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SUMMARY

The standard methods for detecting differential gene expression are mostly designed for analyzing a
single gene expression experiment. When data from multiple related gene expression studies are avail-
able, separately analyzing each study is not ideal as it may fail to detect important genes with consistent
but relatively weak differential signals in multiple studies. Jointly modeling all data allows one to borrow
information across studies to improve the analysis. However, a simple concordance model, in which each
gene is assumed to be differential in either all studies or none of the studies, is incapable of handling genes
with study-specific differential expression. In contrast, a model that naively enumerates and analyzes all
possible differential patterns across studies can deal with study-specificity and allow information pooling,
but the complexity of its parameter space grows exponentially as the number of studies increases. Here, we
propose a correlation motif approach to address this dilemma. This approach searches for a small number
of latent probability vectors called correlation motifs to capture the major correlation patterns among mul-
tiple studies. The motifs provide the basis for sharing information among studies and genes. The approach
has flexibility to handle all possible study-specific differential patterns. It improves detection of differential
expression and overcomes the barrier of exponential model complexity.
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1. INTRODUCTION

Detecting differentially expressed genes is a basic task in the analysis of gene expression data. The
state-of-the-art solutions to this problem, such as limma (Smyth, 2004), SAM (Tusher and others, 2001),
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edgeR (Robinson and Smyth, 2007, 2008), and DESeq (Anders and Huber, 2010), are mostly designed
for analyzing data from a single experiment or study. With 1 000 000+ samples stored in public databases
such as Gene Expression Omnibus (GEO), it is now very common for scientists to have data from multiple
related experiments or studies. An emerging problem is how one can integrate data from multiple studies
to more effectively analyze differential expression.

One example that motivated this article is a study of the vertebrate sonic hedgehog (SHH) signaling
pathway. SHH is a signaling protein that can bind to patched 1 (PTCH1), a receptor protein in cell mem-
brane (Figure 1(a)). PTCH1 can interact with another membrane protein smoothened (SMO) to repress its
activity. In the absence of SHH, PTCH1 keeps SMO inactive. The presence of SHH will repress PTCH1
and activate SMO. The active SMO triggers a signaling cascade to modulate activities of three transcription
factors, GLI1, GLI2, and GLI3, which in turn induce or repress the expression of hundreds of downstream
target genes. SHH pathway is a core signaling pathway in vertebrate (Ingham and McMahon, 2001). To elu-
cidate the underlying mechanisms linking this pathway to development and diseases, multiple studies have
been conducted in different contexts to identify genes whose transcriptional activities are modulated by
SHH signaling. Some studies perturb the SHH signal in different tissues by knocking out or over-expressing
the pathway’s key signal transduction components such as SHH, PTCH1, and SMO, while others compare
disease samples with corresponding controls. Table 1 contains eight such datasets in mouse originally col-
lected by Tenzen and others (2006) and Mao and others (2006). Each dataset involves a comparison of
genome-wide expression profiles between two different sample types. These data were all generated using
Affymetrix Mouse Expression Set 430 arrays. The questions of biological interest include (i) which genes
are controlled by the SHH signal in each dataset, (ii) which genes are the core targets that respond to the
SHH signal irrespective of tissue type and developmental stage, and (iii) which genes are context-specific
targets and are modulated by the SHH signal only in certain conditions.

For simplicity, below each dataset is called a study. One simple approach to analyze these data is to
analyze each study separately using existing state-of-the-art methods such as limma (Smyth, 2004) or
SAM (Tusher and others, 2001). This approach is not ideal as it may fail to detect genes with low-fold
changes but consistently differential in many or all studies.

Modeling all data jointly may allow one to borrow information across studies to improve the analysis.
A simple model to combine data is to assume that each gene is either differential in all studies or non-
differential in all studies (Conlon and others, 2006). This concordance model may help with identifying
genes with small but consistent expression changes in all studies. However, it ignores the reality that activ-
ities of many important genes are tissue- or time-specific. This method will only produce a single gene
list that reports and ranks genes in the same way for all studies. It cannot prioritize genes differently for
different studies to account for context-specificity.

A more flexible approach is to consider all possible differential expression patterns. Suppose there are
D studies and each gene can either be differential or non-differential in each study, there will be 2D possible
differential expression patterns. One can model the data as a mixture of 2D different gene classes. This
allows one to deal with context-specificity. However, an obvious drawback is that as the number of studies
increases, the number of possible patterns increases exponentially. Thus, the model does not scale well
with the increasing D.

In this article, we propose a new method, CorMotif, for jointly analyzing multiple studies to improve
differential expression detection. This method is both flexible for handling context-specificity and scalable
to increasing study number. The key idea is to use a small number of latent probability vectors called
“correlation motifs” to model the major correlation patterns among the studies. The motifs essentially
group genes into clusters based on their differential expression patterns, and the differential gene detection
is coupled with the clustering.

