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Abstract
Maximum entropy-based inference methods have been successfully used to infer direct

interactions from biological datasets such as gene expression data or sequence ensem-

bles. Here, we review undirected pairwise maximum-entropy probability models in two cate-

gories of data types, those with continuous and categorical random variables. As a concrete

example, we present recently developed inference methods from the field of protein contact

prediction and show that a basic set of assumptions leads to similar solution strategies for

inferring the model parameters in both variable types. These parameters reflect interactive

couplings between observables, which can be used to predict global properties of the bio-

logical system. Such methods are applicable to the important problems of protein 3-D struc-

ture prediction and association of gene–gene networks, and they enable potential

applications to the analysis of gene alteration patterns and to protein design.

Introduction
Modern high-throughput techniques allow for the quantitative analysis of various components
of the cell. This ability opens the door to analyzing and understanding complex interaction pat-
terns of cellular regulation, organization, and evolution. In the last few years, undirected pair-
wise maximum-entropy probability models have been introduced to analyze biological data
and have performed well, disentangling direct interactions from artifacts introduced by inter-
mediates or spurious coupling effects. Their performance has been studied for diverse prob-
lems, such as gene network inference [1,2], analysis of neural populations [3,4], protein contact
prediction [5–8], analysis of a text corpus [9], modeling of animal flocks [10], and prediction of
multidrug effects [11]. Statistical inference methods using partial correlations in the context of
graphical Gaussian models (GGMs) have led to similar results and provide a more intuitive
understanding of direct versus indirect interactions by employing the concept of conditional
independence [12,13].

Our goal here is to derive a unified framework for pairwise maximum-entropy probability
models for continuous and categorical variables and to discuss some of the recent inference
approaches presented in the field of protein contact prediction. The structure of the manuscript
is as follows: (1) introduction and statement of the problem, (2) deriving the probabilistic

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004182 July 30, 2015 1 / 22

OPEN ACCESS

Citation: Stein RR, Marks DS, Sander C (2015)
Inferring Pairwise Interactions from Biological Data
Using Maximum-Entropy Probability Models. PLoS
Comput Biol 11(7): e1004182. doi:10.1371/journal.
pcbi.1004182

Editor: Shi-Jie Chen, University of Missouri, UNITED
STATES

Published: July 30, 2015

Copyright: © 2015 Stein et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: This work was supported by NIH awards
R01 GM106303 (DSM, CS, and RRS) and P41
GM103504 (CS). The funders had no role in the
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004182&domain=pdf
http://creativecommons.org/licenses/by/4.0/


model, (3) inference of interactions, (4) scoring functions for the pairwise interaction strengths,
and (5) discussion of results, improvements and applications.

Better knowledge of these methods, along with links to existing implementations in terms of
software packages, may be helpful to improve the quality of biological data analysis compared
to standard correlation-based methods and increase our ability to make predictions of interac-
tions that define the properties of a biological system. In the following, we highlight the power
of inference methods based on the maximum-entropy assumption using two examples of bio-
logical problems: inferring networks from gene expression data and residue contacts in pro-
teins from multiple sequence alignments. We compare solutions obtained using (1)
correlation-based inference and (2) inference based on pairwise maximum-entropy probability
models (or their incarnation in the continuous case, the multivariate Gaussian distribution).

Gene association networks
Pairwise associations between genes and proteins can be determined by a variety of data types,
such as gene expression or protein abundance. Association between entities in these data types
are commonly estimated by the sample Pearson correlation coefficient computed for each
pair of variables xi and xj from the set of random variables x1,. . ., xL. In particular, forM given

samples in Lmeasured variables, x1 ¼ ðx11; . . . ; x1LÞT; . . . ;xM ¼ ðxM1 ; . . . ; xML ÞT 2 R
L, it is

defined as,

rij :¼
Ĉ ijffiffiffiffiffiffiffiffiffiffiffi
Ĉ iiĈ jj

q ;

where Ĉ ij :¼ 1
M

XM

m¼1
ðxmi � xiÞðxmj � xjÞ denotes the (i, j)-element of the empirical covariance

matrix Ĉ ¼ ðĈ ijÞi;j¼1;...;L. The sample mean operator � provides the empirical mean from the

measured data and is defined as xi :¼ 1
M

XM

m¼1
xmi . A simple way to characterize dependencies

in data is to classify two variables as being dependent if the absolute value of their correlation
coefficient is above a certain threshold (and independent otherwise) and then use those pairs to
draw a so-called relevance network [14]. However, the Pearson correlation is a misleading mea-
sure for direct dependence as it only reflects the association between two variables while ignor-
ing the influence of the remaining ones. Therefore, the relevance network approach is not
suitable to deduce direct interactions from a dataset [15–18]. The partial correlation between
two variables removes the variational effect due to the influence of the remaining variables
(Cramér [19], p. 306). To illustrate this, let’s take a simplified example with three random vari-
ables xA, xB, xC. Without loss of generality, we can scale each of these variables to zero-mean

and unit-standard deviation by xi 7!ðxi � xiÞ
ffiffiffiffiffiffi
Ĉ ii

q�
, which simplifies the correlation coeffi-

cient to rij � xixj . The sample partial correlation coefficient of a three-variable system between

xA and xB given xC is then defined as [19,20]

rAB�C ¼ rAB � rBCrACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2AC

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2BC

p � � ðĈ�1ÞABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈ�1ÞAAðĈ�1ÞBB

q :

The latter equivalence by Cramer’s rule holds if the empirical covariance matrix,

Ĉ ¼ ðĈ ijÞi;j2fA;B;Cg, is invertible. Krumsiek et al. [21] studied the Pearson correlations and partial

correlations in data generated by an in silico reaction system consisting of three components A,
B, C with reactions between A and B, and B and C (Fig 1A). A graphical comparison of
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Pearson’s correlations, rAB, rAC rBC, versus the corresponding partial correlations, rAB�C, rAC�B,
rBC�A, shows that variables A and C appear to be correlated when using Pearson’s correlation as
a dependency measure since both are highly correlated with variable B, which results in a false
inferred reaction rAC. The strength of the incorrectly inferred interaction can be numerically
large and therefore particularly misleading if there are multiple intermediate variables B [22].
The partial correlation analysis removes the effect of the mediating variable(s) B and correctly
recovers the underlying interaction structure. This is always true for variables following a mul-
tivariate Gaussian distribution, but also seems to work empirically on realistic systems as
Krumsiek et al. [21] have shown for more complex reaction structures than the example pre-
sented here.

