapy and maintenance of temozolomide (TMZ).^{2,3} There is still no SOC for recurrent or progressive GBM. To further prolong the survival and improve the life quality of patients with GBM, a large body of emerging treatment modalities based on the SOC is being investigated, including but not limited to tumor-treating fields, monoclonal targeted antibodies, small molecule inhibitors, and immunotherapies.^{4–7} However, despite numerous attempts, no material improvements have been made in the prognosis of patients with GBM.

Immunotherapy, which targets cancer cells through activating the host antitumor immune response, is regarded as a cancer treatment breakthrough.⁸ Furthermore, many clinical trials have been designed to assess the effectiveness of immunotherapies, including immune checkpoint inhibitors (ICI), vaccines, adoptive cellular therapies (ACT), oncolytic viral treatment, and others, for both newly diagnosed and recurrent GBM.⁹⁻¹² Despite exciting improvements seen for other cancers, many phase III clinical trials of immunotherapy in GBM have failed upon comparing the patients who received this treatment versus those who did not; there remains no FDA-approved GBM immunotherapy to date.¹³ Of note, a subset of patients in these clinical trials could derive clinical benefits from immunotherapy; thus, uncovering predictive markers that could be used to gauge efficacy before treatment implementation is important to the development of immunotherapy in the treatment of GBM.

The predictive utility of a number of biomarkers for immunotherapy has been identified. Tumor programmed death-ligand 1 (PD-L1) expression, tumor-infiltrating lymphocytes (TILs), and tumor mutation burden (TMB), etc., are used as indicators of clinical efficacy for ICI-based immunotherapy.¹⁴ However, studies concerning the predictors of immunotherapy for GBM are limited to date and yield contentious results; thus, there is an urgent need to summarize and uncover robust and effective factors to distinguish which patients would benefit from immunotherapy.¹⁵⁻¹⁸

To shed some light on this issue, we conducted a systematic review and meta-analysis to summarize and test the predictive value of multiple molecular and clinical variables on survival outcomes of GBM patients treated with immunotherapy.

2 | METHODS

2.1 | Search strategy

This systematic review and meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-p) 2015 Statement.¹⁹ The protocol was registered in the Prospective Register of Systematic Reviews (PROSPERO CRD42021284820). We retrieved relevant papers from several electronic databases, including PubMed, EMBASE, Cochrane Library, Web of Science, and ClinicalTrials.gov database, from inception to February 1, 2022, using the following search terms: ("GBM" OR "glioblastoma" OR "glioblastoma multiforme" OR "astrocytoma") AND ("immunother*" OR "immuno-oncology" OR "checkpoint inhibitor" OR "checkpoint blockade" OR "PD-1" OR "PD-L1" OR "CTLA-4" OR "vaccin*" OR "virus" OR "adoptive cell" OR "chimeric antigen receptor" OR "car-t") AND ("clinical study" OR "trial"). The reference lists of relevant publications were also checked for potentially eligible studies.

2.2 | Study selection

Two reviewers independently (Hu and Liu) used eligibility criteria to select and extract data. Disagreements were resolved by discussion with a third reviewer (Chen). The following inclusion criteria were used: (1) studies that enrolled, entirely or partially, patients with histologically confirmed GBM (newly diagnosed or recurrent) treated by immunotherapy; (2) studies that reported on clinical outcomes of OS or progression-free survival (PFS) with clinical and molecular variables measured before immunotherapy implementation; and (3) randomized controlled trials or non-randomized trials with at least five patients per group. Excluded studies were those failing to comply with the eligibility criteria and in accordance with the following criteria: (1) studies performed in animals; (2) studies that completely focused on variables detected from patients after immunotherapy; (3) studies that comprised patients with prior receipt of immunotherapy; and (4) clinical trials with insufficient data, observational studies, and reviews, editorials, letters, and case reports. In addition, studies of exploratory or retrospective analysis in relation to predictive factors based on clinical trial data were included, but retrospective observational studies were excluded.

2.3 | Data extraction

The baseline characteristics of included studies and patients were extracted as follows: authors, publication time, clinical trial design, median follow-up time, sample size, GBM diagnosis, immunotherapy type, and survival outcomes of the prespecified subgroups. The primary outcome was OS, and the secondary outcome was PFS. The treatment response data were not extracted owing to limited relevant studies. When the necessary data for analysis were not available, we contacted corresponding authors by email to request unpublished data.

2.4 | Risk-of-bias assessments

Quality assessment of randomized controlled trials was performed using RoB 2, a revised tool for measuring the Cochrane

risk of bias, which comprises five distinct domains and an overall risk-of-bias judgment. It grades studies as "low risk of bias," "some concerns," or "high risk of bias."²⁰ For non-randomized trials, methodological index for non-randomized studies (MINORS) was utilized, which contains 8 items and 12 items for non-comparative studies and comparative studies, respectively (scoring 0–2 for each item).²¹

2.5 | Statistical analysis

Analyses were conducted using R version 4.1.1 (R Core Team). Statistical significance was set at p < 0.05. If not available directly, hazard ratio (HR) and 95% confidence interval (CI) for OS or PFS of the individual study were estimated using number of events, p-value, K-M curve, median survival, or other data from the original study.^{22,23} The data were synthesized by random-effects model, and variation was estimated using the DerSimonian–Laird method and Jackson method.²⁴ Inconsistencies among studies were assessed using an l^2 quantity and the Q test (significant p < 0.10).²⁵ We also reported stratified pooled outcomes by GBM diagnosis, type of immunotherapy, and study design.

To avoid exaggerated effect sizes and to investigate how each study influenced the overall estimate, we performed a leave-oneout analysis. To address publication bias, we used both the visual method of contour-enhanced funnel plot and the quantitative approach of Eggers' regression to detect publication bias when the included studies were >10.^{26,27} Otherwise, the trim-and-fill method was applied to evaluate publication bias.²⁸

3 | RESULTS

3.1 | Study characteristics and baseline

A total of 1317 papers were identified, and 39 studies were included for quantitative synthesis as shown in the PRISMA flow diagram (Figure 1). The selected 39 studies demonstrated a total of 4488 GBM patients.^{10,29-66} Of the 39 studies, 19 reported on newly diagnosed GBM, 15 reported on recurrent GBM, and 4 included both. The median follow-up time of included studies ranged from 7.7 to 27.6 months. ICI was implemented in 8 studies; vaccines in 24 studies, including dendritic cell (DC) vaccines and peptide vaccines; ACT in 3 studies; and oncolytic virus treatment in 4 studies. The main baseline characteristics of the included studies are summarized in Table 1. Quality assessment was performed for both included randomized and non-randomized trials, as shown in Tables S1 and S2.

3.2 | O-6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation

Pooling results from 18 cohorts demonstrated a statistically significant mortality disadvantage of carrying MGMT promoter unmethylation versus MGMT promoter methylation (HR = 2.30, 95% Cl: 1.90–2.78, p <0.0001) among GBM patients receiving immunotherapy (Figure 2A). Stratified analysis by different baseline characteristics showed a consistent correlation of MGMT promoter unmethylation with a worse OS in all subgroups (Table 2). Furthermore, meta-analysis of 10 cohorts indicated a significant

FIGURE 1 Study selection flow diagram

association of worse PFS with MGMT promoter unmethylation versus methylation (HR = 2.10, 95% CI: 1.45–3.03, p <0.0001) (Figure 3A). In addition, eight cohorts explored the efficacy of immunotherapy over non-immunotherapy among patients with different MGMT promoter methylation statuses. When compared to the non-immunotherapy control group, no significant association was seen between the use of immunotherapy and OS among patients with MGMT methylation (HR = 0.79, 95% CI: 0.53–1.19) and those without MGMT methylation (HR = 1.14, 95% CI: 0.97– 1.33) (Figure S1A). However, a trend was seen in OS difference in that immunotherapy seemed to predict a better OS in the MGMT methylation subgroup, although it did not reach significance (p = 0.10) (Figure S1A).

