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Abstract: Looking back on the development of metamaterials in the past 20 years, metamaterials
have gradually developed from three-dimensional complex electromagnetic structures to a two-
dimensional metasurface with a low profile, during which a series of subversive achievements
have been produced. The form of electromagnetic manipulation of the metasurface has evolved
from passive to active tunable, programmable, and other dynamic and real-time controllable forms.
In particular, the proposal of coding and programmable metasurfaces endows metasurfaces with
new vitality. By describing metamaterials through binary code, the digital world and the physical
world are connected, and the research of metasurfaces also steps into a new era of digitalization.
However, the function switch of traditional programmable metamaterials cannot be achieved without
human instruction and control. In order to achieve richer and more flexible function regulation and
even higher level metasurface design, the intelligence of metamaterials is an important direction
in its future development. In this paper, we review the development of tunable, programmable,
and intelligent metasurfaces over the past 5 years, focusing on basic concepts, working principles,
design methods, manufacturing, and experimental validation. Firstly, several manipulation modes of
tunable metasurfaces are discussed; in particular, the metasurfaces based on temperature control,
mechanical control, and electrical control are described in detail. It is demonstrated that the amplitude
and phase responses can be flexibly manipulated by the tunable metasurfaces. Then, the concept,
working principle, and design method of digital coding metasurfaces are briefly introduced. At
the same time, we introduce the active programmable metasurfaces from the following aspects,
such as structure, coding method, and three-dimensional far-field results, to show the excellent
electromagnetic manipulation ability of programmable metasurfaces. Finally, the basic concepts
and research status of intelligent metasurfaces are discussed in detail. Different from the previous
programmable metamaterials, which must be controlled by human intervention, the new intelligent
metamaterials control system will realize autonomous perception, autonomous decision-making,
and even adaptive functional manipulation to a certain extent.

Keywords: metamaterial; metasurface; electromagnetic manipulation; tunable metasurfaces; active
programmable metasurfaces; intelligent metasurfaces

1. Introduction

As an emerging research product in the 21st century, or a new type of artificial com-
posite functional material, metamaterials are subwavelength artificial composite structural
materials, whose unit size is generally less than half of the working wavelength. The
concept of electromagnetic (EM) metamaterials originated from a Russian paper published
by Veselago [1], a scientist of the former Soviet Union, in 1967. Later, it was translated into
English and published in 1968, and “metamaterials” gradually became known to the world.
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Veselago also proposed left-handed materials, which have negative dielectric constants
and magnetic conductivity [2–4]. Although this breakthrough concept subverted people’s
cognition of traditional electromagnetic materials, the theory received little attention at
that time because such double-negative materials could not be obtained in nature, and it
was difficult to be verified by experiments. Until 1996, Pendry proposed a structure [5] in
which the metal wires were arranged periodically according to certain rules, and finally
the material with negative dielectric constants was obtained. By adjusting the period and
the radius of the metal wires, the plasma frequency can be reduced to the microwave
range. Later, in 1999, he further proposed to nest the two open copper rings inside and
outside [6], which was the split-ring resonator (SSR). When working near the resonant
frequency of the SRR ring, it can exhibit negative magnetic conductivity. Based on these
theories, in 2001, D. R. Smith et al. combined the two structures and designed them to make
the two negative frequency bands coincide [7], producing the first artificial electromagnetic
metamaterial. Generally, with three-dimensional structure, electromagnetic metamaterials
have unique physical properties that traditional materials do not have, such as inverse
Cherenkov radiation effect, negative refractive index [8–11], lens [12–15], cloaking [16–21],
illusion devices [22,23], and so on. Today, metamaterials have developed into a multi-
disciplinary and comprehensive research direction, whose research field is no longer limited
to the electromagnetic field, but expanded to acoustics [13], thermal science [24], quantum
mechanics [25], informatics [26], biomedical [27,28], and other disciplines, forming an
extremely wide coverage and far-reaching important discipline. Metamaterials provide a
wide space for people to manipulate electromagnetic waves [13] and even acoustic and me-
chanical waves [29] freely with their super freedom of design, and further give rise to new
electromagnetic applications such as perfect imaging [30,31], holographic imaging [32–36],
electromagnetic black hole [37], metamaterial lenses [12,38–41], and other EM designs with
multiple functions [42,43].

