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Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by a complex patho-
physiology, involving not only the respiratory system but also nonpulmonary distal organs. Although advances
in the management of ARDS have led to a distinct improvement in ARDS-related mortality, ARDS is still a life-
threatening respiratory condition with long-term consequences. A better understanding of the pathophysiology
of this condition will allow us to create a personalized treatment strategy for improving clinical outcomes. In this
article, we present a general overview p38 mitogen-activated protein kinase (p38MAPK) and recent advances in
understanding its functions. We consider the potential of the pharmacological targeting of p38MAPK pathways to
treat ARDS.

KEYWORDS: ARDS; p38MAPK; Pathophysiology.

’ INTRODUCTION

Acute respiratory distress syndrome (ARDS) is acute
respiratory failure characterized by progressive dyspnea
and intractable hypoxemia (1). Many clinical disorders,
including pneumonia, aspiration, pulmonary contusion,
severe systemic infection and multiple injuries, can pro-
mote the occurrence of ARDS (2). The development of
ARDS is often accompanied by high short-term mortality
rates and significant long-term outcomes (especially physical
and cognitive impairment) (3). Since ARDS was initially
described in 1967 by Dr. Thomas L. Petty (4), various
studies have been carried out to address the clinical features
(epidemiology, risk factors, treatment) and pathogenesis
(biomarkers, underlying mechanisms, genetic predisposi-
tion) of this syndrome (5). Additionally, several signaling
molecules and pathways have been studied to expound the
pathophysiological mechanisms of ARDS and guide new
therapeutic treatments. However, current treatment is mainly
supportive, with mechanical ventilation; therefore, clarification
of the pathophysiological mechanisms of ARDS appears to be
a promising area that will lead to improved outcomes for this
devastating condition.
Pro- and anti-inflammatory cytokines are strongly affected

by mitogen-activated protein kinase (MAPK), and p38MAPK

is the most important MAPK in stress signaling (6). There
are four p38MAPK isoforms, which adds to the diversity
and complexity of p38MAPK signal transduction (7). In this
review, we summarize the function of p38MAPK in the
development of ARDS, and provide a comprehensive under-
standing of p38MAPK in the molecular mechanism of ARDS.

Promotion of inflammatory mediator production
The inflammation response can help remove invasive

pathogenic microorganisms, which reduces and repairs the
pathological damage caused by pathogen invasion. How-
ever, excessive inflammation leads to systemic inflammatory
response syndrome or even an uncontrolled inflammatory
cascade. During the development of ARDS, excessive cytokine
production plays a key role in the imbalance of pro- and anti-
inflammatory responses, which destroys immune homeostasis
and induces an inflammation cascade (8). Several studies have
shown that p38MAPK, an important signaling molecule, plays
an important proinflammatory role in the development of
ARDS at both the transcriptional and posttranscriptional
levels.
The p38MAPK signal transduction pathway can be

activated by lipopolysaccharide (LPS), stress and inflamma-
tory factors (9,10). Evidence has indicated that p38MAPK
activation is crucial for the production of inflammatory
cytokines (11). Among its four isoforms, p38a MAPK was
first recognized for its role in regulating proinflammatory
cytokines (12). p38a MAPK was then associated with the
production of IL-8 in response to IL-1 and IL-6 in response to
TNF-a (13,14). IL-1b and TNF-a, which are initiation factors,
not only directly damage vascular endothelial cells but also
activate a series of effector cells. The proinflammatory role of
p38MAPK-activated protein kinase2 (MK2), the main down-
stream target of p38a/b, has been widely demonstrated inDOI: 10.6061/clinics/2019/e509
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various reports. MK2 knockout mice survived doses of LPS
that were lethal for wild-type mice and exhibited a dramatic
reduction in the cytokines IL-1b, TNF-a, and IFN-g (15).
Although the p38MAPK pathway regulates inflammatory

mediators at different levels, its role in posttranscriptional
regulation is also a hot topic for researchers. The mRNAs
transcribed by these genes share an AU-rich element (ARE)
in their 30 untranslated regions. These AREs can shorten the
mRNA half-life and block translation. Mice with a deletion
in the ARE domain of the TNF-a gene were irresponsive
to LPS-stimulated, p38a-mediated TNF-a translation (16).
A similar phenomenon was also observed for COX-2, another
inflammatory mediator (17). Therefore, posttranscriptional
regulation via AREs is a general mechanism of p38MAPK-
mediated gene expression. However, the exact mechanisms
by which p38MAPK carries out posttranscriptional regula-
tion are still unclear.