3.3 | Gross total resection

A total of 11 cohorts reported on the association between OS and the extent of resection in GBM patients receiving immunotherapy. Pooled results showed that gross total resection (GTR) was associated with a statistically significant better OS in comparison with the non-GTR group (HR = 0.70, 95% CI: 0.52-0.95, p = 0.02) (Figure 2B). However, inconsistent results from further subgroup analysis revealed that only in the subsets of patients with newly diagnosed GBM and vaccine-based immunotherapy, was GTR significantly associated with a better OS (Table 2). By pooling the results of seven cohorts reporting on PFS, GTR was also associated with a significantly prolonged PFS compared with that of the non-GTR group (HR = 0.56, 95% CI: 0.38–0.83, p = 0.004) (Figure 3B). In addition, three randomized trials were included for meta-analysis of the immunotherapy experiment group versus non-immunotherapy control group. Immunotherapy did not significantly improve OS in GTR patients (HR = 0.62, 95% CI: 0.25-1.54) nor in non-GTR patients (HR = 0.60, 95% CI: 0.28-1.30) in comparison with nonimmunotherapy, but a significant heterogeneity was observed (Q test, p < 0.01) (Figure S1B).

3.4 | Baseline steroid use

Meta-analysis of nine cohorts demonstrated that the non-steroid group correlated with a significantly favorable OS in comparison with that of the steroid group in GBM patients treated with immunotherapy (HR = 0.52, 95% CI: 0.37-0.74, p = 0.0002) (Figure 2C). Stratified analysis showed that no significant association was observed in subgroups of patients with newly diagnosed GBM, in those receiving a vaccine, and in non-randomized studies (Table 2). In terms of PFS, a significant association between the absence of baseline steroid use and improved PFS was observed (HR = 0.61, 95% CI: 0.40-0.93, p = 0.02) (Figure 3C). Additionally, four randomized studies investigated the OS of patients treated with immunotherapy according to baseline steroid use. No significant difference was found

in OS of the immunotherapy group over the control group among patients without (HR = 0.94, 95% CI: 0.73-1.22) or with (HR = 1.01, 95% CI: 0.66-1.54) baseline steroid use (Figure S1C).

3.5 | Karnofsky Performance Status

A total of 10 cohorts reported on the association between OS and Karnofsky Performance Status (KPS) score in GBM patients treated with immunotherapy, and the combined results showed a significant disadvantageous OS in patients with KPS \leq 80 versus those with KPS >80 (HR = 1.73, 95% Cl: 1.26–2.38, *p* = 0.0007) (Figure 2D). The subgroup analysis demonstrated that the significant association was retained in all subsets except for the subgroup receiving the vaccine (Table 2). After combining the results of five cohorts reporting on PFS, no significant difference in PFS was observed between patients with a KPS \leq 80 and >80 (HR = 1.29, 95% Cl: 0.73–2.26) (Figure 3D). In the further meta-analysis of immunotherapy versus control, integrating results from four studies, a favorable OS was not achieved by immunotherapy compared with the control treatment, irrespective of KPS scores according to \leq 80 and >80 (Figure S1D).

3.6 | Number of prior relapses

Pooling results of four cohorts reporting on recurrence frequency in GBM patients treated with immunotherapy showed a significantly worse OS of patients who had a previous recurrence twice versus once (HR = 2.08, 95% CI: 1.28-3.39, p = 0.003) (Figure 2E); no significant heterogeneity was observed ($l^2 = 22\%$, Q test, p = 0.28). Remarkably, immunotherapy significantly improved OS in patients with two prior recurrences (HR = 0.40, 95% CI: 0.20-0.79, p = 0.008), but not in patients with one prior recurrence (HR = 0.96, 95% CI: 0.69-1.34) compared with the control treatment, although only two studies were available for this analysis (Figure 4).

3.7 | Tumor PD-L1 expression

A total of five cohorts reported on the tumor PD-L1 expression in GBM patients treated with immunotherapy, including 5 for OS and 2 for PFS. The pooled results showed a nonsignificant difference in OS (HR = 1.10, 95% Cl: 0.66–1.84; Figure S2A) and PFS (HR = 0.86, 95% Cl: 0.39–1.90; Figure S3A) when comparing PD-L1-positive and PD-L1-negative groups. A nonsignificant association was observed in all subgroups (Table 2). Three randomized clinical trials explored the efficacy of immunotherapy versus the control in patients with different tumor PD-L1 expression statuses. The pooled results did not reach a significant difference in OS, both among tumor PD-L1-positive patients (HR = 0.40, 95% CI: 0.08–1.94) and tumor PD-L1-negative patients (HR = 0.47, 95% CI: 0.17–1.31); a significant heterogeneity was observed (Q test, p < 0.01) (Figure S4A).

	-								
Study	Trial	Phase	Randomization	Size (n)	median FU (m)	GBM	IMT	Stratification	Outcomes
Reardon et al. (2020) ⁵³	NCT02017717	≡	Yes	369	9.8	Recurrent	ICI-nivolumab	MGMT, resection, KPS, steroid, PD-L1	OS
Liau et al. (2018) ¹⁰	NCT00045968	≡	Yes	331	N/A	Newly	DCs-DCVaxL	MGMT	SO
Nayak et al. (2021) ⁴⁹	NCT02337491	=	Yes	80	N/A	Recurrent	ICI-pembrolizumab	MGMT, steroid, KPS, age, gender, resection, PD-L1, recurrence	OS
Inogés et al. (2017) ⁴²	NCT01006044	=	No	31	N/A	Newly	DCs-tumor lysate	MGMT, KPS, age, gender, resection	OS
Ardon et al. (2012) ³¹	HGG-2006	1/11	No	77	25	Newly	DCs-tumor lysate	MGMT, resection	OS, PFS
Bloch et al. (2017) ³⁴	NCT00905060	=	No	46	N/A	Newly	Vaccine-HSPPC-96	MGMT, KPS	OS, PFS
Ahluwalia et al. (2016)	NCT02455557	=	No	63	21.7	Newly	Vaccine-SurVaxM	MGMT	OS, PFS
Smith et al. (2020) ⁶⁰	ACTRN12615000656538	I/II	No	28	N/A	Newly	ACT-CMV-specific	MGMT, gender	SO
Batich et al. (2017) ³²	NCT00639639	1/11	No	14	N/A	Newly	DCs-CMV pp65	MGMT	OS, PFS
Pellegatta et al. (2018) ⁵⁰	DENDR1	=	No	24	17.4	Newly	DCs-tumor lysate	MGMT, steroid, KPS, gender	OS, PFS
Ishikawa et al. (2014) ⁴³	UMIN000001426	I/IIa	No	24	19.6	Newly	Vaccine-AFTV	MGMT, gender, resection	OS, PFS
Schuster et al. (2015) ⁵⁹	ACT III	=	No	81	N/A	Newly	Vaccine-CDX 110	MGMT	OS, PFS
Jan et al. (2018) ⁴⁵	N/A	=	Yes	47	N/A	Newly	DCs-tumor lysate	MGMT, gender, resection, PD-L1, chemotherapy	OS, PFS
Schalper et al. (2019) ⁵⁸	NCT02550249	=	No	30	N/A	both	ICI-nivolumab	MGMT, age, gender, resection	OS, PFS
Sampson et al. (2010) ⁵⁶	NCT00643097	=	No	18	N/A	Newly	Vaccine-PEPvIII	MGMT, gender, resection, KPS	OS, PFS
Aoki et al. (2021) ³⁰	JapicCTI-152,967	=	No	44	N/A	Recurrent	ICI-nivolumab	MGMT, KPS, PD-L1	SO
Desjardins et al. (2018) ³⁸	NCT01491893	_	No	61	27.6	Recurrent	OV-PVSRIPO	MGMT, age, recurrence	SO
Izumoto et al. (2008) ⁴⁴	N/A	=	No	21	N/A	Recurrent	Vaccine-WT1	steroid, KPS, gender, chemotherapy	OS, PFS
Pellegatta et al. (2013) ⁵¹	N/A	_	No	15	8	Recurrent	DCs-tumor lysate	steroid, gender	OS, PFS
Lukas et al. (2018) ⁴⁶	NCT01375842	la I	No	16	N/A	Recurrent	ICI-atezolizumab	steroid	OS, PFS
Cloughesy et al. (2019) ³⁶	N/A	N/A	Yes	35	15.6	Recurrent	ICI-pembrolizumab	steroid	OS, PFS
Dillman et al. (2009) ⁴⁰	NCT00331526	=	No	33	N/A	Recurrent	ACT-LAK	steroid, chemotherapy	SO
Muragaki et al. (2011) ⁴⁷	UMINC000000002	I/IIa	No	24	19	Newly	Vaccine-AFTV	KPS, age, gender, resection	OS, PFS
Geletneky et al. (2017) ⁴¹	NCT01301430	I/IIa	No	18	N/A	Recurrent	OV-ParvOryx	gender, KPS, age	OS, PFS
Takashima et al. (2016) ⁶¹	N/A	=	No	60	N/A	Recurrent	Vaccine–WT1	gender, chemotherapy	OS
Bloch et al. (2013)	NCT00293423	=	No	41	N/A	Recurrent	Vaccine-HSPPC 96	gender	OS
Rudnick et al. (2020) ⁵⁵	N/A	_	No	28	N/A	Both	DCs-tumor lysate	gender, resection	OS, PFS
Phuphanich et al. (2013) ⁵²	N/A	_	No	21	40.1	Both	DCs-ICT 107	gender, resection	OS, PFS
Chiocca et al. (2011) ³⁵	NCT00751270	qI	No	13	N/A	Newly	OV-AdV-tk	resection	OS, PFS

