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Abstract
Climatic changes impact fruit tree growth and severely limit their production. Investigating

the tree ability to cope with environmental variations is thus necessary to adapt breeding

and management strategies in order to ensure sustainable production. In this study, we as-

sessed the genetic parameters and genotype by environment interaction (GxE) during the

early tree growth. One hundred and twenty olive seedlings derived from the cross ‘Olivière’

x ‘Arbequina’ were examined across two sites with contrasted environments, accounting for

ontogenetic trends over three years. Models including the year of growth, branching order,

environment, genotype effects, and their interactions were built with variance function and

covariance structure of residuals when necessary. After selection of a model, broad sense

heritabilities were estimated. Despite strong environmental effect on most traits, no GxE

was found. Moreover, the internal structure of traits co-variation was similar in both sites.

Ontogenetic growth variation, related to (i) the overall tree form and (ii) the growth and

branching habit at growth unit scale, was not altered by the environment. Finally, a moder-

ate to strong genetic control was identified for traits at the whole tree scale and at internode

scale. Among all studied traits, the maximal internode length exhibited the highest heritabili-

ty (H2 = 0.74). Considering the determinant role of this trait in tree architecture and its stabili-

ty across environments, this study consolidates its relevance for breeding.

Introduction
Plant architecture is determined by both the genotype and the environment [1]. Considering
the particular case of perennial species, plant structure is established by a succession of growth
units which characteristics change during ontogeny [2]. Tree architecture is thus determined
by genetic, environmental and ontogenetic factors and their interactions.
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The concepts of the architectural analysis [1] have been applied in several forest and fruit
species, highlighting the foundation of tree form establishment [3,4,5]. However, accessing the
genetic basis of such complex traits requires adapted phenotyping methodology that is man-
ageable in large segregating populations [6]. Based on previous methodological advances [7,
8,9] proposed to decompose tree architectural complexity in a number of elementary variables
related to tree constituent’s organization and to the dimension and spatial location of organs
(i.e. tree topology and geometry, respectively). Variables associated with either vegetative or re-
productive development were measured on different shoot types to account for tree axes poly-
morphism. This has led to a first screening of architectural traits having potential effect on
bearing regularity and fruit quality as well as orchards management efficiency [10,11], and has
shown that many of them were genetically controlled [8,9,12]. However, little attention has
been paid so far to environmental sources of the phenotypic plasticity even though investigat-
ing the inheritance of traits related to the vegetative growth over contrasted environments
could permit an early selection of stable architectural traits for fruit tree breeding [13].

The interaction between genotype and environment (GxE) has been largely studied in plant
breeding as a mean of producing new cultivars with stable and superior phenotypes [14]. GxE
of individual traits have been assessed in numerous experiments with annual crops such as
wheat [15], rice [16], oat [17] and soybean [18]; fibres such as cotton [19]; forest trees: poplar
[20], pine [21], spruce [22]. Comparatively, fewer studies have been performed on fruit trees,
including apple [23, 15], wild cherry [24], and blueberry [25]. The traits studied were mainly
related to fruit production and quality, whereas growth traits were poorly represented i.e. limit-
ed to stem diameter, height and volume. These latter traits appeared to be significantly impact-
ed by GxE effect in forest trees [26, 27]. In addition to genotype and environment, ontogeny
also affects the growth of a tree throughout its life. One of the most evident morphogenetic gra-
dients is the decrease in height increment with tree age, also called age-related decline in
growth in forest trees [28]. Genetic characterization of ontogenetic effects can be achieved
through functional mapping, as previously performed in poplar [29, 30]. Thus, evaluating the
genetic determinism of quantitative architectural traits across environments and over time is
challenging for perennial species considering the long juvenile period, the high level of struc-
tural complexity they reach during their life and the cost of such experiments implying a large
population survey in contrasted locations [31, 32].