Unlike CorMotif, many methods developed previously for analyzing differential expression in multi-
ple studies or conditions, such as the Empirical Bayes approach by Kendziorski and others (2003) (called
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Fig. 1. (a) A cartoon illustration of SHH pathway. (b) A numerical example of the data generating model. There exist
four motifs in the dataset, with the abundance π = (0.2, 0.23, 0.18, 0.39). Each row of the Q matrix represents a motif
and each column corresponds to a study. Thus, qkd indicates the probability for genes belonging to motif k to be
differentially expressed in study d . For example, the probability for genes belonging to motif 1 to be differentially
expressed in study 4 is 0.83. The gray scale of the cells in π and Q illustrates the probability value. The probability
increases from 0 to 1 as the color changes from light to dark. Given π and Q, each gene is assigned a motif indicator
bg . For instance, the fifth gene belongs to motif 2 (indicated by a cell with a number “2”). Next, the configuration of
the fifth gene, [a51, a52, a53, a54, a55], is generated according to q2 = (0.02, 0.15, 0.78, 0.92, 0.89). As a result, the
fifth gene is differentially expressed in study 2, 4, and 5. Finally, the moderated t-statistic t5d within each study d is
produced according to the configuration a5d .

“eb1” hereinafter), the method by Jensen and others (2009) and the method by Ruan and Yuan (2011),
have exponential model complexity and therefore limited scalability. The XDE approach proposed by
Scharpf and others (2009) does not have explosive complexity, but it is not flexible enough to model the
heterogeneity among genes in terms of their cross-study correlation patterns. These methods are reviewed
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Table 1. SHH microarray data description

Study ID Condition 1 (case) Sample No. Condition 2 (control) Sample No. Reference

1 8somites smo 3 8somites wt 3 Tenzen and others (2006)
2 8somites ptc 3 8somites wt 3 Tenzen and others (2006)
3 13somites ptc 3 13somites wt 3 Tenzen and others (2006)
4 head shh 3 head wt 3 Tenzen and others (2006)
5 limb shh 3 limb wt 3 Tenzen and others (2006)
6 Medulloblastoma tumor 3 Medulloblastoma control 2 Mao and others (2006)
7 BCC tumor 3 BCC control 3 Mao and others (2006)
8 13somites smo 3 13somites wt 3 Tenzen and others (2006)

8somites and 13somites indicate two different developmental stages of embryos; smo indicates mice with mutant Smo; ptc stands
for mice with mutant Ptch1; wt means wild type; shh represents Shh mutant. Medulloblastoma and BCC are two types of tumors.

in more detail in supplementary material A.1 available at Biostatistics online. Yuan and Kendziorski (2006)
explored the idea of coupling clustering with differential expression analysis to better deal with the het-
erogeneity of genes. However, these authors only considered detecting differential expression between
two conditions in one study. Conceptually, their approach may be combined with the model developed by
Kendziorski and others (2003) to handle multiple studies. However, such a simple extension would lead to
a model (called “eb10best” hereinafter) in which genes are assumed to fall into multiple clusters and each
cluster is a mixture of 2D differential patterns. Once again, the model complexity explodes as the dataset
number increases. Compared with these methods, CorMotif offers a unique data integration solution in
that it addresses study-specificity, heterogeneity among genes, and exponential complexity simultaneously.
Below we focus on discussing CorMotif for microarray data since it was motivated by the microarray anal-
ysis in the SHH study. However, the idea behind CorMotif is general, and it should be straightforward to
develop a similar framework for RNA-seq data.

2. METHODS

2.1 Data structure and preprocessing

Suppose there are G genes and D microarray studies. Each study d compares two biological conditions
(e.g. cancer versus normal), and each condition l has ndl replicate samples. Different studies may be related,
but they can compare different biological conditions. Let xgdl j be the normalized and appropriately trans-
formed expression value of gene g in study d, condition l, and replicate j . In this article, all data were
normalized and log-transformed using RMA (Irizarry and others, 2003). The ensemble of observed data
is X = {xgdl j : g = 1, . . . , G; d = 1, . . . , D; l = 1, 2; j = 1, . . . , ndl}.

Each gene can be differentially expressed in some, all, or none of the studies. Let agd = 1 or 0 indicate
whether gene g is differentially expressed in study d or not. A = (agd)G×D is a G × D matrix that contains
all agds. Given the observed data X , one is interested in inferring A.

CorMotif first applies limma (Smyth, 2004) to each study separately. Define x̄gdl = ∑
j xgdl j/ndl , nd =

nd1 + nd2 and vd = 1/nd1 + 1/nd2. For gene g and study d, compute the mean expression difference ygd =
x̄gd1 − x̄gd2 and sample variance s2

gd = ∑
l

∑
j (xgdl j − x̄gdl)

2/(nd − 2). The limma approach assumes
that ygds and s2

gds within each study d follow a hierarchical model: (i) [ygd |μgd , σ
2
gd ] ∼ N (μgd , vdσ

