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Original Article

Cell-free DNA from cerebrospinal fluid can be used to detect 
the EGFR mutation status of lung adenocarcinoma patients with 
central nervous system metastasis
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Background: EGFR tyrosine kinase inhibitors (TKIs) have revolutionized the therapeutic approach for 
EGFR mutated patients. However, acquired resistance to EGFR-TKI therapy is unavoidable. Repeat biopsy 
cannot be used, and peripheral blood detection shows a low positive rate in cases of brain-only disease 
progression.
Methods: Droplet digital polymerase chain reaction (PCR) (ddPCR) was performed on the plasma and 
cerebrospinal fluid (CSF) samples of 79 lung adenocarcinoma (LUAD) patients with EGFR mutations and 
central nervous system (CNS) metastasis. The differences in the EGFR mutation status between the paired 
plasma and CSF samples were assessed, and the role of CSF testing as a predictor of overall survival was 
evaluated.
Results: The CSF of patients with neurological symptoms, EGFR-TKI treatment, or leptomeningeal 
metastasis (LM) had a significantly higher positive rate of EGFR mutation compared to the plasma samples 
(P=0.001, P=0.035, P=0.019, respectively). Moreover, EGFR mutation status in CSF was consistent with 
neurological symptoms and LM (kappa =0.455, P<0.001; kappa =0.508, P<0.001; respectively). For the 
patients with brain metastasis, EGFR mutation-positive rate in CSF samples was lower than that in plasma 
samples (28.3% vs. 64.2%, P<0.001), while the patients with LM had the opposite result (84.6% vs. 38.5%, 
P=0.004). Moreover, patients with EGFR mutation in their CSF experienced worse survival [hazard ratio (HR) 
=2.93, 95% confidence interval (CI): 1.45–5.92; P=0.003, P adjust <0.0001]. 
Conclusions: The EGFR mutation status of CSF was different from that of plasma and is correlated with 
patient prognosis. CSF could be helpful in detecting the EGFR mutation status of patients, particularly in 
cases of LM. 
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Introduction

Lung cancer, with the highest rate of cancer-related 
mortality worldwide (1), is among the most common 
human malignancies. Non-small cell lung cancer (NSCLC) 
accounts for approximately 90% of all global lung cancer 
cases (2). Epidermal growth factor receptor (EGFR)-
activating mutations, such as L858R and exon 19 deletion 
(E19Del), have been found in approximately 10–15% 
of NSCLC patients in Western countries and 40–55% 
of patients in Asian countries (3). NSCLC patients with 
EGFR mutations have a significantly high risk of developing 
metastasis of the central nervous system (CNS), including 
leptomeningeal metastasis (LM) and brain metastasis (BM), 
which is associated with poor prognosis and compromised 
quality of life (4). The combined incidence of BM and 
LM in NSCLC patients is more than 50% (5-7). For 
NSCLC patients with BM and LM who receive EGFR 
tyrosine kinase inhibitor (TKI) therapy, the median overall 
survival (OS) is 10.3–16.2 months (8) and 4.5–11 months 
(9,10), respectively, which is markedly shorter than that 
for patients without CNS metastasis. EGFR-TKIs have 
ushered in a new era of targeted therapy in NSCLC and 
have dramatically improved the progression-free survival 
(PFS) of patients who harbor EGFR-activating mutations 
(11-17). Nevertheless, acquired resistance to EGFR-TKI 
therapy is inevitable. Therefore, rebiopsy is needed to 
detect secondary resistance mechanisms in order to develop 
a new treatment strategy. 