This is particularly true for the olive tree (Olea europaea L. subsp. europaea), grown since
antiquity around the Mediterranean Bassin [33] with a remarkable economic and symbolic
power among the different cultures and nations. The high variability found for growth habit
traits in olive progenies suggests their importance on the selection of new breeding cultivars
[34]. A first study of the genetic basis of olive growth and branching traits has been performed
on a F1 progeny derived from a cross between two highly polymorphic olive cultivars, studied
in a single environment [35]. The increasing structural complexity of olive trees was described
over several years giving evidence of the importance of accounting for the ontogenetic and cli-
matic year factors effect to better capture the genetic basis of traits related to the vegetative de-
velopment. A phenotyping methodology adapted to the olive characteristics was proposed for
quantitative genetics approaches. Due to the presence of ontogenetic trends, growth and
branching traits measured at growth unit scale were heritable only at the tree periphery. Never-
theless, local and stable variables such as maximal internode length and global variables de-
scribing the overall tree form (e.g. tree height and volume) were found appropriate for
capturing the genetic effects. However, this experiment did not allow the distinction between
ontogenetic and climatic year effects and no information was provided about the environmen-
tal effect and its interaction with the genetic factor.
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In the present study, we investigated the plasticity of the vegetative development during the
first three years of tree establishment in the same F1 progeny observed at two contrasted sites
taking into account the degree of differentiation of growth units during tree ontogeny. We in-
vestigated the effect of the environment (i.e. site effect) on primary growth and branching traits
and on their intrinsic ontogenetic variation. Likewise, GxE interaction effect was estimated for
all studied traits giving an overview of their stability over sites. Architectural traits showing
strong genetic control and weak environmental variations were identified.

Materials and Methods

Experimental design
Growth traits were measured on 120 genotypes derived from the cross ‘Olivière’ x ‘Arbequina’.
Parents were chosen for their contrasting architecture and bearing habit. The ‘Olivière’mater-
nal parent is a vigorous male sterile cultivar displaying an alternate bearing habit [36]. By con-
trast, the ‘Arbequina’male parent is a relatively low vigour self-fertile cultivar, suitable for high
density planting and characterized by a small alternating production. The progeny was grown
at two sites: the DiaScope experimental station of INRA Montpellier, France (E1) and the ex-
perimental farm of IFAPA ‘Alameda del Obispo’ in Córdoba, Spain (E2). Trees, originated
from cuttings, were planted in a randomised complete block design (E1 in 2005: 6m x 2m; E2
in 2009: 4m x 2m; N/S rows orientation) in a clay-loam soil at both sites. Architectural traits
previously studied in Montpellier (E1) over the first 5 years of growth were recorded in Cor-
doba (E2) over the first three years of growth following the same phenotyping strategy as de-
scribed in [35] on a total of 480 trees (two replicates/genotype and 120 genotypes/location).
The present study is thus based on the analysis of the first three years of growth of the proge-
nies in both E1 and E2 sites, corresponding to different climatic years (S1 Fig). In order to ho-
mogenize the plantation, trunks were cut back to 50 cm in E1 and trees were trained as single
trunk in E2. Afterwards, trees were not pruned and standard irrigation and chemical treat-
ments were carried out on the trees in both sites.

Phenotyping methods
Tree topology was formalized in a multiscale tree graph (MTG) according to the methodology
defined by [7]. The data base contained four different scales: tree, sympode, growth unit (GU)
and internode. All GUs were described in the first year of growth i.e. 2005 (E1) and 2009 (E2),
whereas a subsample corresponding to the main path of GUs in the tree was selected in the sec-
ond and third years. Branching orders were incremented from axes developed after cutting,
which were considered as order 0. GUs were classified into three types according to their
length: long (� 20 cm); medium (5 cm� 20 cm) and short (<5 cm). Growth and branching
traits such as the number of internodes (Nb_IN) and the number of sylleptic axillary shoots
per GU (i.e., shoots developed immediately without bud resting period, Nb_AS) were mea-
sured for long and medium GUs. Regarding geometrical traits, the length (L) of each GU
was measured, whereas the length of the longest internode (IN_Max) was recorded for each
annual shoot. The mean internode length was deduced from the GU length and number of in-
ternodes (Mean IN_L = L/Nb_IN). At the overall tree scale, variables related to the global form
of the tree were collected in (E2) at the end of 2010 and 2011 years of growth. Trunk height
(H) and projection of the longest branch of the tree (Proj) were used to calculate tree basis area
(B_area =P x (Proj)2) and volume (V = 1/3 x B_area x H). Then, the basal diameter was as-
sessed for each trunk (Tr_Bdiam). All data extraction fromMTG files was performed using
VPlants software (http://openalea.gforge.inria.fr). Both measured and derived variables
(Table 1) were classified according to the observation scale: whole tree and growth units.
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Data analysis
First, changes in primary growth and branching variables during tree ontogeny were examined.
We considered the year of growth and the branching order in both E1 and E2 jointly, as well as
separately. The normality of each variable distribution was checked. When a variable was not
normally distributed, a square root transformation was performed (this transformation is men-
tioned in the variable name by adding “_sqrt”). As dependencies were expected between re-
peated measurements on the same trees, variances homogeneity was checked using the
Levene’s test [37] and correlation between consecutive years or orders was examined.