Protein contact prediction
The idea that protein contacts can be extracted from the evolutionary family record was formu-
lated and tested some time ago [23–26]. The principle used here is that slightly deleterious
mutations are compensated during evolution by mutations of residues in contact in order to
maintain the function and, by implication, the shape of the protein. Protein residues that are
close in space in the folded protein are often mutated in a correlated manner. The main prob-
lem here is that one has to disentangle the directly co-evolving residues and remove transitive
correlations from the large number of other co-variations in protein sequences that arise due to
statistical noise or phylogenetic sampling bias in the sequence family. Interactions not internal
to the protein are, for example, evolutionary constraints on residues involved in

Fig 1. Reaction system reconstruction and protein contact prediction. Association results of correlation-
based and maximum-entropy methods on biological data from an in silico reaction system (A) and protein
contacts (B). (A) Analysis by Pearson’s correlation yields interactions associating all three compounds A, B,
and C, in contrast to the partial correlation approach which omits the “false” link between A and C. (Fig 1A
based on [21].) (B) Protein contact prediction for the human RAS protein using the correlation-based mutual
information, MI, and the maximum-entropy based direct information, DI, (blue and red, respectively). The 150
highest scoring contacts from both methods are plotted on the protein contacts from experimentally
determined structure in gray. (Fig 1B based on [6].)

doi:10.1371/journal.pcbi.1004182.g001
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oligomerization, protein–protein, protein–substrate interactions [6,27,28]. In particular, the
empirical single-site and pair frequency counts in residue i and in residues i and j for elements
s, o of the 20-element amino acid alphabet plus gap, fi(s) and fij(s, o), are extracted from a
representative multiple sequence alignment under applied reweighting to account for biases
due to undersampling. Correlated evolution in these positions was analyzed, e.g., by [29], by
using themutual information between residue i and j,

MIij ¼
X
s;o

fijðs;oÞln
fijðs;oÞ
fiðsÞfjðoÞ

 !
:

Although results did show promise, an important improvement was made years later by
using a maximum-entropy approach on the same setup [5–7,30]. In this framework, the direct
information of residue i and j was introduced by replacing fij in the mutual information by Pdir

ij ,

DIij ¼
X
s;o

Pdir
ij ðs;oÞln

Pdir
ij ðs;oÞ

fiðsÞfjðoÞ

 !
; ð1Þ

where Pdir
ij ðs;oÞ ¼ 1

Zij
expðeijðs;oÞ þ ~hiðsÞ þ ~hjðoÞÞ and ~hiðsÞ; ~hjðoÞ and Zij are chosen such

that Pdir
ij , which is based on a pairwise probability model of an amino acid sequence compatible

with the iso-structural sequence family, is consistent with the single-site frequency counts. In an
approximative solution, [6,7] determined the contact strength between the amino acids s ando
in position i and j, respectively, by

eijðs;oÞ ’ �ðC�1ðs;oÞÞij: ð2Þ

Here, (C−1(s,o))ij denotes the inverse element corresponding to Cij (s,o)� fij(s,o) − fi(s)
fj(o) for amino acids s, o from a subset of 20 out of the 21 different states (the so-called gauge
fixing, see below). The comparison of contact prediction results based on MI- and DI-score for
the RAS human protein on top of the actual crystal structure shows a much more accurate pre-
diction result when using the direct information instead of the mutual information (Fig 1B).

The next section lays the foundation to deriving maximum-entropy models for the two data
types: continuous, as used in the first example, and categorical, as used in the second one. Sub-
sequently, we will present inference techniques to solve for their interaction parameters.

Deriving the Probabilistic Model
Ideally, one would like to use a probabilistic model that is, on the one hand, able to capture all
orders of directed interactions of all observables at play and, on the other hand, correctly repro-
duces the observed and to-be-predicted frequencies. However, this would require a prohibi-
tively large number of observed data points. For this reason, we restrict ourselves to
probabilistic models with terms up to second order, which we derive for continuous, real-val-
ued variables, and extend this framework to models with categorical variables that are suitable,
for example, to treat sequence information in the next section.

Model formulation for continuous random variables
Wemodel the occurrence of sets of events in a particular biological system by a multivariate
probability distribution P(x) of L random variables x = (x1,. . .,xL)

T 2RL that is, on the one
hand, consistent with the mean and covariance obtained fromM observed data values x1,. . .,xM

and, on the other hand, maximizing the information entropy, S, to obtain the simplest possible
probability model consistent with the data. At this point, each of the data’s variables xi is
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continuously distributed on real values. In a biological example, these data originate from gene
expression studies and each variable xi corresponds to the normalized mRNA level of a gene
measured inM samples. As an example, a recent pan-cancer study of The Cancer Genome
Atlas (TCGA) provided mRNA levels fromM = 3,299 patient tumor samples from 12 cancer
types [31]. The problem can be large, e.g., in the case of a gene–gene association study one has L
� 20,000 human genes.

The first constraint on the unknown probability distribution, P: RL !R�0 is that its integral
normalizes to 1, ð

x

PðxÞ dx ¼ 1; ð3Þ

which is a natural requirement on any probability distribution. Additionally, the first moment
of variable xi is supposed to match the value of the corresponding sample mean overMmea-
surements in each i = 1,. . ., L,

hxii ¼
ð
x

PðxÞxi dx ¼ 1

M

XM
m¼1

xmi ¼ xi ; ð4Þ

where we define the n-th moment of the random variable xi distributed by the multivariate

probability distribution P as hxni i :¼
ð
x

PðxÞxni dx. Analogously, the second moment of the var-

iables xi and xj and its corresponding empirical expectation is supposed to be equal,

hxixji ¼
ð
x

PðxÞxixj dx ¼ 1

M

XM
m¼1

xmi x
m
j ¼ xixj ð5Þ

for i, j = 1,. . ., L. Taken together, Eqs 4 and 5 constrain the distribution’s covariance matrix to
be coherent to the empirical covariance matrix. Finally, the probability distribution should
maximize the information entropy,

maximize S ¼ �
ð
x

PðxÞln PðxÞ dx ð6Þ

with the natural logarithm ln. A well-known analytical strategy to find functional extrema
under equality constraints is themethod of Lagrange multipliers [32], which converts a con-
strained optimization problem into an unconstrained one by means of the Lagrangian L. In
our case, the probability distribution maximizing the entropy (Eq 6) subject to Eqs 3–5 is
found as the stationary point of the Lagrangian L ¼ LðPðxÞ; a; β; γÞ [33,34],

L ¼ Sþ aðh1i � 1Þ þ
XL
i¼1

biðhxii � xiÞ þ
XL
i;j¼1

gijðhxixji � xixjÞ: ð7Þ

The real-valued Lagrange multipliers α, β = (βi)i = 1,. . ., L and γ = (γij)i,j = 1,. . ., L correspond to
the constraints Eqs 3, 4, and 5, respectively. The maximizing probability distribution is then
found by setting the functional derivative of L with respect to the unknown density P(x) to
zero [33,35],

dL
dPðxÞ ¼ 0 ) � ln PðxÞ � 1þ aþ

XL
i¼1

bixi þ
XL
i;j¼1

gijxixj ¼ 0:
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Its solution is the pairwise maximum-entropy probability distribution,

Pðx; β; γÞ ¼ exp �1þ aþ
XL
i¼1

bixi þ
XL
i;j¼1

gijxixj

 !
¼ 1

Z
e�Hðx;β;γÞ ð8Þ

which is contained in the family of exponential probability distributions and assigns a non-
negative probability to any system configuration x = (x1,. . .,xL)

T 2RL. For the second identity,
we introduced the partition function as normalization constant,

Zðβ; γÞ :¼
ð
x

exp
XL
i¼1

bixi þ
XL
i;j¼1

gijxixj

 !
dx � expð1� aÞ

with the Hamiltonian,HðxÞ :¼ �
XL

i¼1
bixi �

XL

i;j¼1
gijxixj. It can be shown by means of the

information inequality that Eq 8 is the unique maximum-entropy distribution satisfying the
constraints Eqs 3–5 (Cover and Thomas [35], p. 410). Note that α is fully determined for given
β = (βi) and γ = (γij) by the normalization constraint Eq 3 and is therefore not a free parameter.
The right-hand representation of Eq 8 is also referred to as Boltzmann distribution. The
matrix of Lagrange multipliers γ = (γij) has to have full rank in order to ensure a unique param-
etrization of P(x), otherwise, one can eliminate dependent constraints [33,36]. In addition, for
the integrals in Eqs 3–6 to converge with respect to L-dimensional Lebesgue measure, we

require γ to be negative definite, i.e., all of its eigenvalues to be negative or
X

i;j
gijxixj ¼

xTγx < 0 for x 6¼ 0.