With its many advantages, the detection of tumor-specific 
genetic alterations in body fluids has become a supplement 
to or even a replacement for established tissue-based tumor 
diagnostics, and thus has garnered considerable attention 
in academic research and the medical testing industry (18). 
Moreover, circulating tumor DNA (ctDNA) has been 
widely used to detect EGFR mutations status in patients 
who develop resistance to targeted therapy (19). ctDNA 
derives from tumors or circulating tumor cells (CTCs), and 
constitutes a fraction of the cell-free DNA (cfDNA) that is 
extracted from body fluids, which also contain DNA derived 

from non-transformed cells (20). ctDNA has been shown to 
be capable of accurately reflecting tumor-specific genomic 
alterations and can be used to monitor tumor progression, 
response to treatment, and relapse (21). Therefore, ctDNA 
testing might be an ideal detection tool in cancer patients. 
Moreover, cerebrospinal fluid (CSF) has shown utility as a 
liquid biopsy medium for the gene expression profiling of 
NSCLC patients with LM, contributing to more sensitive 
and effective diagnoses (22). However, due to the blood-
brain barrier (BBB), the EGFR mutation status in CSF is 
not consistent with that in plasma, and controversy still 
surrounds which of the two is a better indicator of EGFR 
alterations in patients with CNS metastasis (23,24). Several 
studies have reported tumor-associated alterations being 
detectable in the CSF ctDNA of patients with various 
primary or metastatic brain tumors, while little ctDNA 
was found in the plasma of these patients (25-28). These 
findings indicate that CSF has a stronger capability to 
recapitulate the genomic profile of CNS tumors/metastatic 
sites than does plasma. 

In the present study, we performed droplet digital 
polymerase chain reaction (ddPCR) on paired plasma 
and CSF samples from 79 lung adenocarcinoma (LUAD) 
patients with EGFR mutations and CNS metastasis. 
Through comparing the EGFR mutation status of the 
plasma and CSF samples, we aimed to determine the ability 
of CSF compared to plasma in detecting EGFR mutation in 
patients with LUAD and CNS metastasis. 

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tlcr-21-62).

Methods

Patients 

This study included 79 LUAD patients with CNS metastasis 
harboring EGFR mutations in tumor tissue (L858R or 
E19Del). All patients were diagnosed at Henan Cancer 
Hospital between 2012 and 2018. The last follow-up took 
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place on April 20, 2019, and six patients were lost to follow-
up. CNS metastasis was confirmed in all patients by brain 
magnetic resonance imaging (MRI) and ThinPrep cytologic 
testing (TCT), which were performed according to standard 
procedures by experienced radiologists and pathologists. 
Patient clinical data including sex, age, smoking status, 
chemotherapy, local CNS radiotherapy, and history of 
EGFR-TKI treatment were collected from the electronic 
medical records of Henan Cancer Hospital (Table 1).

All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). This study was conducted 

in accordance with the ethical guidelines of the United 
States’ common rule, and the protocol was approved by the 
Research Ethics Committee of Henan Cancer Hospital. All 
patients signed informed consent forms.

Sample processing and DNA extraction 

After the CNS metastases were diagnosed, CSF (10 mL) 
and peripheral blood (15 mL) were collected by lumbar 
puncture and blood sampling respectively (Figure 1). The 
collected samples were preserved in EDTA tubes (SANLI) 
for the isolation of cfDNA. The DNA isolation procedure 

Table 1 Characteristics of 79 patients with brain metastases and leptomeningeal metastases