Upregulation of intercellular cell adhesion
molecule-1 (ICAM-1) expression through
human antigen R (HuR)
ICAM-1, also named CD54, is an important adhesion

molecule. During a normal inflammatory response, neutro-
phils bind to ICAM-1 when blood flows through the lung
capillaries. This combination of events changes the adhesion
of endothelial cells and their cytoskeleton and eventually
allows neutrophils to migrate in the lung, which may be an
important trigger of ARDS (18). Studies have shown that the
expression of ICAM-1 increases sharply in the early stage
of acute lung injury (ALI) and exacerbates lung injury (19).
The number of neutrophils in bronchoalveolar lavage fluid
(BALF) from patients with ARDS was correlated with the
severity of disease and prognosis, and neutrophil chemotaxis
in these patients was greater than that in normal subjects
(20). p38MAPK can regulate the expression of ICAM-1 by
HuR or p53.
HuR is mainly recognized as a posttranscriptional reg-

ulatory factor. After binding to AREs, HuR can influence
the half-life and/or translation of mRNAs, including TNF-a,
ICAM-1, COX-2 and TLR4 (21,22). Recent studies have shown
that MK2 can accelerate the accumulation of HuR in the
cytoplasm, which in turn enhances ICAM-1 expression, thereby
promoting neutrophil adhesion to the endothelium (23).
Furthermore, p38MAPK-dependent p53 phosphorylation can
enhance the stability, accumulation and activation of p53, which
regulates ICAM-1 expression in various physiological and
pathological settings in an NF-kB-independent manner (24,25).

Mutual regulation of p38MAPK- high mobility
group box 1 (HMGB1)
HMGB1, a DNA-binding protein, mainly acts as a pro-

ximal trigger of inflammatory cytokines, such as IL-1b, IL-6
and TNF-a (26). HMGB1 overexpression may increase the
incidence of ARDS by activating TLR4 in the context of
trauma-hemorrhagic shock (27). Both the HMGB1 inhi-
bitor antithrombin? and HMGB1/receptor for advanced
glycation end products (RAGE) signaling pathway inhibi-
tion can improve endotoxin-induced ARDS (28, 29). With
the discovery of its proinflammatory effects in the later
stages of disease, HMGB1 has become a research hotspot in
the field of critical care medicine. Current research shows that
HMGB1 and p38MAPK promote each other, which in turn
aggravates the development of ARDS.

HMGB1 mediates its activities through multiple receptors,
such as Toll-like receptors (TLRs) and RAGE. By binding to
these receptors, HMGB1 can activate the p38MAPK stress
response pathway (30,31). As mentioned above, the activa-
tion of p38MAPK significantly stimulates the production of
inflammatory factors. In sepsis, trauma or other diseases,
IL-1b and TNF-a can stimulate the expression of HMGB1,
which significantly increases the inflammatory response (32).

The 30 untranslated region of HMGB1 mRNA is very
long and contains AREs. HuR can enhance the translation of
HMGB1 and inhibit miR-1192-mediated transcriptional repres-
sion by binding to the ARE of HMGB1 (33). Based on the
preceding discussion, we concluded that the p38MAPK/
MK2/HuR signaling pathway may affect the pathogenesis
of ARDS by regulating the translation of HMGB1 and that
the p38MAPK/MK2/HuR signaling axis is a promising
target for ARDS treatment.

Promoting neutrophil accumulation in the lung
and prolonging the neutrophil lifespan

Neutrophils play a pivotal role in the immune system
through migrating to abnormal sites, where they function in
defense. Although immune responses are important to
elimination the offending microorganism, they need to be
controlled to avoid causing damage to the body (34). During
the early stages of inflammation, the relatively long life span
of neutrophils allows these cells to better develop their
defense mechanisms. After the eradication of pathogens,
emigrated neutrophils undergo apoptosis and are ingested
by scavenger macrophages (35,36). Abnormalities in neu-
trophil populations or levels of neutrophil chemotaxis have
been identified in inflammation (37,38), infection (39) and
ARDS (40,41). Among ARDS patients, neutrophil counts
were higher in BALF from nonsurvivors than in BALF from
survivors, and excessive neutrophil accumulation was
associated with poor clinical outcome (42,43). p38MAPK
can promote the recruitment of neutrophils in the lung by
regulating the expression of surface receptors. However,
LPS-induced neutrophil recruitment mainly depends on
p38MAPK-mediated sensing and the prioritizing of certain
signals, rather than actual migration (44).

Neutrophils are special among immune cells due to their
extremely high rates of constitutive apoptosis and short half-
lives (45). During inflammation, the stimulation of proin-
flammatory signals can delay neutrophil apoptosis, which is
beneficial for neutrophils to exercise their immune function.
However, in inflammatory lung disease, the prolonged sur-
vival of neutrophils and neutrophil-mediated tissue damage
are attributed to deregulated neutrophil apoptosis (41,46).
Although some scholars believe that p38MAPK can regulate
the life span of neutrophils, this conclusion is still con-
troversial. p38MAPK can either prolong neutrophil survival
through the inactivation of caspase-3 and -8 (47) or generate
death-promoting signals in neutrophils by reducing myeloid
cell leukemia (48).