The initial research work of electromagnetic metamaterials is based on electromagnetic
resonant structures in three-dimensional form, which are usually composed of metal and its
dielectric structure stacked on top of each other. Such structural design is extremely difficult
in actual fabrication, so the structure verification of three-dimensional metamaterials adopts
single-layer two-dimensional structure. In addition, the three-dimensional metamaterial
structure also has many limitations in terms of material loss and working frequency
band. Therefore, how to realize two-dimensional electromagnetic metamaterials, namely
electromagnetic metasurface, has gradually become the focus of scientific attention. In
1999, Sievenpiper first proposed a high impedance surface similar to a mushroom-shaped
structure [44]. This kind of magnetic tape gap structure is considered to be one of the
early studies of the electromagnetic metasurface because of its periodic arrangement of
subwavelength and effective suppression of specific surface wave patterns. Capasso’s team
published a paper in the journal Science that proposed “generalized Snell’s law” in 2011 [45],
which became an important turning point in the history of metasurface research. They
used a V-shaped element to achieve reflective control of the geometric phase. By changing
the opening angle and rotation angle of the V-shaped arms, the reflective phase can be
covered by 360◦. Based on this regulation of the abrupt phase of the surface, Capasso’s team
showed that both the gradient phase distribution and the rotational phase distribution can
be used to deflect the scattered beam and generate the vortex beam, respectively. Thanks
to the new methods and ideas provided by the generalized Snell’s law for people to design
electromagnetic metasurfaces, a large number of studies on the application of metasurfaces
are emerging. With the advantages of excellent electromagnetic control ability, low profile,
low loss, and easy processing, two-dimensional metasurface has been the leader in the
research of metamaterials in the last ten years, which has stimulated a variety of functions
and applications, such as holographic imaging [46–48], vortex beam [49–53], ultra-thin
invisibility cloak [54], absorbers [55–57], Huygens metasurface [58,59], non-magnetic non-
reciprocity metasurfaces [60–62], and so on.
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Most of the early metasurfaces were passive structures. In order to explore and extend
the dynamic tunable function of metasurfaces, active and tunable metasurfaces have been
proposed successively [63]. Compared with the passive metasurface, the active metasurface
usually has the advantages of a wide frequency band, large adjustable range, and low loss,
which brings great vitality for the development of the metasurface. Gil’s team implemented
a frequency-tunable filter by introducing a varactor diode into the open resonant ring [64].
Then, by filling the opening resonant gap with N-type silicon material containing light dop-
ing [65], Aloyse controlled the light with metamaterial. Later, some researchers used active
devices to achieve tunable electrically controlled metamaterials and tunable magnetically
controlled metamaterials [66]. The core idea of the active tunable metasurface is to load
active devices on each element, and realize the functions of polarization conversion [67,68],
beam scanning [69], multi-beam, and wave absorption [70] while keeping the physical
structure of the unit unchanged. Active devices include a varactor diode, triode, sensor,
and so on. At present, the regulation methods of the tunable metasurface mainly include
mechanical control [71–73], electric control [74,75], temperature control [76], and light
control [77]. Mechanical control is to manipulate the phase by adjusting the physical size or
rotation angle. Additionally, the electronic devices commonly used in electrical control are:
PIN diodes, varactor diodes, and MEMS switches. Compared with mechanical control, elec-
tric control has lower system complexity, more flexible regulation form, and stronger beam
regulation ability. By adopting appropriate regulation mode, the active tunable metasurface
can enlarge the manipulation range of the phase and polarization mode of electromagnetic
wave in microwave frequency band, and plays an irreplaceable role in realizing arbitrary
polarization and arbitrary beam control. At the same time, the combination of metasurface
and tunable materials such as graphene can make great contributions to the progress of
terahertz technology [78,79], visible light [54,80], and the infrared light field [11,81].

To explore the possible connection between metasurface and digital information,
Engheta’s team put forward the concept of “digital metamaterial” in 2014 [82] and pro-
posed that the discrete structural design method can be introduced into the design process
of metamaterial. However, this concept is still limited to the digitization of equivalent
medium parameters, so it is hard to realize, and no follow-up research has been carried
out. Meanwhile, Cui Tie Jun proposed a new theory of digital coding programmable
metasurface in 2014 [83], opening a new chapter in metasurface research. The core idea of
digital coding metamaterials is to introduce digital binary code into the design of meta-
materials. Furthermore, digital information is integrated into all aspects of the design of
metamaterials [84], such as structure, electromagnetic parameters, and functions. Since
then, diverse EM functional designs in passive coding metasurface design has been pro-
posed, such as holography [85,86], full-space control [87], acoustic field modulation [88],
optically transparent metasurfaces [89,90], orbital angular momentum (OAM) beams [91],
and multi-frequency manipulation [92,93]. However, due to the functional solidification
of passive coding metasurface, its application scenarios and practical value are greatly
limited [94]. Active programmable coding metamaterials are the inevitable direction of
passive structure function extension. So far, plenty of active programmable metasurfaces
based on PIN diodes and varactors have emerged, and the coding form has gradually
expanded from the programmable phase [95,96] to programmable amplitude [97] and
polarization [98,99]. However, active control of programmable metamaterials still requires
human intervention to change the control instructions or programs to achieve the switch of
different electromagnetic characteristics [100], such as switching different phase coding
states, different polarization coding states, etc. Therefore, the intelligent metamaterials will
be an important direction in the future development of metamaterials [100–103].