Concept of entropy maximization
Shannon states in his seminal work that information and (information) entropy are linked: the
more information is encoded in the system, the lower its entropy [37]. Jaynes introduced the
entropy maximization principle, which selects for the probability distribution that is (1) in
agreement with the measured constraints and (2) contains the least information about the
probability distribution [38–40]. In particular, any unnecessary information would lower the
entropy and, thus, introduce biases and allow overfitting. As demonstrated in the section
above, the assumption of entropy maximization under first and second moment constraints
results in an exponential model or Markov random field (in log-linear form) and many of the
properties shown here can be generalized to this model class [41]. On the other hand, there is
some analogy of entropy as introduced by Shannon to the thermodynamic notion of entropy.
Here, the Second law of Thermodynamics states that each isolated system monotonically
evolves in time towards a state of maximum entropy, the equilibrium. A thorough discussion
of this analogy and its limitation in non-equilibrium systems is beyond the scope of this review,
but can be found in [42,43]. Here, we exclusively use the notion entropy maximization as the
principle of minimal information content in the probability model consistent with the data.

Categorical random variables
In the following section, we derive the pairwise maximum-entropy probability distribution on
categorical variables. For jointly distributed categorical variables x = (x1,. . .,xL)

T 2ΩL, each var-
iable xi is defined on the finite setΩ = {s1,. . ., sq} consisting of q elements. In the concrete
example of modeling protein co-evolution, this set contains the 20 amino acids represented by
a 20-letter alphabet from A standing for Alanine to Y for Tyrosine plus one gap element, then
Ω = {A, C, D, E, F, G, H, I, K, L,M, N, P, Q, R, S, T, V,W, Y,−} and q = 21. Our goal is to extract
co-evolving residue pairs from the evolutionary record of a given protein family. As input data,
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we use a so-called multiple sequence alignment, {x1,. . ., xM}�Ω
L×M, a collection of closely

homologous protein sequences that is formatted such that it allows comparison of the evolu-
tion across each residue [44]. These alignments may stem from different hidden Markov
model-derived resources, such as PFAM [45], hhblits [46], and Jackhmmer [47].

To formalize the derivation of the pairwise maximum-entropy probability distribution on
categorical variables, we use the approach of [8,30,48] and replace, as depicted in Fig 2, each
variable xi defined on categorical variables by an indicator function of the amino acid s 2Ω,
1s:Ω! {0, 1}q,

xi 7!xiðsÞ :� 1sðxiÞ ¼
1 if xi ¼ s;

0 otherwise:

(

This embedding specifies a unique representation of any L-vector of categorical random
variables, x, as a binary Lq-vector, x(σ) with a single non-zero entry in each binary q-subvector
xi(σ) = (xi(s1),. . ., xi(sq))

T 2{0,1}q,

x ¼ ðx1; . . . ; xLÞT 2 OL 7!1s xðσÞ ¼ ðx1ðs1Þ; . . . ; xLðsqÞÞT 2 f0; 1gLq
:

Inserting this embedding into the first and second moment constraints, corresponding to
Eqs 3 and 4 in the continuous variable case, we find their embedded analogues, the single and
pairwise marginal probability in positions i and j for amino acids s,o,2Ω

hxiðsÞi ¼
X
xðσÞ

PðxðσÞÞxiðsÞ ¼
X
x

Pðxi ¼ sÞ ¼ PiðsÞ;

hxiðsÞxjðoÞi ¼
X
xðσÞ

PðxðσÞÞxiðsÞxjðoÞ ¼
X
x

Pðxi ¼ s; xj ¼ oÞ ¼ Pijðs;oÞ

including Pii(s,o) = Pi(s)1s(o) and with the distribution’s first moment in each random vari-

able, hyii ¼
X

y
PðyÞyi and y = (y1,. . ., yLq)

T 2RLq. The analogue of the covariance matrix then

becomes a symmetric Lq × Lqmatrix of connected correlations whose entries Cij(s,o) = Pij(s,o)
− Pi(s) Pj(o) characterize the dependencies between pairs of variables. In the same way, the

Fig 2. Illustration of binary embedding. The binary embedding 1σ:Ω! {0, 1}Lq maps each vector of
categorical random variables, x2ΩL, here represented by a sequence of amino acids from the amino acid
alphabet (containing the 20 amino acids and one gap element),Ω = {A, C, D, E, F,G, H, I, K, L,M, N, P,Q, R,
S, T, V,W, Y,−}, onto a unique binary representation, x(σ)2{0, 1}Lq.
doi:10.1371/journal.pcbi.1004182.g002
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sample means translate to the single-site and pair frequency counts overm = 1,. . .,M data vectors

xm ¼ ðxm1 ; . . . ; xmL ÞT 2 OL,

xiðsÞ ¼
1

M

XM
m¼1

xmi ðsÞ ¼ fiðsÞ;

xiðsÞxjðoÞ ¼
1

M

XM
m¼1

xmi ðsÞxmj ðoÞ ¼ fijðs;oÞ:

The pairwise maximum-entropy probability distribution in categorical variables has to ful-
fill the normalization constraint,X

x

PðxÞ ¼
X
xðσÞ

PðxðσÞÞ ¼ 1: ð9Þ

Furthermore, the single and pair constraints, the analogues of Eqs 3 and 4, enforce the resul-
ting probability distribution to be compatible with the measured single and pair frequency
counts,

PiðsÞ ¼ fiðsÞ; Pijðs;oÞ ¼ fijðs;oÞ ð10Þ

for each i, j = 1,. . ., L and amino acids s,o2Ω. As before, we require the probability distribu-
tion to maximize the information entropy,

maximize S ¼ �
X
x

PðxÞln PðxÞ ¼ �
X
xðσÞ

PðxðσÞÞln PðxðσÞÞ: ð11Þ

The corresponding Lagrangian, L ¼ LðPðxðσÞÞ; a; βðσÞ; γðσ;ωÞÞ, has the functional form,

L ¼ Sþ aðh1i � 1Þ þ
XL
i¼1

X
s2O

biðsÞðPiðsÞ � fiðsÞÞ þ
XL
i;j¼1

X
s;o2O

gijðs;oÞðPijðs;oÞ � fijðs;oÞÞ:

For notational convenience, the Lagrange multipliers βi(s) and γij(s,o) are grouped to the

Lq-vector βðσÞ ¼ ðbiðsÞÞs2Oi¼1;...;L and the Lq × Lq-matrix γðσ;ωÞ ¼ ðgijðs;oÞÞs;o2Oi;j¼1;...;L, respec-

tively. The Lagrangian’s stationary point, found as the solution of @L
@PðxðσÞÞ ¼ 0, determines the

pairwise maximum-entropy probability distribution in categorical variables [30,49],

PðxðσÞ; β; γÞ ¼ 1

Z
exp

XL
i¼1

X
s2O

biðsÞxiðsÞ þ
XL
i;j¼1

X
s;o2O

gijðs;oÞxiðsÞxjðoÞ
 !