TABLE 1 Characteristics of studies and patients included in the meta-analysis

1480

σ
Ð
n
÷
Ē
ō
Ō
\underline{S}
_
~
111
_
_
Ξ
~
~
- Contract

Study	Trial	Phase	Randomization	Size (n)	median FU (m)	GBM	IMT	Stratification	Outcomes
DiDomenico et al. (2017) ³⁹	NCT00905060	=	No	46	N/A	Newly	Vaccine-HSPPC-96	PD-L1	OS, PFS
Weathers et al. (2020) ⁶³	NCT02661282	II/I	No	40	12	Both	ACT-CMV pp65	recurrence	OS
Yao et al. (2018) ⁶⁶	N/A	=	Yes	43	14	Both	DCs-GSC antigen	PD-L1	OS
Reardon et al. (2020b) ⁵⁴	NCT01498328	=	Yes	73	N/A	Recurrent	Vaccine–CDX 110	steroid, age, gender, KPS, recurrence	OS
Cloughesy et al. (2020 ^{37)ª}	NCT02414165	III/II	Yes	403	22.8	Recurrent	OV-Toca	MGMT, resection, steroid, age, gender, KPS, recurrence	OS
Weller et al. (2021) ⁶⁵	NCT02667587	≡	Yes	716	N/A	Newly	ICI-nivolumab	MGMT, steroid	OS
Weller et al. (2017) ⁶⁴	NCT01480479	≡	Yes	745	N/A	Newly	Vaccine-CDX 110	MGMT, gender	OS
Ursu et al. (2017) ⁶²	NCT00190424	=	Yes	81	N/A	Newly	Vaccine-CpG-ODN	MGMT, KPS	OS
Sampson et al. (2016) ⁵⁷	NCT02617589	≡	Yes	560	N/A	Newly	ICI-nivolumab	MGMT	OS
Narita et al. (2019) ⁴⁸	N/A	≡	Yes	88	7.7	Recurrent	Vaccine-PPV	KPS	OS
Abbreviations: ACT, adoptive methylguanine-DNA methylt	: cell therapy; DCs, dendric c ransferase; N/A, not availabl	ells; FU, foll e/applicable	ow-up; GBM, gliobl. e; OS, overall surviv	astoma; l al; OV, or	Cl, immune ncolytic viru	checkpoint inhibi s; PD-L1, prograr	tor; IMT, immunotherapy, nmed death-ligand 1; PFS	KPS, Karnofsky Performance Status; , progression-free survival.	; MGMT, O6-

3.8

By pooling 7 cohorts reporting on OS and 3 cohorts reporting on PFS for age, we found no significant prognostic value of age (\geq 65 years of age vs. <65 years of age) for OS (Figure S2B) and PFS (Figure S3B) of patients treated with immunotherapy. Of note, stratified analysis revealed that the subset of patients with newly diagnosed GBM receiving a vaccine and aged \geq 65 had a significant inferior OS in comparison with those aged <65 (HR = 1.92, 95% CI: 1.01–3.66; Table 2). Additionally, immunotherapy did not significantly improve OS both among patients aged \geq 65 and patients aged <65 (Figure S4B).

No significant differences in OS (Figure S2C) or PFS (Figure S3C) between GBM patients treated with immunotherapy stratified by gender were observed, and there was no significant difference in OS of immunotherapy over the control (Figure S4C). The history of chemotherapy also did not impact the OS of patients treated with immunotherapy (Figure S2D).

3.9 | Publication bias and sensitivity analysis

According to the contour-enhanced funnel plots (Figures S5 and S6), no visually obvious asymmetry was observed suggesting the possibility of publication bias was low. Meanwhile, Egger's regression test was performed when the meta-analysis contained >10 studies, and no significant publication bias was found.

The leave-one-out analysis demonstrated that the significance of the pooled effects did not substantially depend on any single study (Figure S7). However, the combined effects were not robust enough in both the pooled HR for PFS of baseline steroid use and the pooled HR for OS of GTR.

4 | DISCUSSION

^aThis trial contained 12% of anaplastic astrocytoma population.

This study was aimed at identifying the factors that indicate the prognosis of immunotherapy for GBM and exploring the potential predictors with the ability to identify the patients most likely benefit from this therapy. To our knowledge, this is the first systematic review to address this issue. Immunotherapy has been regarded as a breakthrough in the treatment of cancers, and utilizes ICI, vaccines, ACT, oncolytic viral treatment, and other modalities, for the treatment of both newly diagnosed and recurrent GBM.⁹⁻¹² New types of immunotherapies have been emerging. For instance, antibodies against CD47 or CD24 have been proposed as new targets for glioblastoma therapy.^{68,69} These could be future clinical therapies for glioblastoma.

Pooling and analysis of the available literature suggest that GBM patients with MGMT promoter methylation, GTR, no baseline steroid use, a KPS>80, and undergoing one prior recurrence had a significantly relative favorable OS following immunotherapy. In

FIGURE 2 Forest plot of HR for OS of GBM patients treated with immunotherapy according to (A) MGMT promoter methylation status, (B) extent of resection, (C) baseline steroid use, (D) KPS scores, and (E) number of prior recurrences. Gray squares signify point estimates, and square sizes are proportional to study weights. Horizontal lines represent effect size confidence intervals. Diamonds represent pooled effect size; their lengths represent the 95% confidence interval of the pooled estimate. GBM, glioblastoma; HR, hazard ratio; KPS, Karnofsky Performance Status; MGMT, O6-methylguanine-DNA methyltransferase; OS, overall survival.

addition, patients receiving immunotherapy with MGMT promoter methylation, GTR, and no baseline steroid use also had a relatively prolonged PFS. As compared to the non-immunotherapy control group, immunotherapy significantly improved OS among patients with two prior recurrences, but not other subgroups. Taken together, this study indicates that GBM patients with GTR, MGMT promoter methylation, and no baseline steroid use could gain more survival benefits following immunotherapy; patients undergoing two prior recurrences may obtain more benefits from immunotherapy over non-immunotherapy. Additionally, several potential predictive factors were reviewed qualitatively (Table 3).

4.1 | Impact of patient clinical characteristics

Intriguingly, we found that having two prior recurrences was an inferior prognostic indicator for patients treated with immunotherapy; however, patients undergoing two previous relapses predicted a significantly superior OS for immunotherapy, as compared to the control treatment. Schulte et al.⁷⁰ reported genetic events following neuroblastoma recurrence that resulted in significantly increased single-nucleotide variants, indicating tumor transformation and clone selection at recurrence after treatment. Wang et al.⁷¹ reported that a fraction of GBM patients

relapsed after chemotherapy with hypermutation, which was regarded as a predictor for immunotherapy. Accordingly, we conjectured that multiple recurrences may increase the TMB and thus confer more sensitivity on tumors to immunotherapy. However, the interpretation of the predictive value of recurrences should be made with caution given the limited studies included in this analysis.