Characteristics

Brain metastases Leptomeningeal metastases

EGFR-TKI naïve EGFR-TKI treated Total
EGFR-TKI naïve 

naivenainaïvenaive
EGFR-TKI treated Total

Total 24 29 53 5 21 26

Sex

Male 10 17 27 1 11 12

Female 14 12 26 4 10 14

Age

<60 years 11 17 28 3 13 16

≥60 years 13 12 25 2 8 10

Smoking status

No 18 20 38 4 15 19

Yes 6 9 15 1 6 7

Neurological symptoms

No 11 12 23 0 3 3

Yes 13 17 30 5 18 23

Chemotherapy 

No 19 6 25 4 6 10

Yes 5 23 28 1 15 16

Local CNS RT

No 23 23 46 5 18 23

Yes 1 6 7 0 3 3

Number of metastasesa

Single 8 1 9 1 4 5

Multiple 16 28 44 4 15 19
a, two patients with leptomeningeal metastases and EGFR-TKI treatment were negative by MRI but positive by ThinPrep cytologic test. 
TKI, tyrosine kinase inhibitors; CNS, central nervous system; RT, radiotherapy.
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was performed within 2 h after sample collection. To 
collect plasma, the peripheral blood samples were subjected 
to centrifugation. Then, the plasma and CSF were first 
centrifuged at 2,000 ×g for 10 min at 4 ℃ and again at 
16,000 ×g for 10 min at 4 ℃. The QIAamp Circulating 
Nucleic Acid Kit (#55114, QIAGEN, Hilden, Germany) 
was used to capture cfDNA according to the manufacturer’s 
instructions. The quality and concentration of the DNA 
were assessed using a Qubit dsDNA HS assay (#1204008450, 
Life Technologies, Carlsbad, CA, USA). DNA was also 
isolated from the CSF sediment for the ddPCR test. The 
extracted DNA was stored at −20 ℃ for later analysis. 

ddPCR test

A QX200 digital PCR system (Bio-Rad Laboratories, 
Hercules, CA, USA) was used to conduct the ddPCR 
assays (29). For exon 19 deletions, p.L858R and p.T790M 
were detected using a human-EGFR ddPCR detection 
kit (#CB240005, YuanQi) according to the manufacturer’s 
instructions. The PCR program was as follows: 95 ℃ for  
10 min; 40 cycles of 94 ℃ for 15 s and 58 ℃ for 60 s; 98 ℃ 
for 10 min; and 4 ℃ for 5 min. The reaction volume was set 
to 40 μL. The reaction temperature was changed at a rate of 
less than 2 ℃/s. After thermal cycling, the amplified samples 
were loaded into a BioRad reader (#771BR24449, Bio-
Rad Laboratories) for quantification. These experiments 
were performed according to the protocols of the Mutation 
Detection Best Practices Guidelines supplied by Bio-Rad 
Laboratories (Figure 1). 

Statistical analysis 

Paired χ2 (McNemar’s test) and kappa tests were utilized 
to compare the clinical characteristics and EGFR mutation 
status in the plasma and CSF samples from the enrolled 
patients, and to compare the different subgroups divided 
according to their clinical data. Wilcoxon signed-rank 
test was used to evaluate the difference in EGFR mutation 
abundance between paired CSF and plasma samples. 
The patients’ survival probabilities associated with the 
EGFR mutation status of CSF were analyzed by Kaplan-
Meier curves and adjusted with clinical variables. Receiver 
operating characteristic (ROC) curve and time-dependent 
area under the curve (AUC) analyses were used to evaluate 
the accuracy of the predictive model by integrating the 
effects of both clinical variables and the EGFR mutation 
status of CSF on patient survival. All statistical analyses 
were performed using SPSS 20.0 (IBM Corp., Armonk, 
NY, USA), with the level of statistical significance set at a P 
value <0.05, unless otherwise indicated.

Results

Patient characteristics

The 79 patients enrolled in this study were diagnosed with 
advanced LUAD and confirmed to harbor sensitizing EGFR 
mutations, with 25 of these patients being treatment naïve. 
As shown in Table 1, 53 patients were diagnosed with BM 
and 26 with LM. Furthermore, 50 had a history of EGFR-
TKI treatment, 44 patients had received chemotherapy, and 

Figure 1 The workflow of the present study. ctDNA, circulating tumor DNA; ddPCR, droplet digital polymerase chain reaction.
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10 had received local CNS radiotherapy. The median age 
of the patients was 56 (range, 29–76) years, and 39 patients 
were male, including 22 who had history of smoking; none 
of the female patients smoked. Most patients (53 of 79) had 
neurological symptoms, including dizziness and headache, 
and most (63 of 77) had more than one metastatic lesion of 
the CNS. 