ð12Þ

with normalization by the partition function, Z� exp(1−α). Note that distribution Eq 12 is of
the same functional form as Eq 8 but with binary random variables x(σ) 2{0,1}Lq instead of
continuous ones x2RL. At this point, we introduce the reduced parameter set, hi(s): = βi(s)+
γii(s, s) and eij(s,o): = 2γij(s,o) for i< j, using the symmetry of the Lagrange multipliers,
γij(s,o): = γji(o, s), and that xi(s) xi(o) = 1 if and only if s = o. For a given sequence (z1,. . .,
zL)2ΩL summing over all non-zero elements, (x1(z1) = 1,. . ., xL(zL) = 1) or equivalently (x1 =
z1,. . .,xL = zL) then yields the probability assigned to the sequence of interest,

Pðz1; . . . ; zLÞ �
1

Z
exp

XL
i¼1

hiðziÞ þ
X

1�i<j�L

eijðzi; zjÞ
 !

: ð13Þ

This is the 21-state maximum-entropy probability distribution as presented by [5–7].
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Gauge fixing
In contrast to the continuous variable case in which the number of constraints naturally
matches the number of unknown parameters, the case of categorical variables has dependencies

due to 1 ¼
X

s2OPiðsÞ for each i = 1,. . ., L and PiðsÞ ¼
X

o2OPijðs;oÞ for each i, j = 1,. . ., L

and s2Ω. This results in at most LðL�1Þ
2

ðq� 1Þ2 þ Lðq� 1Þ independent constraints compared

to LðL�1Þ
2

q2 þ Lq free parameters to be estimated. To ensure the uniqueness of the inferred

parameters in defining the Hamiltonian,Hðx1; . . . ; xLÞ ¼ �
X

i<j
eijðxi; xjÞ �

X
i
hiðxiÞ, and, by

implication, the probability distribution, one has to reduce the number of independent parame-
ters such that these match the number of independent constraints. For this purpose, so-called
gauge fixing [5] has been proposed, which can be realized in different ways. For example, the
authors of [6,7] set the parameters corresponding to the last amino acid in the alphabet, sq, to
zero, i.e., eij(sq,�) = eij(�, sq) = 0 and hi(sq) = 0 for 1� i< j� L, resulting in rows and columns
of zeros at the end of each q 	 q-block of the Lq × Lq coupling matrix. Alternatively, the

authors of [5] introduce a zero-sum gauge,
X

s
eijðs;oÞ ¼

X
s
eijðo0; sÞ ¼ 0 and

X
s
hiðsÞ ¼

0 for each 1� i< j� L ando, o2Ω. However, different gauge fixings are not equally efficient
for the purpose of protein contact prediction. The zero-sum gauge is the parameter fixing that
minimizes the sum of squares of the pairwise parameters in the HamiltonianH,X

s;o
eijðs;oÞ2, which makes it the suitable choice when using non-gauge invariant scoring

functions, such as the (average product-corrected) Frobenius norm [5,50] (see section “Scoring
Functions”). Moreover, no gauge fixing is required when combining the strictly convex ℓ1- or
ℓ
2-regularizer with negative loglikelihood minimization; here the regularizer selects for a unique
representation among all parametrizations of the optimal distribution [32,51]. However, to
additionally minimize the Frobenius norm of the pairwise interactions, [51] changed the
obtained full parameter set from regularized inference with plmDCA to zero-sum gauge by,

eijðs;oÞ7!eijðs;oÞ � 1
q

X
s0
eijðs0;oÞ � 1

q

X
o0eijðs;o0Þ þ 1

q2

X
s0 ;o0eijðs0;o0Þ, where q denotes

the length of the alphabet.

Network interpretation
The derived pairwise maximum-entropy distributions in Eqs 13 or 12 and 8 specify an undi-
rected graphical model or Markov random field [34,41]. In particular, a graphical model repre-
sents a probability distribution in terms of a graph that consists of a node and an edge set.
Edges characterize the dependence structure between nodes and a missing edge then corre-
sponds to conditional independence given the remaining random variables. For continuous,
real-valued variables, the maximum-entropy distribution with first and second moment con-
straints is multivariate Gaussian, which will be demonstrated in the next section. Its depen-
dency structure is represented by a graphical Gaussian model (GGM) in which a missing edge,
γij = 0, corresponds to conditional independence between the random variables xi and xj (given
the remaining ones), and is further specified by a zero entry in the corresponding inverse
covariance matrix, (C−1)ij = 0.

In the next section, we describe how the dependency structure of the graph is inferred.

Inference of Interactions
Up to this point, the functional form of the maximum-entropy probability distribution is speci-
fied, but not its determining parameters. For categorical variables with dimension L> 1, there
is typically no closed-form solution. In the following section, we present several inference
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methods to estimate these parameters that have recently been used in the context of protein
contact prediction. Those are (1) for continuous variables, the exact closed-form solution
which approximates the mean-field result for categorical variables, and (2) three inference
methods for categorical variables based on the maximum-likelihood methodology: the stochas-
tic maximum likelihood, the approximation by pseudo-likelihood maximization, and finally,
the sparse maximum-likelihood solution.

Closed-Form Solution for Continuous Variables
The simplest approach to extract the unknown Lagrange multipliers α, β = (βi), and γ = (γij)
from P(x) exactly is to use basic integration properties of the continuous random variables xi in
the constraints Eqs 3–5. For this purpose, we rewrite the exponent of the pairwise maximum-
entropy probability distribution Eq 8,

Pðx; β; ~γÞ ¼ 1

Z
exp βTx� 1

2
xT~γx

� �
¼ 1

Z
exp

1

2
βT~γ�1β� 1

2
ðx� ~γ�1βÞT~γðx� ~γ�1βÞ

� �
;

where we use the replacement ~γ :¼ �2γ and require ~γ to be positive definite (which is equiva-
lent to γ being negative definite), i.e., xT~γx > 0 for any x 6¼ 0, which makes its inverse ~γ�1 ¼
� 1

2
γ�1 well-defined. As already discussed, this is a sufficient condition on the integrals in Eqs

3–6 to be finite. For notational convenience, we define the shifted variable z ¼ ðz1; . . . ; zLÞT :¼
x� ~γ�1β or xi ¼ zi þ