This paper aims to review the evolution of electromagnetic manipulation: from tun-
able metasurfaces to active programmable metasurfaces and intelligent metasurfaces. With
the rapid development of the metasurface, the design of tunable metasurface structure
has changed from simple to complex, and the functions it can present have transformed
from single to diverse. Moreover, the proposal of coding metamaterials gives new ideas
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to metamaterials, and various kinds of programmable metamaterials have been designed.
In addition, the dynamic programmable property of digital coding metamaterials en-
dows a high degree of freedom for functional design. Programmable phase, amplitude,
polarization, and other coding forms rapidly give birth to a series of real-time tunable
electromagnetic applications. On this basis, the design of intelligent metamaterials is also
flourishing, and the intelligent judgment and decision are realized in a real sense, which
lays the foundation for the further development of intelligent metamaterials and the realiza-
tion of cognitive metamaterials. We start the introduction from the basic concept, research
status, and regulation mode of tunable metasurfaces in Section 2, as well as examples given
to illustrate how the phase and amplitude response can be flexibly manipulated by the
tunable metasurfaces based on mechanical, electrical, and temperature control. In Section
3, we introduce the concept and design method of the coding metasurface, and describe
in detail the structure, coding method, and far-field results of the active programmable
metasurface based on PIN diodes, active amplifiers, transistors, thermistors, and photore-
sistors. Finally, we focus on the intelligent metasurface and introduce a dual-polarization
programmable metasurface with intelligent sensing function.

2. Tunable Metasurfaces

The manipulation characteristics of electromagnetic metamaterials to electromagnetic
waves are closely related to the geometric parameters and material parameters of the
microstructure. Therefore, once the microstructure with specific functions is designed and
formed, the regulation function of the microstructure to electromagnetic waves cannot be
adjusted, resulting in a waste of resources to a certain extent. In addition, the dynamic
control of electromagnetic wave has a wide range of applications in beam shaping, laser
detection, scanning focusing, polarization regulation, laser sensing detection, signal tuning,
and so on. On the other hand, three-dimensional metamaterials face the problems of high
processing difficulty and high ohmic loss. In recent years, two-dimensional metamaterials
with sub-wavelength thickness (metasurface) have become a research hotspot due to
their advantages of low loss and easy processing. Consequently, how to use the tunable
metasurface to dynamically manipulate the electromagnetic wave has become a subject
worth studying in the field of metamaterials.

At present, many tunable metasurfaces based on mechanical control, temperature
control, material attribute control, electric control, and light control have been designed. As
shown in Figure 1a, the bifunctional tunable metasurface based on saline water consists of
a substrate containing specific metal pattern [104], saline water substrate and metal ground
from top to bottom. By transforming the concentration of the saline water substrate, the
absorption performance of high frequency can be adjusted while keeping the low frequency
scattering mode unchanged. Figure 1b is a detailed structure of the fabricated sample of
the tunable metasurface. The top layer uses printed circuit board (PCB) technology to print
a specific metal pattern on the F4B substrate, and the water cavity and waterproof layer are
between the F4B substrate and the metal ground. The waterproof layer is made of PVC,
which surrounds the whole cavity completely, and two small pipes are used to exchange
water. The entire metasurface structure is supported by an acrylic board. The top and
bottom views of the fabricated sample are shown in Figure 1c,d, respectively. Moreover,
the measured results have good agreement with the simulation. Mechanical control mainly
realizes phase and amplitude control by adjusting the physical size or rotation angle, while
temperature control mainly alters electromagnetic performance through the sensitivity
of dielectric substrate to temperature. The tunable water-substrate metasurface absorber
is shown in Figure 1e, which modulates the absorption performance by controlling the
environment temperature. It can be seen from Figure 1e that the metasurface absorber
is a sandwich structure consisting of a patterned metal layer [105], a dielectric substrate,
and metal ground from top to bottom. Unlike ordinary metal-substrate-metal metasurface
absorbers, the proposed metasurface substrate is not only one substrate, but a mixture of
water-based substrate and a low-permittivity material (LPM) substrate. The purpose is to
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allow water to be easily wrapped between the bottom metal ground and LPM layer, so
that water can be used as the loss source of electromagnetic waves and thermal tuning
environment, and the LPM layer can improve impedance matching and facilitate strong
absorption. Figure 1f is a schematic diagram of the metasurface based on mechanical
control [106]. It adopts flexible printed circuit (FPC) technology to print metal patterns
on flexible polyester amide film, with an air substrate between the thin film and metal
ground. The whole metasurface is fixed on four posts, and the thickness of the air substrate
is controlled by precision stepper motors. Finally, our simulation data and measured data
have a high degree of consistency.
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Phase-change materials (PCMs) can greatly change the dielectric constant by transfer-
ring the lattice inside the material under external excitation (such as heat, laser, applied
voltage). Therefore, PCMs provide a new method for dynamically regulating the optical
properties of metasurface. Ge2Sb2Se4Te (GSST), Ge2Sb2Te5 (GST), and vanadium dioxide
(VO2), as commonly used PCMs, have attracted extensive attention in the field of nano-
photonics in recent years. GSST and GST both have two states: crystalline and amorphous,
which can be converted to each other through temperature change. Figure 2a is a meta-
surface based on two states of GSST [107], where blue and red represent the amorphous
and crystalline states, respectively. Each unit consists of a GSST nanopillar and a silicon
substrate. As a dielectric resonator, the GSST nanopillar can perform amplitude and phase
modulation in both crystalline and amorphous states, as shown in Figure 2b,c. It should be
noted that phase response of the metasurface covers almost 360◦ in the amorphous state,
but not in the crystalline state. Figure 2d shows an active dielectric metasurface based on
GST [108]; rose and purple represent amorphous and crystalline states, respectively. As
can be seen from Figure 2e, by changing the state and geometric parameters of GST, the
metasurface can achieve three different phase responses of 0◦,120◦, and 240◦. Figure 2f,g
show a perfect metasurface absorber based on GST thin film [109], which adjusts GST
between the crystalline and amorphous states through heat treatment, thus changing the
visible light properties of PCM to achieve the reconfigurable metasurface. Unlike GSST and
GST, VO2 has two stable states, both of which are crystalline states. Figure 2h is a tunable
dielectric metasurface unit whose detailed structure is a silicon meta-atom embedded into
glass surrounded by a VO2 layer [110]. When the temperature is lower than 68 ◦C, VO2
is a monoclinic crystal structure and is an insulator. Additionally, the VO2 phase changes
into a tetragonal crystal structure and turns into a metal conductor when the temperature
exceeds 68 ◦C. As shown in Figure 2i, the metasurface can achieve extinction function by
using two states of GST under different temperatures. In summary, by combining PCMs,
metasurface can better realize the manipulation of reflection amplitude and phase.