2
gd),

(ii) μgd = 0 if agd = 0, (iii) [μgd |agd = 1, σ 2
gd ] ∼ N (0, wdσ

2
gd), (iv) [s2

gd |σ 2
gd ] ∼ σ 2

gd

(nd−2)
χ2

nd−2, and

(v) [1/σ 2
gd ] ∼ (1/n0ds2

0d)χ
2
n0d

. Here, wd , n0d , and s2
0d are unknown parameters. Their values can be

estimated using the procedure described in Smyth (2004). This hierarchical model allows one to pool
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information across genes to stabilize the variance estimates. Smyth (2004) shows that it can sig-
nificantly improve differential gene detection when the sample size nd is small. For each study d,

limma produces a moderated t-statistic for each gene g, computed as tgd = ygd/

√
vd s̃2

gd , where s̃2
gd =

(n0ds2
0d + (nd − 2)s2

gd)/(n0d + nd − 2). This statistic summarizes gene g’s differential expression infor-
mation in study d. Under this model, when gene g is not differentially expressed in study d (i.e. agd = 0), tgd

follows a t-distribution tn0d+nd−2; when agd = 1, tgd follows a scaled t-distribution (1 + wd/vd)
1/2tn0d+nd−2

(Smyth, 2004).
Next, we arrange all tgds into a matrix T = (tgd)G×D . CorMotif will then use T instead of the raw

expression values X to infer A.

2.2 Correlation motif model

Organize the differential expression states of gene g into a vector ag = [ag1, ag2, . . . , agD]. For D studies,
ag has 2D possible configurations. A simple way to describe the correlation among studies is to document
the empirical frequency of observing each of the 2D configurations of ag among all genes. This is because
f (ag), the joint distribution of [ag1, ag2, . . . , agD], is known once the probability of observing each con-
figuration is given. This joint distribution will determine how agds from different studies are correlated.
While simple, this approach is not scalable since it requires O(2D) parameters and the parameter space
expands exponentially with increasing D.

To avoid this limitation, CorMotif adopts a hierarchical mixture model (Figure 1(b)). The model
assumes that genes fall into K different classes (K � 2D for big D), and the moderated t-statistics
T = (tgd)G×D are viewed as generated as follows. First, each gene g is randomly and independently
assigned a class label bg according to probability π = (π1, . . . , πK ). Here, πk ≡ Pr(bg = k) is the prior
probability that a gene belongs to class k, and

∑
k πk = 1. Secondly, given genes’ class labels (i.e.

bgs), genes’ differential expression states agds are generated independently according to probabilities
qkd ≡ Pr(agd = 1|bg = k). For genes in the same class k, ags are generated using the same probabilities
qk = (qk1, . . . , qk D). Thirdly, given the differential expression states agds, genes’ moderated t-statistics
tgds are generated independently according to fd1(tgd) = f (tgd |agd = 1) ∼ (1 + wd/vd)

1/2tn0d+nd−2 or
fd0(tgd) = f (tgd |agd = 0) ∼ tn0d+nd−2.

Let B = (b1, . . . , bG) be the class membership for all genes. Organize qk into a matrix Q =
(qT

1 , . . . , qT
K)T = (qkd)K×D . Let δ(·) be an indicator function: δ(·) = 1 if its argument is true, and δ(·) = 0

otherwise. Based on the above model, the joint probability distribution of A, B, and T conditional on π

and Q is

Pr(T, A, B|π , Q) =
G∏

g=1

K∏
k=1

{
πk

D∏
d=1

[qkd fd1(tgd)]
agd [(1 − qkd) fd0(tgd)]

1−agd

}δ(bg=k)

(2.1)

In this model, each gene class k is associated with a vector qk whose elements are the prior probabilities
of a gene in this class to be differential in studies 1, . . . , D. Each qk represents a probabilistic differential
expression pattern and therefore is called a “motif”. Since qkds are probabilities, genes in the same class
can have different ag configurations. On the other hand, genes from the same class share the same qk, and
hence their differential expression configuration ags tend to be similar. Genes in different classes have
different qks, and their ags also tend to be different. Essentially, our model groups genes into K clusters
based on ag . However, unlike an usual clustering algorithm, here ags are unknown.

Despite the assumption that agds are a priori independent conditional on the class label bg , agds are no
longer independent once the class label bg is integrated out. To see this, consider the prior probability that a
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gene is differentially expressed in all studies. Based on our model, Pr(ag = [1, . . . , 1]) = ∑
k(πk

∏
d qkd),

which is different from the product of the marginals
∏

d Pr(agd = 1) = ∏
d(

∑
k πkqkd). This explains why

the hierarchical mixture model above can be used to describe the correlation among multiple studies. Since
the mixture of qks provides the key to model the cross-study correlation, each vector qk is also called a
“correlation motif”.

A model with K correlation motifs requires O(K D) parameters in total. Usually, a small K (� 2D

when D is big) is sufficient to capture the major correlation structure in the real data. Therefore, our
method can be easily scaled up to deal with large D scenarios. When 0 < qkd < 1, each qk will be able to
generate all 2D configurations with non-zero probabilities. Thus, our model also retains the flexibility to
allow all 2D configurations of ag to occur at individual gene level.