One previous study retrospectively analyzed the impact of age on the efficacy of immunotherapy for recurrent GBM. They found a positive correlation between patients aged ≥65 years and reduced OS, but not with those aged <65 years; advanced age could suppress immune activity in the brain.⁷² In addition, a phase III clinical trial of a peptide vaccine for recurrent GBM showed that, among patients aged ≥70 years, the immunotherapy group was associated with a disadvantageous OS compared with that of the placebo group.⁴⁸ Our study indicated that patients with newly diagnosed GBM aged ≥65 years were significantly associated with decreased OS compared with those aged <65 years, but this effect was not seen in other subgroups; no significant difference in efficacy of immunotherapy versus placebo was observed among patients aged <65 or \geq 65 years. All of these results suggested that old age was an unfavorable prognostic factor for patients treated with immunotherapy. A recent meta-analysis reported more treatment benefits of immunotherapy, particularly CTLA-4 inhibitors, in men than in women

VILEY

TABLE 2 The results of subgroup analysis for overall survival of patients treated with immunotherapy

Population	Subgroup	No. cohorts	Meta-analys	sis	Test for het	erogeneity
			HR	95%CI	l ²	p-Value
Unmet-MGMT vs. met-MGMT	Total	18	2.30	1.90-2.78	9%	0.34
	nGBM	12	2.44	1.84-3.23	24%	0.21
	rGBM	6	1.96	1.45-2.65	0%	0.8
	ICI	6	2.17	1.63-2.89	0%	0.53
	Vaccine	10	2.30	1.62-3.25	36%	0.12
	Randomized	5	2.15	1.58-2.92	27%	0.24
	Non-randomized	13	2.39	1.82-3.15	9%	0.36
GTR vs. no GTR	Total	11	0.70	0.52-0.95	0%	0.6
	nGBM	7	0.61	0.41-0.90	0%	0.44
	rGBM	4	0.86	0.54-1.37	0%	0.73
	ICI	3	0.92	0.56-1.52	0%	0.64
	Vaccine	7	0.61	0.41-0.90	0%	0.45
	Randomized	3	0.72	0.40-1.30	24%	0.27
	Non-randomized	8	0.70	0.48-1.01	0%	0.57
Baseline no steroid vs. Steroid	Total	9	0.52	0.37-0.74	31%	0.17
	nGBM	1	0.44	0.17-1.12	N/A	N/A
	rGBM	8	0.54	0.37-0.79	39%	0.12
	ICI	5	0.53	0.38-0.73	0%	0.44
	Vaccine	3	0.68	0.22-2.11	68%	0.04
	Randomized	4	0.54	0.36-0.79	19%	0.29
	Non-randomized	5	0.53	0.27-1.01	49%	0.1
KPS ≤80 vs. >80	Total	10	1.73	1.26-2.38	32%	0.15
	nGBM	4	2.05	1.11-3.78	32%	0.22
	rGBM	6	1.61	1.08-2.39	41%	0.13
	ICI	4	1.77	1.31-2.40	0%	0.53
	Vaccine	5	1.59	0.76-3.35	60%	0.04
	Randomized	3	1.75	1.21-2.52	9%	0.33
	Non-randomized	7	1.75	1.06-2.89	45%	0.09
Prior recurrence twice vs. once	Total	4	2.08	1.28-3.99	0.22	0.28
	nGBM	0	N/A	N/A	N/A	N/A
	rGBM	4	2.08	1.28-3.99	22%	0.28
	ICI	2	1.65	0.97-2.81	0%	0.53
	Vaccine	0	N/A	N/A	N/A	N/A
	Randomized	2	1.65	0.97-2.81	0%	0.53
	Non-randomized	2	3.39	1.15-10.03	45%	0.18
Male vs. Female	Total	16	0.92	0.73-1.17	0%	0.62
	nGBM	8	0.94	0.65-1.36	0%	0.68
	rGBM	8	0.90	0.65-1.26	11%	0.34
	ICI	3	1.03	0.67-1.59	0%	0.43
	Vaccine	11	0.88	0.65-1.20	6%	0.39
	Randomized	3	0.98	0.63-0.51	2%	0.36
	Non-randomized	13	0.90	0.67-1.19	0%	0.57

TABLE 2 (Continued)

Population	Subgroup	No. cohorts	Meta-analy	sis	Test for heterogeneit	
			HR	95%CI	l ²	p-Value
Age ≥65 vs. <65	Total	7	1.25	0.88-1.78	0%	0.82
	nGBM	2	1.92	1.01-3.66	0%	0.54
	rGBM	5	1.04	0.68-1.59	0%	1
	ICI	3	1.07	0.64-1.78	0%	0.99
	Vaccine	2	1.92	1.01-3.66	0%	0.54
	Randomized	2	1.07	0.58-1.96	0%	0.89
	Non-randomized	5	1.35	0.88-2.09	0%	0.65
Tumor PD-L1+ vs. PD-L1-	Total	5	1.1	0.66-1.84	63%	0.03
	nGBM	2	0.74	0.25-2.18	67%	0.08
	rGBM	3	1.36	0.62-2.98	70%	0.03
	ICI	3	1.36	0.62-2.98	70%	0.03
	Vaccine	2	0.74	0.25-2.18	67%	0.08
	Randomized	3	0.81	0.51-1.29	2%	0.36
	Non-randomized	2	1.75	0.66-4.61	82%	0.02
Chemotherapy vs. No chemotherapy	Total	4	1.04	0.46-2.33	65%	0.04
	nGBM	1	1.06	0.44-2.57	N/A	N/A
	rGBM	3	1.04	0.32-3.39	76%	0.01
	ICI	0	N/A	N/A	N/A	N/A
	Vaccine	3	1.51	0.86-2.65	0%	0.41
	Randomized	1	1.06	0.44-2.57	N/A	N/A
	Non-randomized	3	1.04	0.32-3.39	76%	0.01

Abbreviations: CI, confidence interval; GTR, gross total resection; HR, hazard ratio; ICI, immune checkpoint inhibitor; KPS, Karnofsky Performance Status; met, promoter methylation; MGMT, O6-methylguanine-DNA methyltransferase promoter methylation; N/A, not available/applicable; nGBM, newly diagnosed glioblastoma; No., number; PD-L1, Programmed death-ligand 1; rGBM, recurrent glioblastoma; unmet, promoter unmethylation.

with advanced cancers, excluding melanoma.⁷³ In the present study for GBM, however, no difference in efficacy of immunotherapy was associated with gender. Analysis of the potential association of other demographic variables with the immunotherapeutic efficacy merits further studies, such as weight \geq 70 kg presumably acting as an unfavorable indicator of immunotherapy for GBM.⁴⁸

The relationship of performance status (PS) measured by several scales, such as KPS or Eastern Cooperative Oncology Group PS, has also been investigated. Several meta-analyses explored the association of PS with immunotherapy efficacy in multiple advanced malignancies but not GBM; they found that immunotherapy efficacy did not differ among patients according to PS scores.^{74,75} Narita et al.⁴⁸ reported that a performance score of PS 3 was an unfavorable factor for immunotherapy efficacy for recurrent GBM. Our meta-analysis results indicated that patients with a KPS > 80 seemed to have a better OS after immunotherapy; yet, it failed to predict a better OS for the immunotherapy group than for the control group.

4.2 | Impact of treatment features

A retrospective single-center prognostic analysis performed by Ishikawa et al. showed that among patients with newly diagnosed GBM receiving immunotherapy, GTR was a good prognostic factor associated with better OS and PFS.⁷⁶ Similarly, our results demonstrated the consistent prognostic value of GTR for the survival of GBM patients receiving immunotherapy, yet GTR did not predict a better OS for the immunotherapy group versus the control group. Nevertheless, according to these results, GTR might be recommended before immunotherapy.

The use of chemotherapy for GBM patients may result in lymphopenia, including decreased total effector T cells and an increased proportion of T-reg cells, but the administration of chemotherapy may not exert a negative effect on the immunotherapeutic efficacy.⁷⁷⁻⁷⁹ In addition, researchers found that nature killer cells could escape apoptosis from chemotherapy and contribute to antitumor immunity.^{50,80}

In terms of steroid use, corticosteroids are among the most effective agents for central nervous system tumors in relieving brain edema and palliating neurological deficits.⁸¹ However, due to a well-known immunosuppressive effect, corticosteroids are believed to compromise the efficacy of immuno-oncology.⁸² Arbour et al. reported that baseline corticosteroid use correlated with worse OS, PFS, and the overall response rate in patients with non-small-cell lung cancer treated with PD-(L)1 inhibitors.⁸³ Likewise, in the present meta-analysis, baseline steroid administration was associated with decreased OS and PFS in

FIGURE 3 Forest plot of HR for PFS of GBM patients treated with immunotherapy according to (A) MGMT promoter methylation status, (B) extent of resection, (C) baseline steroid use, and (D) KPS scores. Gray squares signify point estimates, and square sizes are proportional to study weights. Horizontal lines represent effect size confidence intervals. Diamonds represent pooled effect size; their lengths represent the 95% confidence interval of the pooled estimate. GBM, glioblastoma; HR, hazard ratio; KPS, Karnofsky Performance Status; MGMT, O6-methylguanine-DNA methyltransferase; PFS, progression-free survival.