XL

j¼1
ð~γ�1Þijbj and accordingly, the maximum-entropy probability dis-

tribution becomes

PðxÞ ¼ 1
~Z
exp � 1

2
ðx� ~γ�1βÞT~γðx� ~γ�1βÞ

� �
� 1

~Z
e�

1
2z

T ~γz ð14Þ

with the normalization constant ~Z ¼ exp 1� a� 1
2
βT~γ�1β

� �
. The normalization condition Eq

3 in the new variable is,

1 ¼
ð
x

PðxÞ dx � 1
~Z

ð
z

e�
1
2z

T~γz dz ð15Þ

and the linear shift does not affect the integral when integrated over RL yielding for the nor-

malization constant, ~Z ¼
ð
z

e�
1
2z

T~γz dz. Furthermore, the first-order constraint Eq 4 becomes

for each i = 1,. . ., L,

hxii ¼
ð
x

PðxÞxi dx � 1
~Z

ð
z

e�
1
2z

T~γz zi þ
XL
j¼1

ð~γ�1Þijbj

 !
dz ¼

XL
j¼1

ð~γ�1Þijbj

and we used the point symmetry of the integrand then,
ð
z

e�
1
2z

T~γzzi dz ¼ 0 in each i = 1,. . ., L.

Analogously, we find for the second moment, determining the correlations for each index pair
i, j = 1,. . ., L,

hxixji ¼
ð
x

PðxÞxixj dx � 1
~Z

ð
z

e�
1
2z

T~γzðzi � hxiiÞðzj � hxjiÞ dz ¼ hzizji þ hxiihxji;

where we use again the point symmetry and the result on the normalization constraint. Based

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004182 July 30, 2015 10 / 22



on this, the covariance is found as,

Cij ¼ hxixji � hxiihxji � hzizji:

Finally, the term hzi zji is solved using a spectral decomposition of the symmetric and posi-
tive-definite matrix ~γ as sum over products of its eigenvectors v1,. . .,vL and real-valued and pos-

itive eigenvalues λ1,. . .,λL, ~γ ¼
XL

k¼1
lkvkv

T
k . The eigenvectors form a basis ofRL and assign

new coordinates, y1,. . .,yL, to z ¼
XL

k¼1
ykvk, which allows writing of the exponent hzi zji as

zT~γz ¼
XL

k¼1
lky

2
k . The covariance between xi and xj then reads as (Bishop [52], p. 83)

hzizji ¼
1
~Z

XL
l;n¼1

ðvlÞiðvnÞj
ð
y

exp � 1

2

XL
k¼1

lky
2
k

 !
ylyn dy ¼

XL
k¼1

1

lk
ðvkÞiðvkÞj � ð~γ�1Þij

with solution Cij ¼ ð~γ�1Þij or ðC�1Þij ¼ ð~γÞij ¼ �2gij. Taken together, the Lagrange multipliers

β and γ are specified in terms of the mean, hxi, and the inverse covariance matrix (also known
as the precision or concentration matrix), C−1,

β ¼ C�1hxi; γ ¼ � 1

2
~γ ¼ � 1

2
C�1: ð16Þ

As a consequence, the real-valued maximum-entropy distribution Eq 14 for given first and
second moments is found as themultivariate Gaussian distribution, which is determined by
the mean hxi and the covariance matrix C,

Pðx; hxi;CÞ ¼ ð2pÞ�L=2detðCÞ�1=2exp � 1

2
ðx� hxiÞTC�1ðx� hxiÞ

� �
ð17Þ

and we refer to [52] for the derivation of the normalization factor. The initial requirement of
~γ ¼ �2γ to be positive definite results in a positive-definite covariance matrix C, a necessary
condition for the Gaussian density to be well defined. In summary, the multivariate Gaussian
distribution maximizes the entropy among all probability distributions of continuous variables
with specified first and second moments. The pair interaction strength is now evaluated by the
already introduced partial correlation coefficient between xi and xj given the remaining vari-
ables {xr}r2{1,. . ., L}\{i,j},

rij�f1;...;Lgnfi;jg �
gijffiffiffiffiffiffiffiffigiigjj

p ¼
� ðC�1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðC�1ÞiiðC�1Þjj
q if i 6¼ j;

1 if i ¼ j:

ð18Þ

8>><
>>:

Data integration
In biological datasets as used to study gene association, the number of measurements,M, is
typically smaller than the number of observables, L, i.e.,M< L in our terminology. Conse-

quently, the empirical covariance matrix, Ĉ ¼ 1
M

XM

m¼1
ðxm � xÞðxm � xÞT, will in these cases

always be rank-deficient (and, thus, not invertible) since its rank can exceed neither the num-
ber of variables, L, nor the number of measurements,M. Moreover, even in cases whenM� L,
the empirical covariance matrix may become non-invertible or badly conditioned (i.e., close to
singular) due to dependencies in the data. However, for variables following a multivariate
Gaussian distribution, one can access the elements of its inverse by maximizing the penalized
Gaussian loglikelihood, which results in the following estimate of the inverse covariance
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matrix, C�1 � C�1
d;l ,

C�1
d;l ¼ argmax

Y pos: definite;
symmetric

fln detðYÞ � traceðĈYÞ � lkYkddg ð19Þ

with penalty parameter λ� 0 and kYkdd¼
X

i;j
jYijjd. If λ = 0, we obtain the maximum-likeli-

hood estimate, for δ = 1 and λ> 0 the ℓ1-regularized (sparse) maximum-likelihood solution
that selects for sparsity [53,54], and for δ = 2 and λ> 0 the ℓ2-regularized maximum-likelihood
solution that favors small absolute values in the entries of the selected inverse covariance
matrix [55]. For δ = 1 and λ> 0, the method is called LASSO, for δ = 2 and λ> 0, ridge regres-
sion. Alternatively, regularization can be directly applied to the covariance matrix, e.g., by
shrinkage [17,56].

Solution for categorical variables
An ad hoc ansatz to extract the pairwise parameters in the categorical variables case (12) is to

extend the binary variable xðσÞ ¼ ðxiðskÞÞi�k 2 f0; 1gLðq�1Þ to a continuous one, y = (yj)j 2RL(q−1),
and replace the sums in the distribution and the moments h�i by integrals. The extended binary
maximum-entropy distribution Eq 12 is then approximated by the Lq-dimensional multivariate

Gaussian with inherited analogues of the mean hyi ¼ ðfiðskÞÞi�k 2 R
Lðq�1Þ and the empirical

covariance matrix Ĉðσ;ωÞ ¼ ðĈ ijðsk; slÞÞi;j;k;l 2 R
Lðq�1Þ	Lðq�1Þ whose elements Ĉ ijðs;oÞ ¼

fijðs;oÞ � fiðsÞfjðoÞ are characterizing the pairwise dependency structure. The gauge fixing
results in setting the preassigned entries referring to the last amino acid in the mean vector and
the covariance matrix to zero, which reduces the model’s dimension from Lq to L(q−1); other-
wise the unregularized covariance matrix would always be non-invertible. Typically, the single
and pair frequency counts are reweighted and regularized by pseudocounts (see section

“Sequence data preprocessing”) to additionally ensure that Ĉðσ;ωÞ is invertible. Final applica-
tion of the closed-form solution for continuous variables Eq 16 to the extended binary variables

for C�1ðσ;ωÞ � Ĉ�1ðσ;ωÞ yields the so-called mean-field (MF) approximation [48],

gMF
ij ðs;oÞ ¼ � 1

2
ðC�1Þijðs;oÞ ) eMF

ij ðs;oÞ ¼ �ðC�1Þijðs;oÞ ð20Þ

for amino acids s,o2Ω and with restriction to residues i< j in the latter identity. The same
solution has been obtained by [6,7] using a perturbation ansatz to solve the q-state Potts model
termed (mean-field) Direct Coupling Analysis (DCA or mfDCA). In Ising models, this result is
also known as naïve mean-field approximation [57–59].