2.3 Statistical inference

In reality, only T is observed. π and Q are unknown parameters. A and B are unobserved missing data. To
infer the unknowns from T , we first assume that K is given and introduce a Dirichlet prior Dir(2, . . . , 2)

for π and a Beta prior B(2, 2) for qkd (for a discussion on the choice of prior, see supplementary material
A.2 available at Biostatistics online). As a result,

Pr(π , Q, A, B|T) ∝
G∏

g=1

K∏
k=1

{
πk

D∏
d=1

[qkd fd1(tgd)]
agd [(1 − qkd) fd0(tgd)]

1−agd

}δ(bg=k)

∗
K∏

k=1

πk

K∏
k=1

D∏
d=1

qkd(1 − qkd) (2.2)

Based on the above posterior distribution, an expectation–maximization (EM) algorithm
(Gelman and others, 2004) can be derived to search for the posterior mode of π and Q.

Using the estimated π̂ and Q̂, one can then compute E(agd |T, π̂ , Q̂) = Pr(agd = 1|T, π̂ , Q̂), the poste-
rior probability that gene g is differentially expressed in study d after integrating out the motif membership
bg . Next, we rank-order genes in each study separately using Pr(agd = 1|T, π̂ , Q̂). The ranked lists can be
used to choose follow-up targets. Users can also provide a posterior probability cutoff to dichotomize genes
into differential or non-differential genes in each study. The default cutoff is 0.5. Users have the option to
set the cutoff to other values.

In order to choose the motif number K , we use Bayesian Information Criterion (BIC). Details of the
EM algorithm and how to use BIC to choose K are provided in the supplementary material A.3 and A.4
available at Biostatistics online.

CorMotif improves the differential expression detection by integrating information both across studies
and across genes. Pr(agd = 1|T, π̂ , Q̂) can be decomposed as

∑K
k=1 Pr(agd = 1|T, π̂ , Q̂, bg = k) ∗ Pr(bg =

k|T, π̂ , Q̂). Here, Pr(bg = k|T, π̂ , Q̂) is determined by jointly evaluating gene g’s data in all studies,
and Pr(agd = 1|T, π̂ , Q̂, bg = k) contains information specific to study d. According to Bayes’ theorem,
Pr(agd = 1|T, π̂ , Q̂, bg = k) ∝ Pr(tgd |agd = 1, π̂ , Q̂, bg = k) × Pr(agd = 1|π̂ , Q̂, bg = k). tgd in the first
term contains expression information for a given gene g in study d. To compute its denominator, the limma
approach also utilized information across genes to help with estimating the variance. Meanwhile, the sec-
ond term Pr(agd = 1|π̂ , Q̂, bg = k) involves prior probabilities given by the correlation motifs (i.e. q̂ks)
which are estimated using data from all genes. Owing to this two-way information pooling (i.e. across both
studies and genes), CorMotif uses information more effectively than methods based on only a single gene
or a single study. This is especially useful for analyzing studies with relatively weak signal-to-noise ratio.

http://biostatistics.oxfordjournals.org
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3. SIMULATIONS

3.1 Compared methods

We compared CorMotif with six other methods: separate limma, all concord, full motif, SAM, eb1, and
eb10best. We did not compare the method in Jensen and others (2009) as no software was available for
this method. The separate limma approach analyzes each study separately using limma. The moderated
t-statistics in each study are assumed to be a mixture of tn0d+nd−2 and (1 + wd/vd)

1/2tn0d+nd−2. To bet-
ter evaluate the gain from data integration, we matched this analysis to CorMotif as much as possible
by running an EM algorithm similar to CorMotif to compute the posterior probability for differential
expression using 0.5 as default cutoff. Conceptually, this makes separate limma equivalent to CorMotif
with a single cluster (K = 1), and the analysis produces the same gene ranking as limma in each study.
All concord assumes that a gene is either differential in all studies or non-differential in all studies (i.e.
ag = [1, 1, . . . , 1] or [0, 0, . . . , 0]). Conditional on ag , the model for tgd remains the same as CorMotif
and limma. Full motif assumes that genes fall into 2D classes, corresponding to the 2D possible ag config-
urations. It can be viewed as a saturated version of CorMotif. All the other methods are applied to xgdl j s
directly. SAM (Tusher and others, 2001) processes each study separately, whereas eb1 and eb10best ana-
lyze all studies jointly. The eb1 method corresponds to the R package EBarrays with lognormal–normal
(LNN) and one cluster assumption (Kendziorski and others, 2003). The eb10best method is EBarrays with
LNN and multiple cluster assumption, and the cluster number is chosen by EBarrays as the one with the
lowest AIC (Yuan and Kendziorski, 2006). We also tried XDE (Scharpf and others, 2009). However, it is
based on Markov Chain Monte Carlo (MCMC) and took extremely long computing time, usually 24 h on
a machine with 2.7 GHz CPU and 4 Gb RAM for 1000 iterations, for an analysis involving four studies
which was the smallest data we analyzed here. Moreover, 1000 iterations usually were not enough for XDE
to converge. Therefore, XDE will not be compared hereinafter. eb10best failed to work when it was used
to jointly analyze � 7 studies. Full motif and eb1 failed when there were 20 studies.