EGFR gene mutation status in CSF supernatant and 
sediment

First, to determine whether supernatant or sediment could 
better represent CSF, McNemar’s test and kappa tests were 
used to compare the EGFR mutation status between paired 
samples of CSF supernatant and sediment from the 79 
patients. As shown in Table S1, no statistically significant 
differences were observed in the positive rate of EGFR 
mutations between the supernatant and sediment of CSF 
(43.0% vs. 34.2%, P=0.092). Moreover, the two samples 
were generally consistent (kappa =0.656; range, 0.40–0.75; 
P<0.001). However, a difference was observed in the 
abundance (mutated alleles/mutated alleles and wild type 
alleles) of positive supernatant and sediment samples, with 
the abundance in the supernatant higher than that in the 
sediment [median (quartile): 33.00% (23.00–49.30%) and 
5.30% (2.20–15.00%), respectively]. 

EGFR gene mutation status and clinical characteristics 

To determine if there was any correlation between EGFR 
mutation and clinical features, we compared the EGFR 
mutation status of the patients’ plasma and CSF samples 
with various clinical characteristics. As shown in Table 2, a 
higher frequency of EGFR mutation was observed in the 
plasma samples of never smokers, patients with multiple 
CNS metastases, patients treated with radiotherapy, and 
patients without LM (61.4% vs. 40.9%, P=0.002; 58.0% vs. 
40.0%, P<0.001; 58.7% vs. 50.0%, P=0.001; and 64.2% vs. 
38.5%, P=0.015; respectively). No statistically significant 
differences in EGFR mutation status were found for other 
variables including sex, age, neurological symptoms, 
chemotherapy treatment history, or EGFT-TKI treatment 
history (P>0.05). All these characteristics showed poor 
consistency with EGFR mutation status in plasma (kappa 
<0.4).

For the CSF samples, patients with neurological 
symptoms (50.9% vs. 36.4%, P=0.032), no history of 
radiotherapy (47.8% vs. 40.0%, P<0.001), presence of 

multiple CNS metastases (including LM) (47.6% vs. 35.7%, 
P<0.001), and an EGFT-TKI treatment history (54.0% 
vs. 34.5%, P=0.035), along with non-smokers (64.2% 
vs. 11.5%, P=0.001) and LM patients (84.6% vs. 28.3%, 
P=0.019), had a higher risk of being EGFR mutation-
positive. The other variables had no significant correlation 
with the EGFR mutation status of CSF. Moreover, 
neurological symptoms and LM showed general consistency 
with EGFR mutation status in CSF (kappa =0.455, P<0.001; 
kappa =0.508, P<0.001; respectively). 

EGFR gene mutation status in CSF and plasma samples 
in different subgroups

To ascertain the difference between CSF and plasma in 
reflecting the EGFR mutations of patients, the EGFR 
mutation status between paired CSF and plasma samples 
from all patients was compared. As shown in Table S2, there 
was not a statistically significant difference in the positive 
rate of EGFR mutations between the paired CSF and plasma 
samples (P=0.360; kappa =−0.081, P=0.466). However, the 
number of positive CSF samples was significantly higher 
than that of plasma samples [33.00% (16.80–49.30%) and 
2.05% (0.67–14.75%), respectively]. 

Next, the 79 patients were divided into different 
subgroups according to their clinical characteristics. The 
EGFR mutation status of the paired CSF and plasma 
samples from patients in different subgroups was compared. 
In the BM patient group, the positive rate of EGFR 
mutations was notably lower in the CSF samples than in 
plasma samples (28.3% vs. 64.2%, P<0.001; kappa =0.093, 
P=0.381), while the opposite result was observed in the LM 
patient group (84.6% vs. 38.5%, P=0.004; kappa =−0.061, 
P=0.606) (Tables S3,S4). No significant difference between 
the EGFR mutation–positive rate of the CSF and plasma 
samples was observed in other subgroups, including patients 
with neurological symptoms (P=0.697), without EGFR-TKI 
treatment history (P=0.202), with EGFR-TKI treatment 
history (P=0.777), with EGFR E19Del (P=0.821) and EGFR 
21 exon L858R mutation (P=0.320) (Tables S5-S10).