FIGURE 4 Forest plot of HR for OS of GBM patients with GBM comparing immunotherapy and non-immunotherapy control groups based on number of prior recurrences. Gray squares signify point estimates, and square sizes are proportional to study weights. Horizontal lines represent effect size confidence intervals. Diamonds represent pooled effect size; their lengths represent the 95% confidence interval of the pooled estimate. GBM, glioblastoma; HR, hazard ratio; OS, overall survival.

Study	Sample size	Hazard Ratio	HR	95%–Cl	Weight
Subgroup = Recurrence Cloughesy et al (2020) Reardon et al (2020b) Reardon et al (2020)	343 61 301		1.22 0.55 1.04	[0.94; 1.58] [0.32; 0.94] [0.83; 1.30]	29.9% 20.6% 30.9%
Random effects model Heterogeneity: $I^2 = 71\%$, μ	 2 = 0.03		0.96	[0.69; 1.34]	81.4%
Cloughesy et al (2020) Reardon et al (2020b) Random effects model Heterogeneity: $I^2 = 0\%$, p	60 12 1 = 0.52		0.43 0.20 0.40	[0.21; 0.88] [0.02; 1.82] [0.20; 0.79]	15.8% 2.8% 18.6%
Random effects model	I		0.79	[0.54; 1.17]	100.0%
Heterogeneity: $I^2 = 73\%$, s	Favours	0.1 0.5 1 2 10 Experiment Favours Cont	rol		

Test for subgroup differences: $\chi_1^2 = 5.22$, df = 1 (p = 0.02)

patients with GBM treated with immunotherapy, suggesting a prudent choice of steroid use preceding immunotherapy for GBM.

4.3 | Impact of tumorous characteristics

The TMB has been proposed as a predictive biomarker of immunotherapy for a subset of cancer types.^{84–86} Higher TMB was believed to produce more mutant tumor neoantigen and further elicit a neoantigen-specific immune response, which largely accounts for its utility in immunotherapy prediction.⁸⁷ However, the role of TMB in GBM immunotherapy has yet to be well established. GBM, unlike other cancers harboring a mutation signature induced by carcinogens, exhibits a relatively low presence of hypermutation.^{88,89} Two hypermutation pathways were described by Touat et al. in association with GBM: one is a de novo pathway that correlates with constitutive gene defects, and the other is a posttreatment pathway that is associated with recurrences after chemotherapy.⁹⁰ Of note, germline mutations in DNA polymerase and replication repair gene correlated with ultra-hypermutation and good responses to immunotherapy in several case reports.⁹¹⁻⁹³ However, Gromeier et al. recently reported that patients with recurrent GBM with low mutation burden had a predicted longer survival after oncolytic viral treatment or ICI treatment, suggesting the predictive value of a low tumor mutational burden for recurrent GBM.⁹⁴ In addition, some tumor mutational signatures

TABLE 3 Qualitative analysis of other predictors for glioblastoma immunotherapy from relevant clinical studies

Study	Design	GBM	IMT	Predictor	Outcomes
Patient clinical characteristics					
lshikawa et al. (2014) ⁴³	Phase I/IIa	nGBM	Vaccine	RPA (III/IV vs. V)	OS
Ardon et al. (2012) ³¹	Phase I/II	nGBM	DCs	RPA	OS, PFS
Narita et al. (2019) ⁴⁸	Phase III	rGBM	Vaccine	age (≥70 vs. <70 years old), weight (≥70 vs. <70 kg), PS (0-2 vs. 3)	OS
Tumor mutational burden and signa	tures				
Bouffet et al. (2016) ⁹¹	Case report	rGBM	ICI	germline bMMRD with hypermutation	response
Johanns et al. (2016) ⁹²	Case report	rGBM	ICI	germline POLE alteration with hypermutation	response
AlHarbi et al. (2018) ⁹³	Case report	rGBM	ICI	constitutional bMMRD	response
Gromeier et al. (2021) ⁹⁴	Retrospective	rGBM	ICI, OV	tumor mutational burden	OS
Zhao et al. (2019) ⁹⁵	Retrospective	rGBM	ICI	MAPK pathway alterations (PTPN11, BRAF); PTEN mutation	response
Yao et al. (2018)	Phase II	both	DCs	TERT mutation	OS, PFS
Tumor molecular characteristics					
Arrieta et al. (2021) ¹⁰⁸	Retrospective	rGBM	ICI	ERK1/2 phosphorylation	OS
Ishikawa et al. (2007) ¹⁰¹	pilot clinical trials	both	vaccine	p53 and MHC-1 expression	response
Liau et al. (2005) ¹⁰²	Phase I	both	DCs	TGF-2 expression	OS
Yao et al. (2018) ⁶⁶	Phase II	both	DCs	B7-H4 protein expression	OS
Duerinck et al. (2021) ¹⁰⁰	Phase I	rGBM	ICI	B7-H3 mRNA expression	OS
Chiba et al. (2010) ¹⁰³	Retrospective	rGBM	Vaccine	intermediate WT1 expression	OS, PFS
Phuphanich et al. (2013) ⁵²	Phase I	nGBM	Vaccine	mRNA expression of vaccine-targeted tumor antigen	OS, PFS
Prins et al. (2011) ¹⁰⁷	Phase I	both	DCs	mesenchymal gene expression profile	OS
Tumor-infiltrating lymphocytes					
Jan et al. (2018) ⁴⁵	Phase II	nGBM	DCs	low PD-1+/CD8+ ratio on TILs and PBMCs; low PD-I+TILs	OS, PFS
Zhang et al. (2020) ¹¹⁵	Retrospective	nGBM	Vaccine	low TCR repertoire diversity; TCR clones of TILs;	OS
Hsu et al. (2016) ¹¹⁴	Retrospective	both	DCs	higher estimated TIL content	OS, PFS
Patient peripheral blood					
Lukas et al. (2018) ⁴⁶	Phase I	rGBM	ICI	high baseline peripheral CD4+ T cells and B cells	OS, PFS
Erhart et al. (2018) ¹¹⁶	Phase II	nGBM	DCs	GranzB production; CD8+ T cells counts	OS
Bloch et al. (2017) ³⁴	Phase II	nGBM	Vaccine	PD-L1 expression on myeloid cells	OS, PFS
Narita et al. (2019) ⁴⁸	Phase III	rGBM	Vaccine	$CD11b + CD14 + HLA - DR^{low}$ monocytes; CCL2 in plasma; CD3 + CD4 + CD45RA - T cells	OS
Takashima et al. (2016) ⁶¹	Phase II	rGBM	Vaccine	low SDC-4 mRNA expression levels of PBMCs	OS

Abbreviations: bMMRD, biallelic mismatch repair deficiency; DCs, dendric cells; GBM, glioblastoma; ICl, immune checkpoint inhibitor; IMT, immunotherapy; nGBM, newly diagnosed GBM; OS, overall survival; OV, oncolytic virus; PBMCs, peripheral blood mononuclear cells; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; rGBM, recurrent GBM; RPA, recursive partitioning analysis; TCR, T-cell receptor; TILs, tumor-infiltrating lymphocytes; WT1, Wilms' tumor 1.

were reported to correlate with immunotherapy efficacy in GBM, such as PTEN mutation, MAPK pathway-associated gene alteration, and TERT mutation.^{66,95}

Tumor PD-L1 (B7-H1) expression, measured by immunohistochemistry, has been shown to be a predictive biomarker of the response to anti-PD-L1 therapy, especially in melanoma and nonsmall-cell lung cancer.⁹⁶ Although the presence of PD-L1 expression is not rare in GBM, ranging from 61% to 88%, its role in predicting GBM survival outcomes remains elusive.^{97,98} Meanwhile, studies investigating the PD-L1 predictive value in the response of GBM to immunotherapy are limited.⁹⁹ The present analysis revealed that tumor PD-L1 was not associated with prognostic outcomes of patients with GBM treated with immunotherapy and did not predict a better outcome following immunotherapy over control therapy, suggesting the limited predictive value of tumor PD-L1 expression. Additionally, the predictive roles of other molecules, such as B7-H3,