Destruction of the barrier function of pulmonary
microvascular endothelial cells (PMVECs)

The endothelial cell lining of the pulmonary circulatory
system forms a semipermeable barrier between the inter-
stitium of the lung and the blood. Due to their position,
endothelial cells are the targets of a wide variety of stresses,
such as inflammatory factors, chemokines, LPS, and active
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oxygen species. The destruction of this barrier can lead to the
infiltration of fluid into the alveolus, resulting in pulmonary
disease, ALI and ARDS (49,50). Excessive inflammation and
endothelial cell apoptosis are observed at the early stages of
ALI, and increased endothelial and pulmonary microvascu-
lar permeability is the hallmark of ALI (51). Thus, preventing
apoptosis and preserving the integrity of PMVECS is a
potential therapy for ALI/ARDS. HMGB1, C-peptide and
silent information regulator type-1 (SIRT1) can influence the
integrity of PMVECS through p38MAPK-mediated signaling
pathways.
HMGB1 is a significant signaling molecule that upregu-

lates proinflammatory cytokines and promotes the expres-
sion of adhesion molecules (52,53). Studies have shown that
HMGB1 induces dose-dependent paracellular gap forma-
tion and the loss of barrier integrity through the ligation
of the RAGE, resulting in p38MAPK activation. That is, the
effects of HMGB1 on endothelial barrier function depend,
at least in part, on the p38MAPK pathway. JNK1 parti-
cipates in the regulation of cell growth, apoptosis, and
inflammation (54). The upregulation of JNK1 may influence
the integrity of PMVECS. Studies have shown that C-peptide
plays a role in diabetes-induced microvascular dysfunc-
tion and increases the expression of JNK1 through ERK- and
p38MAPK-dependent mechanisms (55,56). A recent study
indicated that SIRT1 may protect against burn-induced lung
damage by attenuating the apoptosis of PMVECs through
p38MAPK signaling (57). Thus, p38MAPK may participate in
the pathophysiological process of ARDS through regulating
PMVEC apoptosis.

Regulation of Treg/Th17 cells functions
Treg cells are a class of CD4+ T cells that can synthesize

the IL-2 receptor a chain (58). Compared with other regu-
latory or suppressor T cells, Treg cells have their own unique
immunological characteristics. A reduction in Treg cells may
result in a variety of autoimmune diseases. The interaction
between innate immune cells and adaptive immune cells
indicated that Treg cells might affect the excessive inflam-
matory response, but the exact mechanism remains to be
further studied. p38MAPK can affect the progression of ARDS
by regulating the expression of inflammatory factors and the
balance of Th17 and Treg cells.
Th17 cells are a kind of CD4+ T helper cell that produce

IL-17 (59). As an early promoter of T cell-induced inflamma-
tory responses, IL-17 can amplify inflammation by stimulating
the release of proinflammatory cytokines (60). p38MAPK
plays a significant role in Th17 cell function through adjusting
the production of IL-17 (61). Although Treg cells and Th17
cells are involved in opposite immune responses (62), Treg
cells may be reprogrammed and converted into Th17 cells
under certain circumstances (63,64). During the early stages of
ARDS, the numbers of Th17 and Treg cells increased, and the
Th17/Treg ratio was negatively correlated with prognosis (62).
Furthermore, p38MAPK inhibitors could ameliorate LPS-
induced ARDS through regulating the balance of Treg/Th17
cells, as reported in an abstract published in the 2016 CHEST
World Congress. Thus, we speculated that p38MAPK may
participate in the balance of Treg and Th17 cell differentiation.

Interaction with endothelin (ET-1)
ET-1, which carries out a series of biological activities,

was originally identified in vascular endothelial cells (65).

As an inflammatory mediator, ET-1 plays a vital role in a
variety of lung diseases. As previously reported, plasma ET-1
is significantly elevated in ARDS patients (66,67). Increased
ET-1 IS correlated with poor outcome, increased airway and
pulmonary arterial pressure, the development of perme-
ability edema, oxygenation impairment, and multiple organ
failure (66,68). ET-1 also contributes to endothelial and
epithelial dysfunction through proinflammatory mechan-
isms (69). Studies have shown that ET-1 can upregulate the
expression of arterial vascular cell adhesion molecule-1
(VCAM-1) via activating neutral sphingomyelinases media-
ted by p38MAPK (70). Nur77, a nuclear hormone receptor,
increases rapidly after exposure to LPS or other inflammatory
stimuli (71). Furthermore, Nur77 can downregulate the expres-
sion of ET-1 through suppressing LPS-induced p38MAPK and
NF-kB activation (72).

’ CONCLUSION

In this article, we summarize the role of p38MAPK in the
development and occurrence of ARDS, including its regula-
tion of the expression and activity of the inflammatory
mediators ICAM-1, HMGB1, and ET-1; neutrophil chemo-
taxis and apoptosis; the balance of Treg/Th17 cells; and the
PMVECs apoptosis. Our findings indicate that p38MAPK
activation may promote the development of ARDS. This
indication suggests the potential value of p38MAPK in the
prevention and treatment of ARDS.
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