The following section is dedicated to maximum likelihood-based inference approaches,
which have been presented in the field of protein contact prediction.

Maximum-Likelihood Inference
A well-known approach to estimate the parameters of a model is maximum-likelihood infer-
ence. The likelihood is a scalar measure of how likely the model parameters are, given the
observed data (Mackay [34], p. 29), and the maximum-likelihood solution denotes the parame-
ter set maximizing the likelihood function. For Markov random fields, the maximum-likeli-
hood solution is consistent, i.e., recovers the true model parameters in the limit of infinite data

(Koller and Friedman [32], p. 949). In particular, for a pairwise model with parameters hðσÞ ¼
ðhiðsÞÞs2Oi¼1;...;L and eðσ;ωÞ ¼ ðeijðs;oÞÞs;o2O1�i<j�L, we find the likelihood l(h(σ),e(σ,ω)) = l(h(σ),e(σ,
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ω)|x1,. . ., xM) given observed data, x1,. . ., xM 2ΩL,which are assumed to be independent and
identically distributed (iid), as

lðhðσÞ; eðσ;ωÞjx1; . . . ;xMÞ ¼
YM
m¼1

Pðxm; hðσÞ; eðσ;ωÞÞ: ð21Þ

The estimates of the model parameters are then obtained as the maximizer of l or, using the
monotonicity of the logarithm, the minimizer of ln l,

fhMLðσÞ; eMLðσ;ωÞg ¼ argmax
hðsÞ;eðs;oÞ

lðhðσÞ; eðσ;ωÞÞ � argmin
hðsÞ;eðs;oÞ

� ln lðhðσÞ; eðσ;ωÞÞ:

When we specify the maximum-entropy distribution Eq 13 as model distribution, the then-
concave loglikelihood [32] becomes

ln lðhðσÞ; eðσ;ωÞÞ ¼
XM
m¼1

ln Pðxm; hðσÞ; eðσ;ωÞÞ

¼ �M ln Z �
XL
i¼1

X
s

hiðsÞfiðsÞ �
X

1�i<j�L

X
s;o

eijðs;oÞfijðs;oÞ
" #

:

ð22Þ

The maximum-likelihood solution is found by taking the derivatives of Eq 22 with respect
to the model parameters hi(s) and eij(s,o) and setting to zero,

@

@hiðsÞ
ln l ¼ �M

@

@hiðsÞ
ln ZjfhðσÞ;eðσ;ωÞg � fiðsÞ

� 	
¼ 0;

@

@eijðs;oÞ
ln l ¼ �M

@

@eijðs;oÞ
ln ZjfhðσÞ;eðσ;ωÞg � fijðs;oÞ

" #
¼ 0:

ð23Þ

The partial derivatives of the partition function,

Z ¼
X

ðx1 ;...;xLÞ
exp

X
i
hiðxiÞ þ

X
i<j
eijðxi; xjÞ


 �
, follow the well-known identities

@

@hiðsÞ
ln ZjfhðσÞ;eðσ;ωÞg ¼ 1

Z
@hiðsÞZjfhðσÞ;eðσ;ωÞg ¼ Piðs; hðσÞ; eðσ;ωÞÞ;

@

@eijðs;oÞ
ln ZjfhðσÞ;eðσ;ωÞg ¼ 1

Z
@eijðs;oÞZjfhðσÞ;eðσ;ωÞg ¼ Pijðs;o; hðσÞ; eðσ;ωÞÞ:

The maximizing parameters, hMLðσÞ ¼ ðhML
i ðsÞÞs2Oi¼1;...;L and e

MLðσ;ωÞ ¼ ðeML
ij ðs;oÞÞs;o2O1�i<j�L,

are those matching the distribution’s single and pair marginal probabilities with the empirical
single and pair frequency counts,

Piðs; hMLðσÞ; eMLðσ;ωÞÞ ¼ fiðsÞ; Pijðs;o; hMLðσÞ; eMLðσ;ωÞÞ ¼ fijðs;oÞ

in residues i = 1,. . ., L and i,j = 1,. . ., L, respectively, and for amino acids s,o2Ω. In other
words, matching the moments of the pairwise maximum-entropy probability distribution to
the given data is equivalent to maximum-likelihood fitting of an exponential family [34,60].
Although the maximum-likelihood solution is globally optimal for the pairwise maximum-
entropy probability model, based on the concavity of ln l, the resulting distribution is not nec-
essarily unique, due to dependencies in the input data (Koller and Friedman [32], p. 948). To
remove these equivalent optima and select for a unique representation, one needs to introduce
further constraints by, for example, gauge fixing or regularization.
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Based on the maximum-likelihood principle, we present three solution approaches in the
remainder of this section.

Stochastic maximum likelihood
The maximum-likelihood solution is typically inaccessible for models of categorical variables
due to the computational complexity of estimating the partition function Z which involves a
sum over all possible states and grows exponentially with the size of the system [3,61]. Lapedes
et al. [30] solved Eq 22 by likelihood maximization on sampled subsets using the Metropolis–
Hastings algorithm [32,34]. In particular, the likelihood is maximized iteratively by following
the steepest ascent of the loglikelihood function ln l using Eq 23. In each maximization step,

the parameters hðkÞ
i ðsÞ and eðkÞij ðs;oÞ are changed in proportion to the gradient of ln l and

scaled by the constant step size ε> 0,

DhðkÞ
i ðsÞ ¼ ε

@

@hiðsÞ
ln ljfhðkÞðσÞ;eðkÞðσ;ωÞg / fiðsÞ � Piðs; hðkÞðσÞ; eðkÞðσ;ωÞÞ;

DeðkÞij ðs;oÞ ¼ ε
@

@eijðs;oÞ
ln ljfhðkÞðσÞ;eðkÞðσ;ωÞg / fijðs;oÞ � Pijðs;o; hðkÞðσÞ; eðkÞðσ;ωÞÞ

until convergence is reached as the differences DhðkÞ
i ðs;oÞ :¼ hðkþ1Þ

i ðs;oÞ � hðkÞ
i ðs;oÞ,

i = 1,. . ., L, and DeðkÞij ðs;oÞ :¼ eðkþ1Þ
ij ðs;oÞ � eðkÞij ðs;oÞ, 1� i< j� L, go to zero [30]. The com-

putation of the marginals requires summing over 20L states and is, for example, estimated by
Monte-Carlo sampling. As the likelihood is concave, there are no local maxima and the maxi-
mum-likelihood parameters are obtained in the limit k ! 1,

fhMLðσÞ; eMLðσ;ωÞg ¼ lim
k!1

fhðkÞðσÞ; eðkÞðσ;ωÞg

or DhðkÞ
i ðs;oÞ ! 0 for i = 1,. . ., L and DeðkÞij ðs;oÞ ! 0 for 1� i< j� L and s,o2Ω \ {sq}, a

subset ofΩ containing q−1 elements to account for gauge fixing.