CNS Neuroscience & Therapeutics

B7-H4, TGF-2, p53, MHC-1, WT1, and tumor antigens, have also been investigated in several studies.^{52,66,100-103}

MGMT promoter methylation, which is the epigenetic silencing of DNA repair-associated gene MGMT, has proven to be an independent favorable prognostic factor and predictive of responses to TMZ for GBM.¹⁰⁴⁻¹⁰⁶ Noteworthy is the association between MGMT promoter methylation and the appearance of hypermutation at recurrence after chemotherapy in GBM.^{75,90} Here, we found that MGMT promoter methylation correlated with a favorable prognosis of patients treated with immunotherapy; yet, immunotherapy did not significantly ameliorate OS among patients harboring methylated MGMT promoter or unmethylated promoter, compared with the control treatment. This suggests a limited value of MGMT promoter methylation in guiding patient treatment choice for immunotherapy.

In addition, Erk1/2 phosphorylation and mesenchymal gene expression profiles of GBM are potentially promising markers for immunotherapeutic prediction.^{107,108} Besides, few molecules have been identified to be related to GBM prognosis and chemoresistance, including caveolae-associated protein 1, B2M, CXCL1, TRIB2, MAP3K1, and Paxillin. These molecules are potential candidate biomarkers to predict glioblastoma immunotherapy.¹⁰⁹⁻¹¹³

4.4 | Impact of TILs and peripheral blood biomarkers

Jan et al. reported that a low PD-1+/CD8+ ratio of TILs or peripheral blood lymphocytes correlated with a better survival outcome among patients with GBM treated with DC vaccines.⁴⁵ The T-cell receptor repertoire and estimated TIL content also correlate with survival outcomes following immunotherapy for GBM.^{114,115} CD4+ T cell, CD8+ T cell, B cell, and other subtypes of lymphocytes in peripheral blood have been shown to be associated with survival outcome following immunotherapy.^{46,48,116} Additionally, peripheral PD-L1 expression and SDC-4 expression correlated with immunotherapeutic efficacy in several studies.^{34,61}

In addition, noninvasive MRI technologies have also been recently reported to serve as useful approaches to predict immunotherapy responses in GBM patients. Hagiwara et al. and Cuccarini et al. have reported that MRI relative apparent diffusion coefficient (rADC) may be an imaging biomarker for predicting survival benefits in GBM patients administered with immunotherapies.^{117,118} Additionally, tumor microenvironment alterations in oxygen metabolism, neovascularization, and energy metabolism are critically implicated in therapy failure and recurrence of glioblastoma, which can be detected using the MRI approach and could thus be associated with glioblastoma recurrence and therapy resistance.^{119,120}

Our meta-analysis has some limitations. First, the papers included 13 randomized clinical trials and 26 non-randomized clinical trials, which might give rise to potential confounding factors, although we did conduct a subgroup analysis stratified by study type. Second, our analysis depended on published study-level data rather than individual-patient data, which prevented us from further study of different ages and KPS cutoffs. Third, our study could not fully address the question of which patients most likely benefit from immunotherapy, due to limited randomized control trials involved in this field to date. Therefore, our interpretations of outcomes should be considered with care.

5 | CONCLUSION

Our analysis found that GBM patients with MGMT promoter methylation, GTR, and no baseline steroid use had favorable prognostic survival outcomes following immunotherapy. No association was observed for age, gender, or tumor PD-L1 expression with survival outcomes of patients treated with immunotherapy. Furthermore, immunotherapy significantly ameliorated OS compared with nonimmunotherapy among patients undergoing two prior recurrences but not among any other subgroups, suggesting patients with more than one relapse were more likely to derive benefits from immunotherapy. The results from this study may help inform prognostic outcomes of GBM patients treated with immunotherapy and give insights into optimizing immunotherapy efficacy for GBM, as well as provide inferences in grouping GBM patients in clinical studies of immunotherapy. Nevertheless, more marker-driven prospective clinical trials are warranted to identify and confirm more effective and robust predictive factors of immunotherapy in the treatment of GBM.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

All data associated with this study are present in the paper or the Supplementary Materials.

ORCID

Wentao Hu ^b https://orcid.org/0000-0002-4008-2034 Hongyu Liu ^b https://orcid.org/0000-0002-1571-0385 Jialin Liu ^b https://orcid.org/0000-0001-6625-3076

REFERENCES

- Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20(Suppl 4):iv1-iv86. doi:10.1093/ neuonc/noy131
- Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085-4091. doi:10.1200/ JCO.2013.49.6968
- Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. *Lancet Oncol.* 2009;10(5):459-466. doi:10.1016/S1470-2045(09)70025-7

- Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314(23):2535-2543. doi:10.1001/jama.2015.16669
- Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699-708. doi:10.1056/NEJMoa1308573
- Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422-442. doi:10.1038/s41571-018-0003-5
- Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. *EMBO Mol Med.* 2014;6(11):1359-1370. doi:10.15252/emmm.201302627
- 8. McNutt M. Cancer immunotherapy. *Science*. 2013;342(6165):1417. doi:10.1126/science.1249481
- Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003-1010. doi:10.1001/jamaoncol.2020.1024
- Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. doi:10.1186/s12967-018-1507-6
- O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. *Sci Transl Med.* 2017;9(399). doi:10.1126/scitranslmed.aaa0984
- Freeman AI, Zakay-Rones Z, Gomori JM, et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. *Mol Ther.* 2006;13(1):221-228. doi:10.1016/j. ymthe.2005.08.016
- McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current state of immunotherapy for treatment of glioblastoma. *Curr Treat Options Oncol.* 2019;20(3):24. doi:10.1007/s11864-019-0619-4
- Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. *Lancet Oncol.* 2016;17(12):e542-e551. doi:10.1016/S1470-2045(16)30406-5
- Lynes JP, Nwankwo AK, Sur HP, et al. Biomarkers for immunotherapy for treatment of glioblastoma. *J Immunother Cancer*. 2020;8(1). doi:10.1136/jitc-2019-000348
- Vimalathas G, Kristensen BW. Expression, prognostic significance and therapeutic implications of PD-L1 in gliomas. *Neuropathol Appl Neurobiol.* 2022;48(1):e12767. doi:10.1111/nan.12767
- Sims JS, Ung TH, Neira JA, Canoll P, Bruce JN. Biomarkers for glioma immunotherapy: the next generation. J Neurooncol. 2015;123(3):359-372. doi:10.1007/s11060-015-1746-9
- Di Nunno V, Franceschi E, Gatto L, Bartolini S, Brandes AA. Predictive markers of immune response in glioblastoma: hopes and facts. *Future Oncol.* 2020;16(15):1053-1063. doi:10.2217/ fon-2020-0047
- Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1
- Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ*. 2019;366:I4898. doi:10.1136/bmj.I4898
- Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712-716. doi:10.1046/j.1445-2197.2003.02748.x
- Hackshaw A, ed. Statistical formulae for calculating some 95% confidence intervals. In A Concise Guide to Clinical Trials. Wiley-Blackwell; 2009:205-207.
- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into metaanalysis. *Trials*. 2007;8:16. doi:10.1186/1745-6215-8-16