Many tunable materials in nature have been used in the design of tunable devices,
such as transparent conductive oxides, two-dimensional materials (such as graphene,
molybdenum disulfide), liquid crystals, semiconductors, and elastomers. The liquid metal
metasurface for flexible beam-steering [111] is shown in Figure 3a, which consists of
different metasurface elements A and B, on which cavities of different sizes are designed.
At the same time, the liquid metal is injected into the cavity and filled into the desired
structure by taking advantage of the characteristics of EGaln, which is easily affected by
thermal stimulation and gravity. Figure 3b,c are, respectively, the top and side views of cell
A and B, which are composed of acrylic substrate, FR4 substrate, and cooper ground. The
cavity containing liquid metal serves as an interface between the acrylic substrate and the
FR4 substrate. It is a multilateral structure with two rectangular cavities connected by a
trapezoidal cavity in the middle. According to the marks in Figure 2b, the direction of the
electric field, namely the direction of polarization, is along the Y-axis, while the reflection
phase response is mainly affected by the length of the liquid metal patch in the direction of
the electric field. Liquid metal is distributed in two rectangular cavities of cell A and B, so
four liquid metals of different lengths, widths, and heights are designed in the rectangular
cavity, and four different phase responses are realized under the condition that the volume
of liquid metal is all 20 mm3. The detailed data of four states are 3 × 6.67 mm (B × C in
cell A), 6.9 × 2.9 mm (F × E in cell A), 7.55 × 2.65 mm (G × I in cell B), and 8.5 × 2.35 mm
(L × K in cell B). The reflected phase and amplitude responses of four different states of the
metasurface element are shown in Figure 3d,e. At 7.5 GHz, the phase responses of the four
states are 144.6◦, 59.3◦, −32.2◦, and −124.4◦, respectively. The phase difference between
the two states is about 90◦, and 360◦ phase coverage is achieved, showing good phase
manipulation performance. Additionally, in the frequency band of 6–9 GHz, the amplitude
responses of four different states are all close to 0 dB. The three dimensional far-field
results of four different metasurface arrays at 7.5 GHz are depicted in Figure 3f–i. When
the linearly polarized incidence plane wave illuminates the metasurface, by arranging
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four elements of different states to form diverse metasurface, the scattering fields of single
and dual beams from different deflection angles can be realized. In conclusion, four kinds
of metasurface elements with different phase response are designed by using the good
fluidity and conductivity of EGaln, and the designed metasurface based on liquid metal
can manipulate the deflection angle and amount of the beam.
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Compared with mechanical control, electric control has lower system complexity,
more flexible regulation form and stronger beam regulation ability. The electronic devices
commonly used in electrical control are PIN diodes, varactor diodes, and MEMS switches.
The metasurface shown in Figure 4a integrates salinity control and electrical control [112].
By changing the salinity or by controlling the switch of the PIN diode, the phase response,
scattering beam amplitude, and deflection angle can be independently manipulated. The
detailed structure of the metasurface unit is shown in Figure 4b, which consists of metal
patch, F4B substrate, water substrate, and metal ground from top to bottom. The PIN diode
connects two metal patches on the top layer, each of which is connected to two slender
metal wires. Bias voltage is transmitted through two thin metal wires to two metal patches
to control the switching of the PIN diode. Figure 4c,d show the change of the reflected
phase response when the salinity varies from 0% to 30%. The red and black lines represent
the on and off states of the PIN diode, respectively. The phase difference ranges from
−211◦ (diode on) to 90◦ (diode off) at 9.5 GHz with salinity at 0%, and from −4◦ (diode
on) to −205◦ (diode off) at 10.5 GHz with salinity at 30%. This indicates that adjusting the
salinity can significantly modulate the reflected phase response. As can be seen from the
reflected amplitude response diagram in Figure 4e, the on and off states of the diode lead
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to different magnitudes of the reflected amplitudes, so the switching state of the diode can
modulate the reflected amplitudes in a wide frequency range. In order to demonstrate the
function of the proposed metasurface, two different metasurface patterns with 20 × 20
elements are designed. The two patterns are periodic, with pattern 1 consisting of two
lines of on and off states diodes and pattern 2 composing of five lines of on and off state
diodes. The three-dimension far-field results of patterns 1 and 2 at 9.5 GHz are shown in
Figure 4f–i. All patterns produced three beams, and the beam deflection angle is about 19◦

for pattern 2 and about 51◦ for pattern 1. The reason is that the period of pattern 2 is larger
than pattern 1. According to the generalized Snell’s law, large periods produce smaller
deflection angles. Therefore, the reconfigurable water-based metasurface can modulate the
reflected phase response by changing the salinity, and the scattering beam deflection angle
can be controlled by arranging diodes in different switching states to form metasurface
patterns. These two manipulations can be performed simultaneously and independently,
allowing for a wider modulation range.
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different states composed of the cell A and cell B (from Figure 2e of Ref. [111]). (e) Reflection amplitude responses of four
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3. Active and Programmable Metasurfaces