Different subtypes of EGFR gene mutations in CSF and 
plasma

Although the positive rates of E19Del and p.L858R 
mutation were not significantly different between the CSF 
and plasma samples from any of the patients, as shown in 
Tables S9,S10, respectively, we questioned whether the 

https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
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EGFR mutation status differed between the plasma and 
CSF samples of patients with BM or LM. Here, three 
mutations were analyzed: p.L858R in exon 21, E19Dels, 
and p.T790M in exon 20). As shown in Table 3, the positive 
rates of L858R, E19Dels, and p.T790M mutations in the 

CSF samples from BM patients were all lower than those 
in the plasma samples. However, for patients with LM, the 
positive rates of p.L858R and E19Dels in the CSF samples 
were both higher than those in the plasma samples, while 
T790M showed no significant difference. 

Table 2 Comparison of EGFR mutation status of the patients with different characteristics from plasma and CSF samples of 79 patients

Characteristics
Mutation status in plasma

P
Kappa test Mutation status in CSF

P
Kappa test

Negative (%) Positive (%) Value P Negative (%) Positive (%) Value P

Total 35 (44.3) 44 (55.7) – – – 42 (53.2) 37 (46.8) – – –

Sex 0.636 −0.014 0.900 0.736 0.115 0.307

Male 17 (43.6) 22 (56.4) 23 (59.0) 16 (41.0)

Female 18 (45.0) 22 (55.0) 19 (47.5) 21 (52.5)

Age 0.211 −0.025 0.822 0.880 −0.122 0.278

<60 years 19 (43.2) 25 (56.8) 21 (47.7) 23 (52.3)

≥60 years 16 (45.7) 19 (54.3) 21 (60.0) 14 (40.0)

Smoking status 0.002 −0.157 0.100 0.032 −0.120 0.247

No 22 (38.6) 35 (61.4) 28 (49.1) 29 (50.9)

Yes 13 (59.1) 9 (40.9) 14 (63.6) 8 (36.4)

Neurological symptoms 0.233 −0.185 0.090 0.001 0.455 <0.001

No 8 (30.8) 18 (69.2) 23 (88.5) 3 (11.5)

Yes 27 (50.9) 26 (49.1) 19 (35.8) 34 (64.2)

Chemotherapy 1.000 −0.129 0.253 0.311 0.120 0.278

No 13 (37.1) 22 (62.9) 21 (60.0) 14 (40.0)

Yes 22 (50.0) 22 (50.0) 21 (47.7) 23 (52.3)

Local CNS RT <0.001 −0.073 0.285 <0.001 −0.036 0.643

No 29 (42.0) 40 (58.0) 36 (52.2) 33 (47.8)

Yes 6 (60.0) 4 (40.0) 6 (60.0) 4 (40.0)

Number of metastasesa 0.001 0.057 0.550 <0.001 0.067 0.418

Single 7 (50.0) 7 (50.0) 9 (64.3) 5 (35.7)

Multiple 26 (41.3) 37 (58.7) 33 (52.4) 30 (47.6)

EGFR-TKIs 0.451 −0.149 0.181 0.035 0.178 0.094

Naïve 10 (34.5) 19 (65.5) 19 (65.5) 10 (34.5)

Treated 25 (50.0) 25 (50.0) 23 (46.0) 27 (54.0)

LM 0.015 −0.218 0.031 0.019 0.508 <0.001

No 19 (35.8) 34 (64.2) 38 (71.7) 15 (28.3)