3.2 Model-based simulations

We first tested CorMotif using simulations. In simulation 1, we generated 10 000 genes and four studies
according to the four differential patterns in Figure 2(a): 100 genes were differentially expressed in all
four studies (ag = [1, 1, 1, 1]); 400 genes were differential only in studies 1 and 2 ([1, 1, 0, 0]); 400 genes
were differential only in studies 2 and 3 ([0, 1, 1, 0]); 9100 genes were non-differential ([0, 0, 0, 0]). Each
study had six samples: three cases and three controls. The variances σ 2

gds were simulated from a scaled
inverse χ2 distribution n0ds2

0d/χ
2(n0d), where n0d = 4 and s2

0d = 0.02. Given σ 2
gd , the expression values

were generated using xgdl j ∼ N (0, σ 2
gd ). Whenever agd = 1, we drew μgd from N (0, w0d ∗ σ 2

gd), where
w0d = 4, and μgd was then added to the expression values of the three cases (i.e. xgd1 j s).

CorMotif was fit with varying motif number K . As Figure 2(c) shows, the minimal BIC was achieved
at K = 4. As a result, four motifs were reported (Figure 2(b)). The reported motifs were very similar to
the true underlying differential patterns in Figure 2(a).

Different methods were then compared in terms of how good they rank differential genes in each
individual study (Figure 2(d)–(f)) as well as how accurate they can infer each gene’s differential configu-
ration ag in all studies (Table 2). For each study d, CorMotif ranks genes using the posterior probability
Pr(agd = 1|T, π̂ , Q̂) which is obtained after integrating out the motif membership bg . A gene was called
differential in study d (i.e. âgd = 1) if Pr(agd = 1|T, π̂ , Q̂) > 0.5. Both the gene rankings and differential
expression calls were different for different studies since Pr(agd = 1|T, π̂ , Q̂) depends on d and can change
across studies. This is a desirable property as in reality the sets of true differential genes may be different
in different studies due to study-specific differential expression, and ultimately one wants to know which
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genes are differential in each study. Using a similar approach, we obtained gene rankings and differential
calls for full motif, eb1 and eb10best which were also study-specific. Separate limma and SAM analyze
each study separately and naturally produce study-specific gene ranking and differential calls. For all the
methods above, we did not combine differential calls of a gene in D studies into a single call to indicate
whether the gene is differential in any study, nor did we use such a combined call to rank genes, since
the combined call would fail to capture study-specificity. Unlike the other methods, all concord assumes
common differential states in all studies, therefore its gene ranking and differential calls remain the same
across studies.

To examine if CorMotif can improve gene ranking, in each study and for each method we counted the
number of true differential genes (true positives), TPd(r), among the top r ranked genes, and we plotted
TPd(r) versus r in Figure 2(d)–(f). CorMotif consistently performed among the best in all studies. For
instance, Figure 2(d) shows the results for study 1. CorMotif identified 361 true differential genes among
its top 500 gene list. This performance was almost the same as the saturated model full motif which iden-
tified 362 true positives among the top 500 genes. Among the other methods, eb10best identified 341, all
concord identified 292, and the others identified fewer than 292 true positives among the top 500 genes.
Thus, CorMotif detected at least 23.6% more true positives compared with any other method except full
motif and eb10best. Similarly, among the top 1000 genes, CorMotif and full motif both identified 419 true
positives, all concord identified 401, eb10best identified 360, and the other methods identified fewer than
337. CorMotif and full motif detected 4.5% more true positives compared with all concord and improved
the ranking by at least 16.4% compared with eb10best and other methods. Both full motif and eb10best
have the problem of exponentially growing parameter space. As we will show later, they both will break
down when the study number D is large.

To test whether CorMotif can more accurately determine a gene’s differential configuration, we con-
structed the confusion matrix in Table 2. For each gene, its binary differential calls agds based on
Pr(agd = 1|T, π̂ , Q̂) in different studies were arranged into a vector to represent its estimated differen-
tial configuration ag . For CorMotif, separate limma, all concord, full motif, eb1 and eb10best, differential
expression was called using their default posterior probability cutoff 0.5. For SAM, q-value cutoff 0.1 was
used to call differential expression. At this cutoff, SAM correctly identified similar number of genes with
ag = [0, 0, 0, 0] (i.e. non-differential in all studies) compared with CorMotif. This allowed us to meaning-
fully compare SAM and CorMotif in terms of their ability to find differential genes. Table 2 shows that
CorMotif was better at characterizing genes’ true differential configurations compared with most other
methods. For instance, among the 400 [0, 1, 1, 0], 400 [1, 1, 0, 0], and 100 [1, 1, 1, 1] genes, CorMotif
correctly reported differential label agd in all four studies for 168, 151, and 33 genes, respectively. In
contrast, separate limma only unmistakenly labeled 68, 57, and 4 genes, respectively. Here, the increased
power by CorMotif was purely due to the use of correlation motifs to integrate multiple studies, since