Second, depending on the variable and the experimental unit considered in the tree, differ-
ent mixed linear models were built in order to access the effect of the genotype, ontogeny (i.e.
the year of growth and/or the branching order), environment and their interactions on the
studied traits. For variables collected at the whole tree level over consecutive years, the effect of
genotype, year of growth, environment and their interactions were estimated according to the
following global mixed linear model:

Pijkl ¼ m þ Gi þ Yj þ Ek þ ðG� YÞij þ ðG� EÞik þ εijkl ð1Þ

where Pijkl is the phenotypic value of genotype i at the year of growth j and the environment k,
μ is the overall mean of the progeny, Gi is the random effect of the genotype i, Yj is the fixed ef-
fect of the year of growth, Ek, is the fixed effect of the environment k, (G×Y)ij and (G×E)ik are
their random interaction and εijkl is the random residual error effect for the lmeasured trees.
The three-way interaction (GxYxE) was excluded from the model after having considered the
Bayes Schwarz information criteria (BIC) minimization.

Because the GUs developed in a given year of growth were located at different branching or-
ders and the number of GUs developed per year and order depended on each tree and environ-
ment, the dataset of growth and branching variables recorded at the GU level over three
consecutive years was unbalanced. Thus, the random interactions between the genotype factor
and the year of growth and branching order (i.e. G×Y and G×O, respectively) could not be test-
ed jointly. Different models were built and the best model was selected according to the BIC
criteria. The following global mixed linear model including the G×O and G×E interactions was

Table 1. List of quantitative variables collected on olive tree global form, topology and geometry traits with detailed formula for calculated
variables.

Scale Mesured and calculated Variables Abbreviations Formula

Height (m) H

Projection (m) Proj

Whole Tree Basis area (m2) B_area Πx(Proj)2

Tree Volume (m3) V 1/3x B_areaxH

Trunk basal diameter (mm) Tr_Bdiam

Topology

Nb of internodes Nb_IN

Nb of axillary shoots Nb_AS

Growth Units Nb of long, medium, short axillary.shoots/ GU Nb_L; Nb_M; Nb_S

Geometry

Length (cm) L

Mean Internode length (cm) Mean INL L/Nb_IN

Length of the longest internode (cm) IN_Max

doi:10.1371/journal.pone.0127539.t001
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selected for GUs traits analysis:

Pijnkl ¼ m þ Gi þ Yj þ On þ Ek þ ðG� OÞin þ ðG� EÞik þ εijnkl ð2Þ

where Pijnkl is the phenotypic value of genotype i at the year of growth j, branching order n and
the environment k, μ is the overall mean of the progeny, Gi is the random effect of the genotype
i, Yj is the fixed effect of the year of growth, On is the fixed effect of the branching order, Ek, is
the fixed effect of the environment k, (G×O)in and (G×E)ik are their random interaction and
εijnkl is the random residual error effect for the lmeasured trees.

For traits showing heterogeneous variances for the different levels of factors, different vari-
ance functions were tested, as described by [38]: varIdent, with different variances per level of
the fixed factor; varPower, with variance increasing as a power function; varExp, with variance
increasing as an exponential function; varConstPower, combines a constant value with a power
function. Moreover, when significant correlations between consecutive years or orders were
found, several covariance structures were compared i.e. compound symmetry (corComSymm),
autoregressive of order 1 (corAR1) and exponential (corExp).

For each variable, a model comparison was performed on the basis of BIC minimization,
which allowed us to select the significant factors and when necessary, the variance function
and the covariance structure to be taken into account in the residual term. After this model se-
lection, the normality of residual distribution was checked. All model estimation and selection
were performed using R software v.2.9.2, with REML estimation method, under lme4 and nlme
packages [39].