Traditional research on metamaterials and metasurfaces is based on the continuous
scale to design their electromagnetic characteristics. The analysis on the continuous scale
can be summed up as analog, namely “analog metamaterials”. With the establishment
and wide application of the von Neumann computer system, information representation
cannot do without digital binary coding in modern information system. In 2014, the
concept of digital metamaterial was first put forward, and then Cui Tie Jun’s research
group proposed the idea of coding metamaterial, that is, using the state arrangement of
“0” and “1” to regulate the electromagnetic wave. He also presented another important
concept, “field programmable metamaterial”, which is to load active devices on each cell
to form a programmable metasurface. The active devices include a varactor, triode, and
sensor. Compared with the passive coding metasurface, the active field programmable
metasurface is more flexible.
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As shown in Figure 5a, the coding metasurface based on a varactor is composed
of indium tin oxide (ITO) film, PET substrate, and solar cells from top to bottom [113].
By loading the varactor on each unit cell and changing the capacitances of the varactor,
the reflected phase response of metasurface can be modulated. In addition, the elements
integrate the varactors with different capacitances, which generate the diverse phase
responses, are encoded into various digital states. By arranging these digital states into
different coding sequences, the scattering field beam can be manipulated. The voltage of
the varactor is provided by a solar battery, and the state of the varactor is controlled flexibly
by FPGA. The detailed structure of the designed unit cell is shown in Figure 5b. The top
layer is two symmetrical ITO films connected by a varactor diode, and the PET substrate
is located between the top layer ITO film and the bottom layer ITO film. In general, the
varactor diode can be regarded as a series model of RLC, and its equivalent circuit is
shown in Figure 5c. Three elements with different capacitances, and thus different phase
responses, are encoded as digital codes “1”, “2”, and “4”, respectively. In addition, we have
also obtained the measured results which are in agreement with the simulation results. The
combination of sensor and metasurface to manipulate electromagnetic waves is one of the
research hotspots in recent years. As shown in Figure 5d, the programmable metasurface
based on thermal sensor consists of an array of thermistors and 1-bit programmable
metasurface array [114]. When the temperature changes, the resistance of the thermistor
transforms, thus affecting the bias voltage value. Then, the switching of the PIN diode state
gives rise to the modulation in reflective phase responses of the unit cells. As depicted in
Figure 5e, the top layer of the unit cell is composed of two symmetrical metal patches, and
both ends of the PIN diode (Skyworks SMP1320) are connected to the two metal patches.
The voltage is transmitted through the bias line to the metal patch to control the switching
state of the PIN diode. The resistance R1 marked in red is a thermistor, and its resistance
will vary with the change of temperature. Finally, the results of the simulation and test
show a high degree of consistency.