Fig. 2. Results for the model assumption-based simulations (simulations 1 and 4). Also see supplemental Figure A.1
available at Biostatistics online for simulations 2 and 3. (a) and (g) True motif patterns for simulations 1 and 4. The Q
of the true motifs is shown. Each row indicates a motif pattern and each column represents a study. The actual number
of genes belonging to each motif (i.e. π ∗ G) is displayed at the right end of each row. The gray scale of the cell (k, d)
demonstrates the probability of differential expression in study d for pattern k. Black means 1 and white means 0. (b)
and (h) The estimated Q̂ from the learned motifs with π̂ ∗ G annotated at the end of each row. (c) and (i) BIC plots. It
can be seen that motif patterns reported by CorMotif under the minimal BIC are similar to the true underlying motif
patterns. (d)–(f) and (j)–(l) Gene ranking performance of different methods in simulations 1 and 4. TPd (r), the number
of genes that are truly differentially expressed in study d among the top r ranked genes by a given method, is plotted
against the rank cutoff r . For each simulation, results for a few representative studies are shown. Each plot is for one
study.

http://biostatistics.oxfordjournals.org
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Table 2. Confusion matrix for simulation 1

Differential
Method configuration c(0, 0, 0, 0) c(0, 1, 1, 0) c(1, 1, 0, 0) c(1, 1, 1, 1)

CorMotif c(0, 0, 0, 0) 9072 161 165 16
c(0, 1, 1, 0) 3 168 3 7
c(1, 1, 0, 0) 3 2 151 6
c(1, 1, 1, 1) 0 1 0 33

other 22 68 81 38

separate limma c(0, 0, 0, 0) 9035 144 144 16
c(0, 1, 1, 0) 0 68 0 5
c(1, 1, 0, 0) 0 0 57 6
c(1, 1, 1, 1) 0 0 0 4

other 65 188 199 69

all concord c(0, 0, 0, 0) 9095 236 236 20
c(0, 1, 1, 0) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 5 164 164 80

other 0 0 0 0

full motif c(0, 0, 0, 0) 9072 161 164 16
c(0, 1, 1, 0) 4 172 4 7
c(1, 1, 0, 0) 3 2 155 6
c(1, 1, 1, 1) 0 1 0 35

other 21 64 77 36

eb1 c(0, 0, 0, 0) 62 0 2 0
c(0, 1, 1, 0) 2178 30 22 3
c(1, 1, 0, 0) 569 7 12 0
c(1, 1, 1, 1) 753 34 32 64

other 5538 329 332 33

eb10best c(0, 0, 0, 0) 0 0 0 1
c(0, 1, 1, 0) 316 220 16 10
c(1, 1, 0, 0) 180 23 226 10
c(1, 1, 1, 1) 5789 77 52 63

other 2815 80 106 16

SAM c(0, 0, 0, 0) 9099 256 279 48
c(0, 1, 1, 0) 0 20 0 3
c(1, 1, 0, 0) 0 0 9 2
c(1, 1, 1, 1) 0 0 0 1

other 1 124 112 46

The column labels indicate the true underlying patterns and the row labels represent the reported configurations at gene level. For
CorMotif, separate limma, all concord, full motif, eb1, and eb10best, differential expression in each study is determined using their
default posterior probability cutoff 0.5. For SAM, q-value cutoff 0.1 was used to call differential expression. This yields similar
number of correct classifications for pattern [0, 0, 0, 0] compared with CorMotif.

all other model assumptions made by CorMotif and separate limma are the same. All concord requires
genes to have the same differential status in all studies. As such, it is powerful at identifying concordant
signals across studies but lacks the flexibility to handle study-specific differential expression: it correctly
identified 80 out of 100 [1, 1, 1, 1] genes, but none of the [0, 1, 1, 0] and [1, 1, 0, 0] genes were correctly
labeled as study-specific. With the default cutoff, eb1 and eb10best only labeled 62 and 0 out of 9100
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[0, 0, 0, 0] genes as completely non-differential, compared with 9072 labeled by CorMotif. In other words,
eb1 and eb10best reported more false-positive differential events. Both were anti-conservative. At the same
time, fewer [0, 1, 1, 0] and [1, 1, 0, 0] genes were correctly identified by eb1 (30 and 12 versus 168 and
151 by CorMotif ). SAM was also poor at identifying the differential patterns [1, 1, 1, 1], [1, 1, 0, 0], and
[0, 1, 1, 0] but behaved more conservatively by labeling many of them as [0, 0, 0, 0]. Among all the meth-
ods, only full motif performed slightly better than CorMotif. Even so, CorMotif was able to perform close
to this saturated model. Adding up the diagonal elements in the confusion matrix, CorMotif unmistakenly
assigned ag labels to 9424 genes, whereas this number was 9164 for separate limma, 9175 for all concord,
9434 for full motif, 168 for eb1, 509 for eb10best, and 9129 for SAM.

Using a similar approach, we performed simulations 2–4 which involved different study numbers and
differential expression patterns. The complete results are shown in Figure 2, see supplementary material
Figure A.1 and Tables A.1–A.3 available at Biostatistics online. The conclusions were similar to simulation
1. In many cases, the gain brought by CorMotif was substantial (e.g. Figure 2(j)–(l), see supplementary
material Figure A.1(j) and (k) available at Biostatistics online). In particular, simulation 4 had 20 studies.
full motif, eb1 and eb10best all failed to run on this data, whereas CorMotif was still able to borrow
information across studies (Figure 2(g)–(l)).