Yes 16 (61.5) 10 (38.5) 4 (15.4) 22 (84.6)
a, two patients with leptomeningeal metastases and EGFR-TKI treatment were negative by MRI but positive by ThinPrep cytologic test. 
CSF, cerebrospinal fluid; TKI, tyrosine kinase inhibitors; CNS, central nervous system; RT, radiotherapy; LM, leptomeningeal metastasis.
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EGFR gene mutation abundance in CSF and plasma

Since ddPCR allows for the quantitative detection of 
ctDNA, a Wilcoxon signed-rank test was employed to assess 
the differences in EGFR mutation abundance in paired CSF 
and plasma samples in positive patients. The median EGFR 
mutation abundances in CSF and plasma samples were 
33.50% and 1.75%, respectively, with a median difference of 
29.14%. The Wilcoxon signed-rank test results (Z =−3.509 
and P<0.001) indicated that the EGFR mutation abundance 
in CSF was significantly higher than that in plasma  
(Table S11). The comparison of the median EGFR mutation 
abundance in the paired CSF and plasma samples from 
patients with BM and LM is displayed in Figure 2, including 
three specific mutations: p.L858R in exon 21, E19dels, and 
exon 20 p.T790M. Overall, in LM patients, the abundance 
of E19dels, p.L858R, and p.T790M in CSF was higher 
than that in plasma, while in BM patients, the abundance of 
p.T790M in CSF was lower than that in plasma.

EGFR gene mutation status and patient survival

Finally, we investigated if there was any correlation between 
EGFR mutation status and OS. Complete follow-up 
data of 73 of 79 patients were available for analysis. The 
patients’ plasma and CSF samples were separately analyzed 
using Kaplan-Meier survival analysis, with adjustment 
for available covariations including sex, age, and smoking 
status. As shown in Figure 3A, the analysis of plasma 
samples indicated that the difference in median survival 
time between patients with and without EGFR mutations 

was not significant [19.7 vs. 14.4 months, hazard ratio (HR) 
=1.24, 95%, confidence interval (CI): 0.63–2.45; P=0.531, 
Padjust =0.819]. However, patients with EGFR mutation in 
their CSF had significantly worse survival than patients 
without EGFR mutation in their CSF (HR =2.93, 95% CI: 
1.45–5.92; P=0.003, Padjust <0.0001) (Figure 3B). 

Then, we assessed the role of the EGFR mutation status 
of CSF in predicting the OS of patients by using time-
dependent AUC and ROC curves at the 12th month (or 
1-year survival). Compared with the models for age, sex, 
and smoking status, the time-dependent AUC plotted for 
additional EGFR mutation status in CSF was improved. 
The AUCs were improved from 70.81–82.40% (P=0.066) 
for 1-year survival (Figure 3C,D).

Discussion

In this study, ddPCR was used to quantificationally detect 
EGFR mutation status in paired plasma and CSF samples 
from LUAD patients with CNS metastasis. The results 
showed that for patients with LM, the abundance of EGFR 
mutation in CSF EGFR mutation-positive samples was 
higher than that in plasma, and the EGFR mutation status 
of CSF was significantly different from that of plasma. 
Further survival analysis indicated that patients with EGFR 
mutation in their CSF had worse survival than patients 
without EGFR mutation in their CSF. These results suggest 
that for patients with LM, EGFR mutations can be detected 
more effectively in CSF than in plasma samples. This 
presents a potentially effective alternative or supplement for 

Table 3 The EGFR mutation types in plasma and cerebrospinal fluid among patients with CNS metastasis

Characteristics
Plasma Cerebrospinal fluid

L858R 19del T790M L858R 19del T790M

Brain metastases

EGFR-TKI naïve 7/10 (70.0%) 11/14 (78.6%) 1/1 (100.0%) 1/10 (10.0%) 4/14 (28.6%) 0/1 (00.0%)

EGFR-TKI treateda 7/15 (46.7%) 10/15 (66.7%) 4/7 (57.1%) 4/15 (26.7%) 7/15 (46.7%) 0/7 (00.0%)

Total 14/25 (56.0%) 21/29 (72.4%) 5/8 (62.5%) 5/25 (20.0%) 11/29 (37.9%) 0/8 (00.0%)