Pseudo-likelihood maximization
Besag [62] introduced the pseudo-likelihood as approximation to the likelihood function in
which the global partition function is replaced by computationally tractable local estimates.
The pseudo-likelihood inherits the concavity from the likelihood and yields the exact maxi-
mum-likelihood parameter in the limit of infinite data for Gaussian Markov random fields
[41,62], but not in general [63]. Applications of this approximation to non-continuous categor-
ical variables have been studied, for instance, in sparse inference of Ising models [64] but may
lead to results that differ from the maximum-likelihood estimate. In this approach, the proba-
bility of them-th observation, xm, is approximated by the product of the conditional probabili-
ties of xr ¼ xmr given observations in the remaining variables

xnr :¼ ðx1; . . . ; xr�1; xrþ1; . . . ; xLÞT 2 OL�1 [51],

Pðxm; hðσÞ; eðσ;ωÞÞ ’
YL
r¼1

Pðxr ¼ xmr jxnr ¼ xm
nr; hðσÞ; eðσ;ωÞÞ:
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Each factor is of the following analytical form,

Pðxr ¼ xmr jxnr ¼ xm
nr; hðσÞ; eðσ;ωÞÞ ¼

exp hrðxmr Þ þ
X
j 6¼r

erjðxmr ; xmj Þ
 !

X
s

exp hrðsÞ þ
X
j6¼r

erjðs; xmj Þ
 ! ;

which only depends on the unknown parameters (eij(s,o))i 6¼r,j 6¼r and (hi(s))i 6¼r and makes the
computation of the pseudo-likelihood tractable. Note, we treat eij(s,o) = eji(o,s) and eii(�,�) =
0. By this approximation, the loglikelihood Eq 21 becomes the pseudo-loglikelihood,

ln lPLðhðσÞ; eðσ;ωÞÞ :¼
XM
m¼1

XL
r¼1

ln Pðxr ¼ xmr jxnr ¼ xm
nr; hðσÞ; eðσ;ωÞÞ:

In the final formulation of the pseudo-likelihood maximization (PLM) problem, an ℓ
2-regu-

larizer is added to select for small absolute values of the inferred parameters,

fhPLMðσÞ; ePLMðσ;ωÞg ¼ argmin
hðσÞ;eðσ;ωÞ

f�ln lPLðhðσÞ; eðσ;ωÞÞ þ lhkhðσÞk2
2 þlekeðσ;ωÞk22g;

where λh, λe> 0 adjust the complexity of problem and are selected in a consistent manner across
different protein families to avoid overfitting. This approach has been presented (with scaling of
the pseudo-loglikelihood by 1

Meff
wm to include sequence weighting, see section “Sequence data

preprocessing”) by [51] under the name plmDCA (PseudoLikelihood Maximization Direct Cou-
pling Analysis) and has shown performance improvements compared to the mean-field approxi-
mation Eq 20. Another inference method based on the pseudolikelihood maximization but
including prior knowledge in terms of secondary structure and information on pairs likely to be
in contact is Gremlin (Generative REgularized ModeLs of proteINs) [65–67].

Sparse maximum likelihood
Similar to the derivation of the mean-field result (20), Jones et al. [8] approximated Eq 12 by a
multivariate Gaussian and accessed the elements of the inverse covariance matrix by a maxi-
mum-likelihood inference under sparsity constraint [54,68,69]. The corresponding method has
been called Psicov (Protein Sparse Inverse COVariance). The validity of this approach to solve
the sparse maximum-likelihood problem in binary systems such as Ising models has been dem-
onstrated by [69], followed by consistency studies [70]. In particular, the Psicov method infers
the sparse maximum-likelihood estimate of the inverse covariance matrix Eq 19 for δ = 1 using
the analogue of the empirical covariance matrix derived from the observed amino acid frequen-

cies, Ĉðσ;ωÞ. Its elements Ĉ ijðs;oÞ ¼ fijðs;oÞ � fiðsÞfjðoÞ, the empirical connected correla-

tions, are preprocessed by reweighting and regularized by pseudocounts and shrinkage.
Regularized loglikelihood maximization Eq 19 selects a unique representation of the model,
i.e., no additional gauge fixing is required. Using identity Eq 16 on the elements of the sparse
maximum-likelihood (SML) estimate of the inverse covariance, C�1

1;lðσ;ωÞ, yields the estimates

for the Lagrange multipliers,

gSML
ij ðs;oÞ ¼ � 1

2
ðC�1

1;lÞijðs;oÞ ) eSML
ij ðs;oÞ ¼ �ðC�1

1;lÞijðs;oÞ

for s,o2Ω; in the second identity, the symmetric Lagrange multipliers γij(s,o) defined for
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indices i,j = 1,. . ., L have been hypothetically translated to the reduced parameter formulation
eij(s,o) for 1� i< j� L.

Sequence data preprocessing
The study of residue–residue co-evolution is based on data from multiple sequence alignments,
which represent sampling from the evolutionary record of a protein family. Multiple sequence
alignments from currently existing sequence databases do not evenly represent the space of
evolved sequences as they are subject to acquisition bias towards available species of interest.
To account for uneven representation, sequence reweighting has been introduced to lower the
contributions of highly similar sequences and assign higher weight to unique ones (see Durbin
et al. [44], p. 124 ff.). In particular, the weight of them-th sequence, wm: = 1/km, in the align-

ment {x1,. . .,xM}, can be chosen to be the inverse of km :¼
XM

n¼1
H
XL

i¼1
1ðxmi ; xni Þ � L � y


 �
,

the number of sequences xm shares more than θ � 100% of its residues with. Here, θ denotes a
similarity threshold and is typically chosen as 0.7� θ� 0.9, 1(a,b) = 1 if a = b and 1(a,b) = 0,
otherwise, and H is the step function with H(y) = 0 if y< 0 andH(y) = 1, otherwise. This also
provides us with an estimate of the effective number of sequences in the alignment,

Meff :¼
XM

m¼1
wm. Additionally, pseudocount regularization with ~l > 0 is used to deal with

finite sampling bias and to account for underrepresentation [5–8,44,48], resulting in zero

entries in Ĉðσ;ωÞ, for instance, if a certain amino acid pair is never observed. The use of pseu-
docounts is equivalent to a maximum a posteriori (MAP) estimate under a specific inverse
Wishart prior on the covariance matrix [48]. Both preprocessing steps combined yield the
reweighted single and pair frequency counts,

fiðsÞ ¼
1

Meff þ ~l

~l
q
þ
XM
m¼1

wmx
m
i ðsÞ

 !
; fijðs;oÞ ¼

1

Meff þ ~l

~l
q2

þ
XM
m¼1

wmx
m
i ðsÞxmj ðoÞ

 !
;

in residues i,j = 1,. . ., L and for amino acids s,o2Ω. Ideally for maximum-likelihood inference,
the random variables are assumed to be independent and identically distributed. However, this
is typically violated in realistic sequence data due to phylogenetic and sequencing bias, and the
reweighting presented here does not necessarily solve this problem.