3.3 Simulations based on real data

In real data, the distributions for xgdl j s may deviate from our model assumptions. Therefore, we fur-
ther evaluated CorMotif using simulations that retained the real data noise structure. In simulation 5,
24 Human U133 Plus 2.0 Affymetrix microarray samples were downloaded from four GEO experiments.
Each experiment corresponds to a different tissue and consists of six biological replicates (see supple-
mentary material Table A.4 available at Biostatistics online). After RMA normalization, replicate samples
in each experiment were split into three “cases” and three “controls”. We then spiked in differential sig-
nals by adding random N (0, 1) deviates to the three cases according to patterns shown in supplementary
material Figure A.2(a) available at Biostatistics online. Data simulated in this way were able to keep the
background characteristics in real data. Simulation 5 is similar to simulations 1 and 2. CorMotif again
recovered the underlying differential patterns (see supplementary material Figure A.2(b) and (c) available
at Biostatistics online). It showed comparable differential gene detection performance to full motif and
outperformed the other methods (see supplementary material Figure A.3(a)–(c) and Table A.5 available at
Biostatistics online). In a similar fashion, we performed simulations 6 and 7 based on real data (see supple-
mentary material A.5 available at Biostatistics online). These two simulations have the same differential
signal patterns as simulations 3 and 4, respectively. Here, the motifs reported by CorMotif differ slightly
from the underlying truth, but all the major correlation patterns were captured by the reported motifs (see
supplementary material Figure A.2 available at Biostatistics online). Once again, CorMotif performed the
best in terms of differential gene detection (see supplementary material Figure A.3 and Tables A.6–A.7
available at Biostatistics online), and eb1, eb10best and full motif failed to run when the study number
increased (when they failed, their results were not shown).

3.4 Motifs are parsimonious representation of true correlation structures

As we use probability vectors to serve as motifs, it is possible that multiple weak patterns can be merged
into a single motif. For instance, two complementary patterns [1,1,0,0] and [0,0,1,1] each with n genes can
be absorbed into a single motif with qk = (0.5, 0.5, 0.5, 0.5) having 2n genes. To illustrate, we conducted
simulations 8–10 which were composed of the same samples as in simulation 5 and various proportions of
differential expression patterns (see supplementary material Figure A.4 available at Biostatistics online).
In simulation 9 (see supplementary material Figure A.4(i)–(l) available at Biostatistics online), the relative
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abundance of two complementary block motifs ([1,1,0,0] and [0,0,1,1]) was small compared with the con-
cordance motif [1,1,1,1], and they were absorbed into a single motif. In simulations 5, 8, and 10 (see
supplementary material Figure A.4(a)–(h) and (m)–(p) available at Biostatistics online), the complemen-
tary block motifs were more abundant, and the program successfully identified them as separate motifs.
In general, we observed that weaker patterns were more likely to be merged than patterns with abundant
data support. In all cases, however, CorMotif still provided the best gene ranking results compared with
other methods (see supplementary material Figure A.5 available at Biostatistics online). Supplementary
material Figures A.4 and A.5 available at Biostatistics online also show that the higher the proportions of
study-specific motifs (e.g. [1,1,0,0] and [0,0,1,1]), the better CorMotif will perform compared with the
concordance analysis (i.e. all concord) in terms of ranking genes in each study. Together, the analyses here
demonstrate that the correlation motifs only represent a parsimonious representation of the correlation
structure supported by the available data. One should not expect CorMotif to always recover all the true
underlying clusters exactly. In spite of this, our simulations show that CorMotif can still effectively utilize
the correlation among studies to improve differential gene detection.

4. APPLICATION TO THE SHH SIGNALING DATA SETS

We used CorMotif to analyze the SHH data in Table 1. The normalized data are available for download as
supplementary material Table A.10 available at Biostatistics online. Datasets 1 and 2 compare SMO mutant
mice with wild type mice (wt) and PTCH1 mutant with wild type, respectively, in the 8 somite stage of
developing embryos. Dataset 3 compares PTCH1 mutant with wild type in 13 somite stage. Datasets 4 and
5 compare SHH mutant with wild type in developing head and limb, respectively. Datasets 6 and 7 study
gene expression changes in two SHH-related tumors, medulloblastoma and basal cell carcinoma (BCC),
compared with normal samples (control). Dataset 8 compares SMO mutant with wild type in the 13 somite
stage of developing embryos. CorMotif was applied to datasets 1–7. Dataset 8 was reserved for testing.

Five motifs were discovered (Figure 3(a) and (b)). Motif 1 mainly represents background. Motif 2
contains genes that have high probability to be differential in all studies. Genes in motif 3 tend to be
differential in most studies except for the two involving PTCH1 mutant (i.e. studies 2 and 3). Most genes
in motif 4 are not differential in the two studies involving the SHH mutant (i.e. studies 4 and 5) but tend to
be differential in all other studies. Motif 5 mainly represents genes differential in tumors (i.e. studies 6 and
7) but not in embryonic development (i.e. studies 1–5). In general, looking at the columns in Figure 3(a),
the two studies involving tumors (6,7) are more similar to each other compared with other studies. The
two PTCH1 mutant studies (2,3) are also relatively similar, and the same trend holds true for the two SHH
mutant studies (4,5).