Leptomeningeal metastases  

EGFR-TKI naïveb 0/3 (00.0%) 1/3 (33.3%) 0 3/3 (100.0%) 3/3 (100.0%) 0 

EGFR-TKI treated 5/14 (35.7.0%) 4/7 (57.1%) 4/9 (44.4%) 11/14 (78.6%) 6/7 (85.7%) 4/9 (44.4%)

Total 5/17 (29.4%) 5/10 (50.0%) 4/9 (44.4%) 14/17 (82.4%) 9/10 (90.0%) 4/9 (44.4%)
a, 1 patient had both L858R and 19del EGFR mutation; b, 1 patient had both L858R and 19del EGFR mutation. TKI, tyrosine kinase 
inhibitors; CNS, central nervous system.

https://cdn.amegroups.cn/static/public/TLCR-21-62-supplementary.pdf
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plasma liquid biopsy for the detection of EGFR mutations 
in patients with CNS metastasis. Furthermore, the EGFR 
mutation status of CSF could serve as a biomarker for 
predicting the OS of patients with CNS metastasis. 

Next-generation sequencing (NGS) can be used to 
monitor LM development and guide precision medicine (4). 
However, NGS has not been widely used in clinical practice 
due to its high cost and technological complexity. ddPCR 
was used as our liquid biopsy method over SuperARMS 
and NGS due to its higher sensitivity and specificity (the 
sensitivity is lower than 0.1%), which suggests that more 
patients would benefit from this method. 

Most patients harboring EGFR mutations develop CNS 
metastasis (30); however, treatment with EGFR-TKIs 
eventually results in acquired resistance. The acquired 
resistance mechanisms can be either EGFR-dependent 
or EGFR-independent, such as is in T790M or MET 
amplification, respectively. The latter mechanism seems to be 
the most frequent, appearing in nearly 50% of LM cases (31). 
Therefore, the treatment strategy selected depends on the 
patient’s EGFR mutation status at a particular time. Liquid 
biopsy facilitates the detection of the EGFR mutation status 
of patients who are unwilling to undergo tissue aspiration 

biopsy or from whom a tumor tissue sample cannot be 
obtained (32). cfDNA is a short fragment (usually 130–180 
base pairs) double-stranded DNA that is present in plasma 
and other body fluids (33-36). It is thought to originate 
mainly from apoptotic or necrotic cell death, although 
active release mechanisms have also been investigated 
(37,38). In cancer patients, cfDNA is derived from both 
non-malignant and malignant cells, with the percentage of 
ctDNA originating from cancer cells ranging from 3% to 
93% (38). Moreover, cancer patients are frequently observed 
to have increased levels of cfDNA in their plasma, and 
under certain circumstances, increased cfDNA is considered 
to be an adverse prognostic factor (39). Increased levels of 
cfDNA might also be attributable to impaired renal clearance 
function or production of white plasma cells (WBC) (40,41). 
In contrast, ctDNA in CSF is quite stable, meaning it has 
the potential to facilitate and supplement the diagnosis of 
LM due to the low sensitivity of CSF cytology, especially in 
cases that cannot be detected by traditional cytopathological 
analysis (26). 

We included both EGFR-TKI-naïve and EGFR-TKI-
treated patients in this study. In the EGFR-TKI-naïve 
patients, the EGFR mutation-positive rate in plasma was 

Figure 2 Distribution of different EGFR mutation sites in paired plasma and CSF. In leptomeningeal metastasis patients, the abundance of 
E19del, L858R, and T790M in CSF was higher than that in plasma, while the abundance of T790M in CSF was lower than that in plasma. 
BM, brain metastasis; LM, leptomeningeal metastasis; CSF, cerebrospinal fluid.
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65.5%, which is generally consistent with previous reports. 
However, a downward trend in the EGFR mutation-positive 
rate was observed in the plasma of patients with a history 
of EGFR-TKI therapy. This can be explained by the fact 
that few EGFR mutation-positive NSCLC cells survive 
in extracranial circulations after EGFR-TKI treatment. 
Nevertheless, the EGFR mutation-positive rate in the CSF 
samples displayed an opposite trend. The reason for this 
might be that leptomeninges and CSF could become a safe 
harbor for protecting EGFR mutation-positive NSCLC 
cells during EGFR-TKI therapy because of the BBB. 