GSST has a large non-volatile exponential modulation capability, broadband low
optical loss, and large reversible switching capacity, which enables the active metasurface to
be continuously tunable. Figure 6a is an electrically reconfigurable non-volatile metasurface
based on GSST [115]. Electrically reconfigurable metasurfaces are placed on a metal
heater, and meta-atoms are patterned in a GSST film. The crystalline and amorphous
states of GSST are controlled by pulse voltage. When the pulse voltage is long and
low, joule heating triggers crystallization and GSST is in the crystalline state. When
the pulse is short and high pressure, meta-atoms melt, are quenched, and recover, and
GSST is in an amorphous state. The metasurface is connected to a printed circuit board
(PCB) carrier by wire, as shown in Figure 6b. Figure 6c is the reflection response of
the metasurface at different pulse voltages, which realizes the broadband tuning of the
metasurface. The absorption loss of VO2 in the infrared band is low, so the VO2-based
metasurface shown in Figure 6d can realize thermally switching the excitation of magnetic
polariton to enhance infrared emission [116]. The metasurface is composed of VO2, HfO2
substrate, photoresist substrate, and Al substrate from top to bottom. When the temperature
exceeds the phase transition temperature, the magnetized pole is excited by VO2, and
the tunable metasurface achieves the enhancement of thermal emission. Figure 6e is a
diagram of the metasurface sample based on V2O5 and VO2. The total emittance of the
tunable VO2 metasurface emitter and V2O5 metasurface emitter is shown in Figure 6f.
VO2 tunable metasurface can be regarded as a diffuse infrared emitter because of phase
transition with temperature increase. However, V2O5 metasurface does not undergo phase
transformation, and its emissivity is comparable to that of the insulated VO2 metasurface
before phase transformation. Therefore, the combination of metasurface and PCMs can
realize the regulation of electromagnetic waves.
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The metasurface in Figure 5d,e uses a thermistor to control the bias voltage in real
time. Similarly, a photosensitive resistor can be applied to switch diode states. Figure 7 is
a schematic diagram of an optically controlled coding metasurface [117], whose working
mechanism is similar to the temperature-controlled coding metasurface. The photosensitive
resistor is used to detect the change of the optical signal, and it is connected with a
row of diode-loaded metasurface units through the voltage control module. The state
of PIN diode can be switched by transforming the resistance of the photoresistor, thus
modulating the reflection phase response. Therefore, by controlling the distribution of light,
the metasurface can convert the coding sequence to produce different scattering fields as
needed. Figure 8 shows the voltage control circuit and three specific coding sequences of the
optically controlled metasurface. It should be noted that the digital code “0” and “1” states
correspond to the diode on and off states, respectively. In combination with Figure 8a,b,
the photoresistor alters with the change in light signal, transforming the optical signal into
an electrical signal. The voltage control circuit has one end connected to a photosensitive
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resistor, so it feeds this transition back to the metasurface element and changes the state
of the PIN diode. The photoresistor (R2) marked in red, and its resistance can be varied
while all other resistors are fixed. Figure 8c is a schematic diagram of the metasurface
consisting of 25 × 27 cells, each row of which is controlled by a photoresistor, so that
their diode states are the same. Figure 8e,f are the metasurfaces of three different coding
sequences. The coding sequences of pattern A, B and C are “00001111”, “0000011111”, and
“000000000011111111”, respectively, and their simulated far-field results at 5.6 GHz are
shown in Figure 8g–i. Patterns A and B both generated three beams with deflection angles
θ = ±45◦ and θ = ±31◦, respectively. According to the generalized Snell’s law, a larger
period sequence produces a smaller deflection angle, so the deflection angle of pattern
B is smaller than that of pattern A. Pattern C generates a double beam with deflection
angle θ = ±15◦. By designing the specific phase distribution on the metasurface, that
is, designing the distribution of light, the scattering field of the metasurface can realize
different electromagnetic scattering characteristics such as double beam or multiple beams.
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In order to achieve richer and more flexible functional regulation and an even higher
level of metasurface design, the coding programmable devices should not be limited to
the consumption devices such as PIN diodes or varactors. Therefore, we need to study
programmable metasurfaces based on transistor amplifiers and detectors. As shown
in Figure 9a, a spatial-energy digital-coding metasurface based on active amplifiers is
proposed [97]. By controlling the amplification level of the amplifier, the energy of the
linearly polarized wave can be amplified or reduced. In other words, the energy of the
space-propagated wave can be edited arbitrarily. In addition, by applying four specific
voltages (3, 3.8, 4.2, and 5 V) to power amplifiers, the spatial energy of the propagating
wave can be modulated to four different amplification levels (−10, 0, 10, and 20 dB). These
specific amplification levels can be further encoded into digits such as “00,” “01,” “10,”
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and “11.” Figure 9b is the detailed structure of the metasurface element, which consists