Scoring Functions for the Pairwise Interaction Strengths
For pairwise maximum-entropy models of continuous variables, the natural scoring function
for the interaction strength between two variables xi and xj, given the inferred inverse covari-
ance matrix, is the partial correlation Eq 18. However, for categorical variables, the situation is
more complicated, and there are several alternative choices of scoring functions. Requirements
on the scoring function are that it has to account for the chosen gauge and, in the case of pro-
tein contact prediction, evaluate the coupling strength between two residues i and j summa-
rized across all possible q2 amino acids pairs. The highest scoring residue pair is, for instance,
used to predict the 3-D structure of the protein of interest. For this purpose, the direct informa-

tion, defined as the mutual information applied to Pdir
ij ðs;oÞ ¼ 1

Zij
expðeijðs;oÞ þ ~hiðsÞ þ

~hjðoÞÞ instead of fij(s,o),

DIij ¼
X
s;o2O

Pdir
ij ðs;oÞln

Pdir
ij ðs;oÞ

fiðsÞfjðoÞ

 !
;

has been introduced [5]. In Pdir
ij ðs;oÞ, ~hiðsÞ and ~hjðoÞ are chosen to be consistent with the
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(reweighted and regularized) single-site frequency counts, fi(s) and fj(o), and Zij such that the
sum over all pairs (i, j) with 1� i< j� L is normalized to 1. The direct information is invariant
under gauge changes of the HamiltonianH, which means that any suitable gauge choice results
in the same scoring values. As an alternative measure of the interaction strength for a particular
pair (i, j), the Frobenius norm of the 21×21-submatrices of (eij(s,o))s,o has been used,

keijkF ¼
X
s;o2O

eijðs;oÞ2
 !1=2

:

However, this expression is not gauge-invariant [5]. In this context, the notation with eij(s,
o), which refers to indices restricted to i< j, is extended and treated such that eij(s,o) = eji(o,
s) and eij(�,�) = 0; then ||eij||F = ||eji||F and ||eii||F = 0. In order to correct for phylogenetic biases
in the identification of co-evolved residues, Dunn et al. [27] introduced the average product
correction (APC). It has been originally used in combination with the mutual information but
was recently combined with the ℓ1-norm [8] and the Frobenius/ℓ2-norm [51] and is derived
from the averages over rows and columns of the corresponding norm of the matrix of the eij
parameters. In this formulation, the pair scoring function is

APC�FNij ¼keijkF �
kei�kFke�jkF

ke��kF

ð24Þ

for eij-parameters fixed by zero-sum gauge and with the means over the non-zero elements in

row, column and full matrix, kei�kF :¼ 1
L�1

XL

j¼1
keijkF, ke�jkF :¼ 1

L�1

XL

i¼1
keijkF and

ke��kF :¼ 1
LðL�1Þ

XL

i;j¼1
keijkF, respectively. Alternatively, the average product-corrected ℓ1-norm

applied to the 20×20-submatrices of the estimated inverse covariance matrix, in which contri-
butions from gaps are ignored, has been introduced by the authors of [8] as the Psicov-score.
Using the average product correction, the authors of [51] showed for interaction parameters
inferred by the mean-field approximation that scoring with the average product-corrected Fro-
benius norm increased the precision of the predicted contacts compared to scoring with the
DI-score. The practical consequence of the choice of scoring method depends on the dataset
and the parameter inference method.

Discussion of Results, Improvements, and Applications
Maximum entropy-based inference methods can help in estimating interactions underlying
biological data. This class of models, combined with suitable methods for inferring their
numerical parameters, has been shown to reveal—to a reasonable approximation—the direct
interactions in many biological applications, such as gene expression or protein residue—resi-
due coevolution studies. In this review, we have presented maximum-entropy models for the
continuous and categorical random variable case. Both approaches can be integrated into a
framework, which allows the use of solutions obtained for continuous variables as approxima-
tions for the categorical random variable case (Fig 3).

The validity and precision of the available maximum-entropy methods could be improved
to yield more biologically insightful results in several ways. Advanced approximation methods
derived from Ising model approaches [59,71] are possible extensions for efficient inference.
Moreover, additional terms beyond pair interactions can be included in models of continuous
and discrete random variables [1,33,59]. However, higher-order models demand more data,
which is a major bottleneck for their application to biological problems. In the case of protein
contact prediction, this could be resolved by getting more sequences, which are being obtained
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as the result of extraordinary advances in sequencing technology. The quality of existing meth-
ods can be improved by careful refinement of sequence alignments in terms of cutoffs and gaps
or by attaching optimized weights to each of the data sequences. Alternatively, one could try to
improve the existing model frameworks by accounting for phylogenetic progression [27,49,72]
and finite sampling biases.

The advancement of inference methods for biological datasets could help solve many inter-
esting biological problems, such as protein design or the analysis of multi-gene effects in relat-
ing variants to phenotypic changes as well as multi-genic traits [73,74]. The methods presented
here could help reduce the parameter space of genome-wide association studies to first approx-
imation. In particular, we envision the following applications: (1) in the disease context, co-
evolution studies of oncogenic events, for example copy number alterations, mutations, fusions

Fig 3. Scheme of pairwisemaximum-entropy probability models. The maximum-entropy probability distribution with pairwise constraints for continuous
random variables is the multivariate Gaussian distribution (left column). For the maximum-entropy probability distribution in the categorical variable case
(right column), various approximative solutions exist, e.g., the mean-field, the sparse maximum-likelihood, and the pseudolikelihood maximization solution.
The mean-field and the sparse maximum-likelihood result can be derived from the Gaussian approximation of binarized categorical variables (thin arrow).
Pair scoring functions for the continuous case are the partial correlations (left column). For the categorical variable case, the direct information, the Frobenius
norm, and the average product-corrected Frobenius norm are used to score pair couplings from the inferred parameters (right column).

doi:10.1371/journal.pcbi.1004182.g003
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and alternative splicing, can be used to derive direct co-evolution signatures of cancer from
available data, such as The Cancer Genome Atlas (TCGA); (2) de novo design of protein
sequences as, for example, described in [65,75] for the WW domain using design rules based
on the evolutionary information extracted from the multiple sequence alignment; and (3)
develop quantitative models of protein fitness computed from sequence information.

In general, in a complex biological system, it is often useful for descriptive and predictive
purposes to derive the interactions that define the properties of the system. With the methods
presented here and available software (Table 1), our goal is not only to describe how to infer
these interactions but also to highlight tools for the prediction and redesign of properties of
biological systems.
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