In this real data analysis, no comprehensive truth is available for evaluating differential expression calls.
Without comprehensive knowledge about the true differential expression states of all genes in all cell types,
we can only perform a partial evaluation based on existing knowledge. In this regard, we used dataset 8 as
a test. Similar to dataset 1, this dataset compares SMO mutant with wild type. One expects that differential
genes in these two datasets should be largely similar. Therefore, we used the top 217 differentially expressed
genes detected by separate limma (at the posterior probability cutoff 0.5) in dataset 8 as gold standard to
evaluate the gene ranking performance of different methods in dataset 1. Figure 3(c) shows that CorMotif
again performed similar to full motif and outperformed all other methods. eb10best failed to run here. We
note that since dataset 8 and datasets 2–7 represent more different biological contexts, one cannot use it as
gold standard for evaluating these other datasets.

Finally, we examined well-studied SHH responsive target genes. Gli1, Ptch1, Ptch2, Hhip, and Rab34
are known to be regulated by SHH in somites and developing limb (Vokes and others, 2007, 2008). There-
fore, we expect them to be differential in studies 1, 2, 3, and 5. Figure 3(d) shows that CorMotif, all
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Fig. 3. Results for the SHH data. (a) Motif patterns learned from the SHH data composed of 7 studies. (b) BIC plots
for the SHH data. (c) Gene ranking performance for SHH study 1. The genes differentially expressed in dataset 8
(13somites smo versus 13somites wt) were obtained using separate limma. They were used as the gold standard.
TPd (r), the number of genes in dataset 1 that are truly differentially expressed among the top r ranked genes by each
method, is plotted against the rank cutoff r . (d) Differential status claimed by each method for known SHH pathway
genes. Dark color indicates differential expression and light color represents non-differential expression.
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concord and full motif were able to correctly identify differential expression of these genes in all these
studies, whereas separate limma, SAM, and eb1 failed to do so (they missed some cases). Supplementary
material Table A.8 available at Biostatistics online also shows that in many studies, CorMotif, all concord,
and full motif provided better rank for these genes compared with separate limma, SAM, and eb1. Hand2 is
known to be a SHH target in developing limb but not in somites (Vokes and others, 2008). While separate
limma, CorMotif, full motif, and SAM can correctly identify this, all concord and eb1 failed to do so. For
all concord, since Hand2 was not differential in studies 1–4, 6, and 7, the method thinks that this gene is not
differential in any study. Similarly, Hoxd13 is a limb specific target of SHH signaling (Vokes and others,
2008). While the other methods correctly identified this, all concord failed again by claiming it to be
differential in all studies. In all the genes examined, only CorMotif and full motif were able to correctly
identify all known differential states.

5. DISCUSSION

Together, our analyses show that CorMotif offers unique advantage over the other methods in the integra-
tive analysis of multiple gene expression studies. Besides its ability to increase statistical power by com-
bining information across studies, CorMotif is also flexible and scalable. Using a few probability vectors
instead of 2D dichotomous vectors to characterize the differential expression patterns provides the key to
avoid the exponential growth of parameter space as the study number increases. At the same time, the prob-
abilistic nature of the motifs allows all 2D differential patterns to occur in the data at individual gene level.

The motif matrix Q can be viewed in two different ways. Each row of Q represents a cluster of genes
with similar differential expression patterns across studies. Having many different motifs in Q is an
indication that a concordance model, such as all concord, may not be enough to describe the correlation
structure in the data. On the other hand, each column of Q represents differential expression propensities
of different gene classes in a given study. If two columns are similar, the corresponding studies share
similar differential expression profiles (e.g. studies 6 and 7 in the SHH data are more similar to each other
compared with the other studies).

Currently, CorMotif first computes moderated t-statistics T and then applies the correlation motif
model to T . We used this two-stage approach for considerations of effective presentation, computational
efficiency, and clean method comparison (see supplementary material A.6 available at Biostatistics online
for a detailed discussion). The present two-stage framework is also very general. For instance, conceptually
one can modify fd0 and fd1 to accommodate other data types such as RNA-seq. A systematic treatment
of RNA-seq analysis, though, is beyond the scope of this paper. The EM implementation of CorMotif is
computationally tractable. On a single CPU, it took ∼0.35 h to analyze the SHH data for a single K , and
2.43 h in total in order to search for the optimal K (see supplementary material A.7 and Table A.9 available
at Biostatistics online for comparisons with other methods).

In the future, CorMotif may be extended in multiple ways. For example, instead of using moderated
t-statistics and the two-stage design, one may develop a single coherent model that couples correlation
motifs with a more sophisticated model for the raw data X . Also, it remains to be investigated whether
the problem of choosing motif number can be better dealt with by a fully Bayesian approach such as by
imposing a Dirichlet Process prior for K or using a variant of Dirichlet Process prior instead of using BIC.
A fully Bayesian model, however, may require MCMC in the implementation, and this may pose additional
challenges for developing computationally efficient algorithms capable of handling large datasets.

6. SOFTWARE

CorMotif is freely available as an R package in Bioconductor: http://www.bioconductor.org/packages/
release/bioc/html/Cormotif.html.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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