of two F4B substrates and a metallic ground located between the F4B layers. The metal
structure of the top layer is mirrored to the structure of the bottom layer. At the same time,
two power amplifier chips and necessary peripheral circuits are embedded in the top layer
and the bottom layer, respectively. The amplification level of the amplifier chip can be
adjusted by applying different supply voltages. The transmitted energy is first coupled
to a circular metal patch at the top layer for amplitude modulation. Then, the coupling
energy is amplified twice in two amplifiers and radiated into space through the circular
metal patch at the bottom. The integrated amplifier circuit module is circled in blue, and
the detailed circuit connections of its circuit components are shown in Figure 9c. Ports 1
and 2 in the module are connected to the circular metal patch and via hole, respectively. In
Figure 9d,e, the simulated and measured far-field results of coding states “00”, “01”, “10”,
and “11” are listed, respectively. At 5 GHz, the simulation of four different amplification
levels agrees well with the measured far field results. In a word, by applying different
supply voltages to change the amplifier’s amplification level, four different amplification
levels from −10 dB to 20 dB can be realized. Furthermore, this work not only achieves the
arbitrary manipulation of space-propagated wave energy, but also expands the application
potential for active and programmable metasurface.
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Figure 8. (a) Diagram of connection between photoresistor and element (from Figure 3a of Ref. [117]). (b) The voltage control
circuit (from Figure 3b of Ref. [117]). (c) A schematic diagram of the metasurface consisting of 25 × 27 cells (from Figure 3c of
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Figure 9. (a) Schematic of a spatial-energy digital-coding metasurface based on active amplifiers
(from Figure 1 of Ref. [97]). (b) The detailed structure of the metasurface element (from Figure 2a of
Ref. [97]). (c) The detailed circuit connections of its circuit components (from Figure 2b of Ref. [97]).
(d,e)The simulated and measured far-field results of coding states “00”, “01”, “10”, and “11”(from
Figure 7a,b of Ref. [97]). Reproduced with permission from Ref. [97] provided by the American
Physical Society and SciPris. License number: RNP/21/JUL/041860.
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There are many coding metasurfaces designed for phase manipulation, but few pro-
grammable metasurfaces designed for polarization regulation. In Figure 10a, an active
and programmable metasurface based on a single-pole double-throw (SPDT) switch is
proposed [98]. The metasurface element is a double-sided metal patterned structure, with
the top and bottom metal structures mirroring each other and both embedded with SPDT
switches. The switching state of SPDT is controlled by a field programmable gate array
(FPGA) which provides digital voltage. The multi-function polarization conversion can be
realized by transforming the switching state of SPDT. When the metasurface is illuminated
by a linearly polarized wave, four linear-to-linear polarization transmission states can be
realized, such as X-to-X, X-to-Y, Y-to-X, and Y-to-Y. For the sake of simplicity, these four
states can be encoded as “00”, “01”, “10”, and “11”. It should be noted that the digital
code “0” and “1” states correspond to the x-polarized and y-polarized states, respectively.
The fabricated sample of the metasurface, which is composed of 6*6 elements, is depicted
in Figure 10b. Figure 10c is the schematic of the binary information representation and
transmission. This work divides the metasurface into nine supercells, each of which con-
tains 2*2 elements of the same transmission state. Under the illumination of the linearly
polarized wave, the transmission energies of the nine supercells are not the same because
of their different SPDT states. In order to better distinguish energy information, the low
and high transmission energy can be encoded as digit “0” and “1”. In Figure 10d,e, the
simulated near-field electric field distributions of three letters with binary ASCII codes
are represented. Take the letter S of binary ASCII code 01010011 as an example to explain
the transmission energy distribution diagram. It should be noted that X-to-X polarization
and X-to-Y polarization are encoded as digit “1” and “0”. Therefore, the state of the first,
third, fifth, and sixth supercells is set as X-to-Y polarization, and the state of the remaining
four supercells is set as X-to-X polarization. As shown in Figure 10d, under the illumina-
tion of the x-polarized wave, the supercells which are encoded as “1” possess the high
transmission energy. Similarly, the transmission energy distribution in Figure 10e,f can
also correspond to the binary ASCII code information of the letter. Thus, by controlling
the state of SPDT switch with FPGA, the programmable metasurface can not only convert
transmitted electromagnetic waves between linear cross- and co-polarization, but also
transmit binary coding sequences according to energy distribution.
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Figure 10. (a) Schematic of programmable metasurface based on SPDT switches (from Figure 1 of
Ref. [98]). (b) The fabricated sample of the metasurface (from Figure 7a of Ref. [98]). (c) Schematic
of the binary information representation and transmission (from Figure 6a of Ref. [98]) (d–f) The
simulated near-field electric field distributions of three letters (SUP) with binary ASCII codes (from
Figure 6f–i of Ref. [98]). Reproduced with permission from Ref. [98] under a Creative Commons
Attribution 4.0 International License. Copyright: © 2021 Chinese Laser Press.

