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ABSTRACT New genomes of two Allochromatium strains were sequenced. Whole-
genome and average nucleotide identity based on BLAST (ANIb) comparisons show
that Allochromatium humboldtianum is the nearest relative of Allochromatium vino-
sum (ANIb, 91.5%), while both Allochromatium palmeri and Thermochromatium tepi-
dum are more distantly related (ANIb, �87%). These new sequences firmly establish
the position of Allochromatium on the family tree.

Chromatium vinosum (now Allochromatium vinosum) is the prototypic purple sulfur
bacterium, and it is the only species in the genus to have had a genome sequence

determined (1). Moreover, there are several genera that are fairly closely related to
Allochromatium, including Thiocystis, Thermochromatium, Chromatium, and Thiorhodo-
coccus (2), although the relationships are not clear despite single-gene comparisons (3);
therefore, a whole-genome comparison including multiple Allochromatium species is
needed.

Allochromatium palmeri DSM 15591T was originally isolated from a cave system in
the Bahamas (4), while Allochromatium humboldtianum DSM 21881T was isolated from
marine sediments in Peru (5). Cultures were grown and genomic DNA was prepared by
the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ). DNA analysis
showed A260/A280 ratios of 1.60 for A. palmeri and 1.96 for A. humboldtianum. The
sequencing libraries were prepared using the Illumina Nextera DNA Flex library
preparation kit and were sequenced by an Illumina MiniSeq sequencer using 500 �l
of a 1.8 pM library. Paired-end (2 � 150-bp) sequencing generated 2,433,982 reads
and 192 Mbp for A. palmeri and 3,349,346 reads and 252.2 Mbp for A. humboldtia-
num. Quality control of the reads was performed using FastQC within BaseSpace
(version 1.0.0; Illumina), using a k-mer size of 5 and contamination filtering. We
assembled the genome de novo through PATRIC (6) using SPAdes (version 3.10.0)
(7) for A. palmeri and Unicycler for A. humboldtianum. The assembly yielded 196
contigs (�300 bp) and an N50 value of 74,142 bp for A. palmeri (45� coverage),
while A. humboldtianum was assembled into 86 contigs with an N50 value of
305,111 bp (55� coverage). The A. palmeri genome had a GC content of 62.5% and
a length of 4,272,782 bp, whereas the A. humboldtianum genome had a GC content
of 63.9% and a length of 4,584,820 bp. The genomes were annotated using the
RAST tool kit (RASTtk) (8) within PATRIC (6). This annotation showed A. palmeri to
have 4,134 coding sequences and 45 tRNAs and A. humboldtianum to contain 4,391
coding sequences and 47 tRNAs. Default parameters were used for all software
applications unless otherwise noted.

A JSpeciesWS comparison (9) of average nucleotide identity based on BLAST (ANIb)
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showed 86.8% identity between A. palmeri and A. humboldtianum (Table 1). A. hum-
boldtianum is closer to Allochromatium vinosum with 91.5% ANIb, while A. palmeri
showed 86.6% ANIb. All of these ANIb values are clearly below the proposed 95% cutoff
value for genome definition of a species (9). Thermochromatium tepidum is about
equidistant from all three of the Allochromatium species; however, Allochromatium
warmingii appears to be more distant from all of them.

Whole-genome-based phylogenetic analysis was performed with RAxML within
PATRIC (10, 11) using all of the Allochromatium and related genomes (1, 12–16). This
analysis grouped all of the Allochromatium species (Fig. 1); however, it also placed
Thermochromatium tepidum within this group. Consistent with the ANIb analysis, A.
warmingii is more distant from the other Allochromatium species. Further genetic and
physiological studies may be needed to determine whether a nomenclature change of
the latter species is warranted. The addition of these new Allochromatium genomes has
substantially strengthened the phylogenetic tree of this genus.

Data availability. These whole-genome shotgun projects have been deposited in
DDBJ/ENA/GenBank under the accession numbers WNKT00000000 for Allochromatium
palmeri and JABZEO000000000 for Allochromatium humboldtianum. The versions de-
scribed in this paper are versions WNKT010000000 and JABZEO010000000. The raw
sequencing reads have been submitted to SRA, and the accession numbers are
SRR12110462 for Allochromatium palmeri and SRR12110432 for Allochromatium hum-
boldtianum.

TABLE 1 ANIb comparisons

Strain

ANIb (%) with strain:

A. vinosum
DSM 180T

A. humboldtianum
DSM 21881T

A. palmeri
DSM 15591T

T. tepidum
ATCC 43061T

A. humboldtianum DSM 21881T 91.5
A. palmeri DSM 15591T 86.6 86.8
T. tepidum ATCC 43061T 84.3 84.9 82.2
A. warmingii DSM 173T 76.6 76.5 76.4 74.7

FIG 1 Whole-genome-based phylogenetic tree of all sequenced Allochromatium and related species. The phylogenetic tree was generated using the Codon
Tree method within PATRIC (6), which used PATRIC global protein families (PGFams) as homology groups; 467 PGFams were found among these selected
genomes using the Codon Tree analysis, and the aligned proteins and coding DNA from single-copy genes were used for RAxML analysis (10, 11). The support
values for the phylogenetic tree are shown on the tree branches and were generated using 100 rounds of the rapid bootstrapping option of RaxML.
Thiorhodovibrio was used as an outgroup. Interactive Tree Of Life (iTOL) was used for the tree visualization (17).
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