In this study, although no statistically significant 
difference or consistency was observed in the positive rate 
of EGFR mutations in CSF and plasma samples when the 
entire cohort was analyzed, for patients with neurological 

symptoms, LM, or those with an EGFR-TKI treatment 
history, EGFR mutation-positive rates in CSF were higher 
than those in plasma. Moreover, in the patients with LM, 
the mutation abundance in CSF was significantly higher 
than that in the plasma samples. This might be due to 
ctDNA only constituting a small fraction of the cfDNA in 
plasma arising from the large amount of DNA produced 
by normal cells, while few normal cells exist in CSF, which 
results in a notably higher proportion of ctDNA. These 
results suggest that for patients with EGFR-TKI resistance 
and CNS metastasis, testing CSF-derived cfDNA might 
be more effective than testing plasma. Furthermore, our 
analysis indicated that patients with EGFR mutations in 
their CSF had worse survival, meaning that meningeal 
metastases might have occurred in these patients, which 

Figure 3 Kaplan-Meier survival curve according to EGFR mutation status in plasma and CSF. The difference of median survival time 
between patients with and without EGFR mutations was not significant (A). The patients with EGFR mutations in their CSF had significantly 
worse survival than patients without EGFR mutation in their CSF (B). Compared with the model for age, sex, and smoking status, the model 
with addition of EGFR mutation status in CSF showed improvement of time-dependent AUC plot (C,D). CSF, cerebrospinal fluid; AUC, 
area under the curve.
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would dramatically increase the risk of death, although this 
was not diagnosed by TCT or MRI.

The mechanisms of cfDNA release are poorly understood, 
and their predictive role and relationship to tumor burden 
are controversial and still being investigated (42,43). We 
assessed the correlation between the OS of patients and the 
cfDNA status in both plasma and CSF samples, and found 
that the cfDNA status in CSF was negatively correlated with 
patient survival. This result suggests that EGFR mutation 
status or cfDNA in the CSF might be a promising predictor 
for OS in LUAD patients with CNS metastasis. Previous 
studies demonstrated a correlation between plasma levels of 
ctDNA and survival (21,22). The lack of correlation found 
in this study could be due to the fact that plasma is not 
adequate to predict patients’ survival for patients with CNS 
metastases. 

As far as we know, the present study is the largest to 
explore EGFR mutation status in the CSF of LUAD 
patients with CNS metastasis, and has yielded new insight 
into the comparison of EGFR mutation status in paired 
CSF and plasma samples with ddPCR. Nevertheless, this 
study has some limitations. First, the sample size of 79 
patients was not large enough, which might have resulted 
in the introduction of biases, including low statistical 
power, higher false discovery rate, and low reproducibility. 
Secondly, only L858R, E19del, and T790M mutations can 
be detected by ddPCR, which limited the exploration of the 
possible molecular mechanism of BM. Finally, this study 
was performed in a Chinese population and, therefore, may 
not be representative of other ethnic groups.

In conclusion, we found that the EGFR mutation status 
in CSF was different from that in plasma, and CSF could 
more effectively reflect the EGFR mutation status of LUAD 
patients with CNS metastasis. Our results indicate that the 
detection of EGFR mutation status in CSF could serve as 
an efficient alternative or supplement to plasma testing. 
Furthermore, for patients with acquired resistance to 
EGFR-TKIs, liquid biopsy of CSF would be an excellent 
tool for detecting EGFR mutation status to inform future 
treatment decision-making.
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