4. Intelligent Metasurfaces

As an active and controllable form of coding metamaterials, programmable metasur-
faces provide a hardware basis for the functional diversity of information metamaterials.
A variety of programmable metasurfaces, such as phase, amplitude, and polarization
programmable metasurfaces, have been proposed successively, showing the excellent elec-
tromagnetic manipulation ability of programmable metamaterials. However, at present,
almost all programmable metasurfaces require human participation in the regulation of
their electromagnetic characteristics or functions, that is, the operation of the control part
needs to be carried out with the help of human subjective judgment and recognition. For
intelligent metasurfaces, adaptive intelligent operation must make them have the ability to
identify and judge the environmental changes actively [100,101], so as to make autonomous
decisions according to certain intelligent algorithms.

For this reason, this work assumed a special application scenario, as shown in
Figure 11a. It is supposed that the reflected beam of a metasurface on a dynamic air-
craft demands to be aligned adaptively to a satellite in real time for communication. When
the aircraft is in different flight directions, the scattering angle of the electromagnetic beam
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scattered by the smart metasurface needs to be automatically aligned with the satellite in a
fixed direction. In this control system, metasurfaces require to have the ability to detect the
motion and attitude of the aircraft actively, as well as intelligent algorithms to process the
perceptive data and make real-time decisions. Therefore, as depicted in Figure 11b, based
on conventional programmable metasurfaces with programmable elements and control
links, sensors are further added and a microcontroller unit (MCU) with intelligent feedback
algorithm is loaded to form a closed-loop control loop [100]. Sensors on the metasurface
can detect some certain characteristics of the metasurface and its environment (for example,
spatial attitude, motion state, and temperature). In this control loop, the traditional pro-
grammable metasurface FPGA will no longer demand manual control, but directly through
the MCU after some analysis and processing for intelligent manipulation. When the sensor
detects the angle of aircraft attitude changes, the sensory data directly transmit to the MCU.
Additionally, according to the change of attitude angle difference, as well as the set beam
function (such as beam gaze communication), the MCU can calculate the required direction
deflection quickly and generate a set of corresponding coding sequences of the metasurface.
In this way, the complete adaptive closed-loop control is realized. This design idea makes
the programmable metasurface possess the ability of intelligent judgment and decision in a
real sense and provides a new idea for the intelligent development of the metasurface in
the future.
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Figure 11. (a) The schematic diagram of the application scenario of metamaterial satellite communica-
tion on dynamic aircraft (from Figure 1a of Ref. [100]). (b) Intelligent metasurface control architecture:
programmable metamaterials, sensing devices, intelligent feedback algorithms constitute a closed-
loop decision loop (from Figure 1b of Ref. [100]). Reproduced with permission from Ref. [100] under
a Creative Commons Attribution 4.0 International License. Copyright 2019, Springer Nature.
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The intelligent metasurface shown in Figure 11 integrates sensors by a wire connection.
Because the sensing device is separated from the programmable metasurface, and the
metasurface cannot complete the sensing function, so the relative integration degree is
low. Figure 12 introduces a dual-polarization programmable metasurface with intelligent
sensing function [101], which can detect the polarization direction and energy of incidence
wave actively and realize multi-functional intelligent beam manipulation. The metasurface
consists of two types of units: the sensing unit and the executing unit. The executive unit
is a common programmable metasurface unit, while the sensing unit has two functions
of sensing and regulating electromagnetic waves. Under the illumination of different,
polarized wave, the sensing units can obtain a DC voltage reflecting the incidence power
level through the receiving circuit. After detecting the voltage, the MCU converts the analog
voltage into a digital signal. Then, according to the preset control algorithm, it determines
what kind of scattering field control instruction of the metasurface is adopted and transmits
the instruction to the FPGA. Finally, the FPGA executes corresponding instructions to
manipulate the diode voltage on the metasurface. As shown in Figure 12b, the RF detection
circuit module is an important part of the sensing unit, which is composed of a commercial
RF detection chip and peripheral circuit. Each sensing unit is equipped with such a
group of sensing detection module circuit. At this point, the sensing unit can import the
coupling energy of the surface metal patch through the hole to the back microstrip line
connected with the RF detection circuit module, so as to realize the corresponding function.
Figure 12c,d show the bottom views of the sensing units for the x- and y-polarizations.
The microstrip lines of the x-polarization sensing unit are designed along the x-axis, while
the microstrip lines of the y-polarization sensing unit extends along the y-axis and enters
the detection circuit along the x-axis after a 45◦ broken line transition. This is designed to
minimize the energy loss associated with turning corners. In order to verify the RF power
detection performance of the sensing link, the output voltage of the detection circuit under
different incidence wave power is tested. Figure 12e shows the test results of the three
frequency points of 4.8 GHz, 4.9 GHz and 5.0 GHz. As can be seen from the diagram, when
the input power of the horn antenna is greater than about 10 dBm, the output voltage
increased obviously from 0.15 V to more than 0.3 V. The results of the dual-beam scattering
field in the two polarization directions (x- and y-polarizations) are listed in Figure 12f,g.
Two obvious scattering beams, respectively, direct to the x-and y-axes, and this verifies the
coding design of double beam deflection.
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5. Conclusions

In this paper, we review the recent five-year evolution of electromagnetic manipu-
lation from tunable to programmable and intelligent metasurfaces. We mainly focus on
illustrating tunable, active programmable, and intelligent metasurfaces from five aspects:
basic concept, working principle, design method, manufacturing, and experimental veri-
fication. Looking back at the development trend of electromagnetic manipulation since
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it first attracted public attention, we can summarize several important stages. The first
stage, research on electromagnetic manipulation, initially focused on passive metasurface
design. The disadvantage of a passive metasurface is that once the metasurface is prepared,
its function is fixed, which limits its application to some extent. Therefore, in order to
realize the dynamic operation of electromagnetic waves, the form of electromagnetic ma-
nipulation evolves from passive to active tunable metasurface, which is the second stage.
The core idea of tunable metasurface is to manipulate the electromagnetic wave without
changing the physical structure of the element itself. At present, the regulation forms of
the tunable metasurface include mechanical control, temperature control, light control,
and so on. Great examples are given to illustrate the design methods of different tunable
metasurfaces and how they can achieve flexible manipulation of phase and amplitude
responses. In the third stage, with the emergence of the new theory of “digital coding
programmable metasurface” a new chapter of metasurface electromagnetic manipulation
has been initiated. The key idea of digitally encoding metamaterials is to introduce digital
binary code into the design of metasurfaces and utilize the state arrangement of “0” and
“1” to manipulate electromagnetic waves. We introduce active programmable metasurfaces
based on a varactor, a triode amplifier, and a sensor. By encoding elements with different
phases to form different coding sequences, the beam modulation of the scattering field is
realized. In the fourth stage, electromagnetic manipulation has stepped into the adaptive
and smart age, with the development of self-adaptively intelligent metasurface. Different
from previous programmable metasurfaces, which must be controlled by human interven-
tion, the new intelligent metasurface control system will realize autonomous perception,
autonomous decision-making, and even adaptive functional control to a certain extent. For
the future stage, because the digital coding metasurface needs to be controlled by FPGA
to achieve a specific functional design, and the size of the FPGA cannot be ignored in
practical application, which will inevitably affect the convenience and integration of the
programmable metasurface. Therefore, whether the intelligent programmable metasurface
can be separated from the FPGA and realize independent regulation of each element will
be the potential direction to promote the development of intelligent metasurfaces.
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