- 24. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557
- Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contourenhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991-996. doi:10.1016/j.jclinepi.2007.11.010
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629
- Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*. 2000;56(2):455-463. doi:10.1111/j.0006-341x.2000.00455.x
- 29. Ahluwalia MS, Reardon DA, Abad AP, et al. SurVaxM with standard therapy in newly diagnosed glioblastoma: phase II trial update. *J Clin Oncol.* 2019;37(Suppl 15):2016.
- Aoki T, Kagawa N, Sugiyama K, et al. Efficacy and safety of nivolumab in Japanese patients with first recurrence of glioblastoma: an open-label, non-comparative study. *Int J Clin Oncol.* 2021;26(12):2205-2215. doi:10.1007/s10147-021-02028-1
- Ardon H, Van Gool SW, Verschuere T, et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother. 2012;61(11):2033-2044. doi:10.1007/ s00262-012-1261-1
- Batich KA, Reap EA, Archer GE, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. *Clin Cancer Res.* 2017;23(8):1898-1909. doi:10.1158/1078-0432. Ccr-16-2057
- Bloch O, Crane CA, Fuks Y, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, singlearm trial. *Neuro Oncol.* 2014;16(2):274-279. doi:10.1093/neuonc/ not203
- Bloch O, Lim M, Sughrue ME, et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. *Clin Cancer Res.* 2017;23(14):3575-3584. doi:10.1158/1078-0432. Ccr-16-1369
- Chiocca EA, Aguilar LK, Bell SD, et al. Phase IB study of genemediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol. 2011;29(27):3611-3619. doi:10.1200/jco.2011.35.5222
- Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. *Nat Med.* 2019;25(3):477-486. doi:10.1038/s41591-018-0337-7
- Cloughesy TF, Petrecca K, Walbert T, et al. Effect of Vocimagene Amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol. 2020;6(12):1939-1946. doi:10.1001/jamaoncol.2020.3161
- Desjardins A, Gromeier M, Herndon JE 2nd, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150-161. doi:10.1056/NEJMoa1716435
- DiDomenico J, Veliceasa D, Choy W, et al. PD-L1 expression predicts survival in newly diagnosed glioblastoma patients receiving vaccine immunotherapy but not standard therapy alone. Conference abstract. *Neuro Oncol.* 2017;19:vi115. doi:10.1093/ neuonc/nox168
- Dillman RO, Duma CM, Ellis RA, et al. Intralesional lymphokineactivated killer cells as adjuvant therapy for primary glioblastoma. J Immunother. 2009;32(9):914-919. doi:10.1097/ CJI.0b013e3181b2910f

CNS Neuroscience & Therapeutics

- Geletneky K, Hajda J, Angelova AL, et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. *Mol Ther.* 2017;25(12):2620-2634. doi:10.1016/j.ymthe.2017.08.016
- Inogés S, Tejada S, de Cerio AL, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med. 2017;15(1):104. doi:10.1186/ s12967-017-1202-z
- Ishikawa E, Muragaki Y, Yamamoto T, et al. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalinfixed tumor vaccine for newly diagnosed glioblastoma. *J Neurosurg*. 2014;121(3):543-553. doi:10.3171/2014.5.Jns132392
- Izumoto S, Tsuboi A, Oka Y, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963-971. doi:10.3171/ JNS/2008/108/5/0963
- Jan CI, Tsai WC, Harn HJ, et al. Predictors of response to autologous dendritic cell therapy in glioblastoma multiforme. Front Immunol. 2018;9:727. doi:10.3389/fimmu.2018.00727
- Lukas RV, Rodon J, Becker K, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018;140(2):317-328. doi:10.1007/ s11060-018-2955-9
- Muragaki Y, Maruyama T, Iseki H, et al. Phase I/IIa trial of autologous formalin-fixed tumor vaccine concomitant with fractionated radiotherapy for newly diagnosed glioblastoma. Clinical article. J Neurosurg. 2011;115(2):248-255. doi:10.3171/2011.4.Jns10377
- Narita Y, Arakawa Y, Yamasaki F, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. *Neuro Oncol.* 2019;21(3):348-359. doi:10.1093/ neuonc/noy200
- Nayak L, Molinaro AM, Peters K, et al. Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. *Clin Cancer Res.* 2021;27(4):1048-1057. doi:10.1158/1078-0432. Ccr-20-2500
- Pellegatta S, Eoli M, Cuccarini V, et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8(+) T cell activation in the presence of adjuvant temozolomide. Onco Targets Ther. 2018;7(4):e1412901. doi:10.1080/2162402X.2017.1412901
- Pellegatta S, Eoli M, Frigerio S, et al. The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. *Oncoimmunology*. 2013;2(3):e23401. doi:10.4161/onci.23401
- 52. Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. *Cancer Immunol Immunother*. 2013;62(1):125-135. doi:10.1007/s00262-012-1319-0
- Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003-1010. doi:10.1001/jamaoncol.2020.1024
- 54. Reardon DA, Desjardins A, Vredenburgh JJ, et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIIIexpressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. *Clin Cancer Res.* 2020;26(7):1586-1594. doi:10.1158/1078-0432.CCR-18-1140
- Rudnick JD, Sarmiento JM, Uy B, et al. A phase I trial of surgical resection with Gliadel wafer placement followed by vaccination with dendritic cells pulsed with tumor lysate for patients with malignant glioma. J Clin Neurosci. 2020;74:187-193. doi:10.1016/j. jocn.2020.03.006

- 56. Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722-4729. doi:10.1200/JCO.2010.28.6963
- 57. Sampson JH, Omuro AMP, Preusser M, et al. A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (PTS) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. Conference abstract. J Clin Oncol. 2016;34:TPS2079.
- Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. *Nat Med.* 2019;25(3):470-476. doi:10.1038/ s41591-018-0339-5
- Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. *Neuro Oncol.* 2015;17(6):854-861. doi:10.1093/ neuonc/nou348
- Smith C, Lineburg KE, Martins JP, et al. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. J Clin Invest. 2020;130(11):6041-6053. doi:10.1172/ jci138649
- Takashima S, Oka Y, Fujiki F, et al. Syndecan-4 as a biomarker to predict clinical outcome for glioblastoma multiforme treated with WT1 peptide vaccine. *Future Sci OA*. 2016;2(4):FSO96. doi:10.4155/fsoa-2015-0008
- Ursu R, Carpentier A, Metellus P, et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma – a phase II multicentric, randomised study. *Eur J Cancer*. 2017;73:30-37. doi:10.1016/j.ejca.2016.12.003
- Weathers SP, Penas-Prado M, Pei BL, et al. Glioblastomamediated immune dysfunction limits CMV-specific T cells and therapeutic responses: results from a phase I/II trial. *Clin Cancer Res.* 2020;26(14):3565-3577. doi:10.1158/1078-0432. Ccr-20-0176
- Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet Oncol.* 2017;18(10):1373-1385. doi:10.1016/ s1470-2045(17)30517-x
- 65. Weller M, Lim M, Idbaih A, et al. A randomized phase 3 study of nivolumab or placebo combined with radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma with methylated MGMT promoter: Checkmate 548. Conference abstract. *Neuro Oncol.* 2021;23(Suppl 6):vi55-vi56. doi:10.1093/neuonc/ noab196.217
- 66. Yao Y, Luo F, Tang C, et al. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. *Cancer Immunol Immunother*. 2018;67(11):1777-1788. doi:10.1007/s00262-018-2232-y
- 67. Wu H, Liu J, Wang Z, Yuan W, Chen L. Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neurosci Ther. 2021;27(10):1105-1117. doi:10.1111/cns.13714
- Yang F, He Z, Duan H, et al. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun. 2021;12(1):3424. doi:10.1038/s41467-021-23832-3
- Agliardi G, Liuzzi AR, Hotblack A, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. *Nat Commun.* 2021;12(1):444. doi:10.1038/s41467-020-20599-x
- Schulte M, Koster J, Rahmann S, Schramm A. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma. *Cell Tissue Res.* 2018;372(2):263-268. doi:10.1007/s00441-018-2810-5

- Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768-776. doi:10.1038/ ng.359
- Ladomersky E, Zhai L, Lauing KL, et al. Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. *Clin Cancer Res.* 2020;26(19):5232-5245. doi:10.1158/1078-0432.CCR-19-3874
- 73. Grassadonia A, Sperduti I, Vici P, et al. Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced cancer: a systematic review and meta-analysis of phase III randomized clinical trials. J Clin Med. 2018;7(12):542. doi:10.3390/ jcm7120542
- 74. Bersanelli M, Brighenti M, Buti S, Barni S, Petrelli F. Patient performance status and cancer immunotherapy efficacy: a meta-analysis. *Med Oncol.* 2018;35(10):132. doi:10.1007/ s12032-018-1194-4
- 75. Yang F, Markovic SN, Molina JR, et al. Association of sex, age, and eastern cooperative oncology group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(8):e2012534.doi:10.1001/jamanetworkopen.2020.12534
- Ishikawa E, Sugii N, Matsuda M, et al. Maximum resection and immunotherapy improve glioblastoma patient survival: a retrospective single-institution prognostic analysis. BMC Neurol. 2021;21(1):282. doi:10.1186/s12883-021-02318-1
- 77. Fadul CE, Fisher JL, Gui J, Hampton TH, Cote AL, Ernstoff MS. Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. *Neuro Oncol.* 2011;13(4):393-400. doi:10.1093/neuonc/noq204
- Sampson JH, Aldape KD, Archer GE, et al. Greater chemotherapyinduced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. *Neuro Oncol.* 2011;13(3):324-333. doi:10.1093/ neuonc/noq157
- Heimberger AB, Sun W, Hussain SF, et al. Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. *Neuro Oncol.* 2008;10(1):98-103. doi:10.1215/15228517-2007-046
- Pellegatta S, Di Ianni N, Pessina S, et al. ABCC3 expressed by CD56(dim) CD16(+) NK cells predicts response in glioblastoma patients treated with combined chemotherapy and dendritic cell immunotherapy. *Int J Mol Sci.* 2019;20(23). doi:10.3390/ ijms20235886
- Dietrich J, Rao K, Pastorino S, Kesari S. Corticosteroids in brain cancer patients: benefits and pitfalls. *Expert Rev Clin Pharmacol*. 2011;4(2):233-242. doi:10.1586/ecp.11.1
- Meriggi F, Zaniboni A. Antibiotics and steroids, the double enemies of anticancer immunotherapy: a review of the literature. Cancer Immunol Immunother. 2021;70(6):1511-1517. doi:10.1007/ s00262-020-02786-3
- Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed deathligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36(28):2872-2878. doi:10.1200/JCO.2018.79.0006
- Chan TA, Yarchoan M, Jaffee E, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44-56. doi:10.1093/annonc/ mdy495
- McGrail DJ, Pilie PG, Rashid NU, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661-672. doi:10.1016/j. annonc.2021.02.006
- Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093-2104. doi:10.1056/NEJMoa1801946

- Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125(9):3413-3421. doi:10.1172/ JCI80008
- Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature*. 2013;499(7457):214-218. doi:10.1038/nature12213
- Hodges TR, Ott M, Xiu J, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. *Neuro Oncol.* 2017;19(8):1047-1057. doi:10.1093/neuonc/nox026
- Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. *Nature*. 2020;580(7804):517-523. doi:10.1038/s41586-020-2209-9
- Bouffet E, Larouche V, Campbell BB, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206-2211. doi:10.1200/jco.2016.66.6552
- Johanns TM, Miller CA, Dorward IG, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. *Cancer Discov.* 2016;6(11):1230-1236. doi:10.1158/2159-8290.CD-16-0575
- AlHarbi M, Ali Mobark N, AlMubarak L, et al. Durable response to nivolumab in a pediatric patient with refractory glioblastoma and constitutional biallelic mismatch repair deficiency. *Oncologist*. 2018;23(12):1401-1406. doi:10.1634/theoncologist.2018-0163
- Gromeier M, Brown MC, Zhang G, et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. *Nat Commun.* 2021;12(1):352. doi:10.1038/ s41467-020-20469-6
- Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. *Nat Med.* 2019;25(3):462-469. doi:10.1038/s41591-019-0349-y
- Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. *Mol Cancer Ther.* 2015;14(4):847-856. doi:10.1158/1535-7163.Mct-14-0983
- Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. *Neuro Oncol.* 2015;17(8):1064-1075. doi:10.1093/neuonc/nou307
- Nduom EK, Wei J, Yaghi NK, et al. PD-L1 expression and prognostic impact in glioblastoma. *Neuro Oncol.* 2016;18(2):195-205. doi:10.1093/neuonc/nov172
- Di Nunno V, Franceschi E, Gatto L, Bartolini S, Brandes AA. Predictive markers of immune response in glioblastoma: hopes and facts. *Future Oncol.* 2020;16(15):1053-1063.
- 100. Duerinck J, Schwarze JK, Awada G, et al. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial. J Immunother Cancer. 2021;9(6). doi:10.1136/ jitc-2020-002296
- 101. Ishikawa E, Tsuboi K, Yamamoto T, et al. Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. *Cancer Sci.* 2007;98(8):1226-1233. doi:10.1111/j.1349-7006.2007.00518.x
- 102. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. *Clin Cancer Res.* 2005;11(15):5515-5525. doi:10.1158/1078-0432.CCR-05-0464
- 103. Chiba Y, Hashimoto N, Tsuboi A, et al. Prognostic value of WT1 protein expression level and MIB-1 staining index as predictor of response to WT1 immunotherapy in glioblastoma patients. *Brain Tumor Pathol.* 2010;27(1):29-34. doi:10.1007/s10014-010-0265-9
- 104. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997-1003. doi:10.1056/NEJMoa043331

- Binabaj MM, Bahrami A, ShahidSales S, et al. The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol. 2018;233(1):378-386. doi:10.1002/ jcp.25896
- 106. Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189-4199. doi:10.1200/ JCO.2007.11.5964
- 107. Prins RM, Soto H, Konkankit V, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. *Clin Cancer Res.* 2011;17(6):1603-1615. doi:10.1158/1078-0432.CCR-10-2563
- 108. Arrieta VA, Chen AX, Kane JR, et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. *Nat Cancer*. 2021;2(12):1372-1386.
- 109. Wang J, Zuo J, Wahafu A, Wang MD, Li RC, Xie WF. Combined elevation of TRIB2 and MAP3K1 indicates poor prognosis and chemoresistance to temozolomide in glioblastoma. CNS Neurosci Ther. 2020;26(3):297-308. doi:10.1111/cns.13197
- 110. Alafate W, Li X, Zuo J, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. *CNS Neurosci Ther.* 2020;26(4):475-485. doi:10.1111/cns.13297
- 111. Tang F, Zhao YH, Zhang Q, et al. Impact of beta-2 microglobulin expression on the survival of glioma patients via modulating the tumor immune microenvironment. *CNS Neurosci Ther.* 2021;27(8):951-962. doi:10.1111/cns.13649
- 112. Guo Q, Guan GF, Cheng W, et al. Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. *CNS Neurosci Ther*. 2019;25(3):343-354. doi:10.1111/cns.13072
- 113. Sun LH, Yang FQ, Zhang CB, et al. Overexpression of paxillin correlates with tumor progression and predicts poor survival in glioblastoma. CNS Neurosci Ther. 2017;23(1):69-75. doi:10.1111/ cns.12606
- 114. Hsu M, Sedighim S, Wang T, et al. TCR sequencing can identify and track glioma-infiltrating T cells after DC vaccination. *Cancer Immunol Res.* 2016;4(5):412-418. doi:10.1158/2326-6066. Cir-15-0240
- 115. Zhang Y, Mudgal P, Wang L, et al. T cell receptor repertoire as a prognosis marker for heat shock protein peptide complex-96

vaccine trial against newly diagnosed glioblastoma. Onco Targets Ther. 2020;9(1):1749476. doi:10.1080/2162402x.2020.1749476

116. Erhart F, Buchroithner J, Reitermaier R, et al. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. *Acta Neuropathol Commun.* 2018;6(1):135. doi:10.1186/s40478-018-0621-2

CNS Neuroscience & Therapeutics

- 117. Hagiwara A, Oughourlian TC, Cho NS, et al. Diffusion MRI is an early biomarker of overall survival benefit in IDH wild-type recurrent glioblastoma treated with immune checkpoint inhibitors. *Neuro Oncol.* 2022;24(6):1020-1028. doi:10.1093/neuonc/ noab276
- 118. Cuccarini V, Aquino D, Gioppo A, et al. Advanced MRI assessment during dendritic cell immunotherapy added to standard treatment against glioblastoma. *J Clin Med.* 2019;8(11). doi:10.3390/ jcm8112007
- 119. Stadlbauer A, Mouridsen K, Doerfler A, et al. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. J Cereb Blood Flow Metab. 2018;38(3):422-432. doi:10.1177/0271678x17694905
- 120. Stadlbauer A, Oberndorfer S, Zimmermann M, et al. Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. *J Cereb Blood Flow Metab.* 2020;40(3):528-538. doi:10.1177/0271 678x19827885

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Hu W, Liu H, Li Z, Liu J, Chen L. Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis. *CNS Neurosci Ther.* 2022;28:1476-1491. doi: 10.1111/cns.13915