Broad-sense heritability of all studied traits was estimated as the ratio between the genotypic
and the phenotypic variances: H2 = σ2G / σ2P. When no significant interaction was selected in

the model, heritability was calculated as: H
2 ¼ s

2
G

½s2
G
þs

2
ε
n �
, where σ2G is the genotypic variance, σ2ε

is the residual error variance estimated from the selected model, and n the number of replicate
per genotype [40,41].

When significant interaction between the genotype and the environment factor was select-

ed, the heritability calculation was:H
2 ¼ s

2
G

½s2
G
þ
s
2
GxE
a þs

2
ε
na �
where σ2G is the genotypic variance, σ2GxE

is the variance of genotype and environment interaction, σ2ε is the residual error variance esti-
mated from the selected model, n the number of replicates per genotype, and a the number of
environments (i.e. n = 2; a = 2).

When significant interaction between genotype and branching order factors was selected,

the heritability calculation was:H
2 ¼ s

2
G

½s2
G
þ
s
2
GxO
b þs

2
ε
nb �
where σ2G is the genotypic variance, σ2GxO is

the variance of genotype and order interaction, σ2ε is the residual error variance estimated
from the selected model, n the number of replicates per genotype, and b the number of orders
considered (i.e. b = 6).

Given that univariate analysis cannot account for changes in the relationship among traits
between environments, the phenotype represented by a number of observable traits could be
better illustrated as a multidimensional space interacting with the environment [42,43,44]. We
performed a multivariate analysis to investigate co-variations between architectural traits in
order to analyze jointly the phenotypic space across and within environments, a multiple factor
analysis (MFA) was preferred to a classical principal component analysis because it takes into
account the internal grouping structure among variables or among individuals. The contribu-
tion of a data point to the inertia of an axis is the quotient between the inertia of its projection
and the inertia of the whole scatterplot’s projections on this axis [45]. Principal components
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(PCs) represent major axis of co-variation between sets of phenotypic traits. The MFA analysis
was performed on the basis of genotypic mean values using the dual multiple factor analysis
function (DMFA) under FactoMineR package [46]. The quality of traits representation on PCs
plane is measured by the squared cosine between the vector issued from the trait and its projec-
tion on the PC. Traits are well projected on PCs when the squared cosine is close to 1. Unlike
classical factorial analysis, PCs are not orthogonal in DMFA. Hence, the quality of traits repre-
sentation on PCs plane is visualized by ellipses instead of the distance between projected trait
onto the plane and the correlation circle [46]. Euclidean distances between variables were also
calculated on a PCA coordinate matrix for all variable pairs considering separately each envi-
ronment andWard’s minimum variance algorithm was used to construct the corresponding
dendrogram [47]. The principle of this algorithm is to cluster variables, genotypes or groups at
each step by maximizing the intergroup ratio between the sum of squares and the total sum of
squares [48]. The clustering was performed using the program clustering calculator, developed
by John Brzustowski: http://www.biology.ualberta.ca/jbrzusto/cluster.ph. Unrooted trees were
drawn by the TreeView Software [49].

Results

Genetic analysis
Whole tree form variables showed heterogeneous variances over consecutive years. Nonethe-
less, models selected did not include a variance function, except for tree volume (Vsqrt) for
which an exponential variance function was taken into account in the residual term of the
model (Table 2). All traits related to the whole tree form showed highly significant differences

Table 2. Estimation of variance components (VG, VGxE, VGxO, Vr) and Broad- sense heritability values for architectural traits related to whole tree
form and growth units (GUs) in ‘Olivière’ × ‘Arbequina’ progeny (see Table 1 for variables definitions).

Scale Variables Factors1 Variance Function Variance estimates H2

G E Y O GxE GxO VG VGxE VGxO Vr

Tr_Bdiamsqrt - *** *** * - 0,137 - 0,296 -

Proj * *** *** * 0,003 0,004 - 0,018 0,31

Whole tree B_areasqrt * *** *** * 0,010 0,014 - 0,057 0,31

H - ** *** *** - 0,023 - 0,045 -

Vsqrt ** *** *** - VarExp 0,010 - - 0,019 0,52

Geometry

Lsqrt - *** - *** - . - - 1,91E-10 4,518 -

IN_Max *** - *** - - - VarPower 0,148 - - 0,100 0,74

Growth Units Mean_INLsqrt ** - - - - * 0,002 - 0,0032 0,054 0,28

Topology -

Nb_INsqrt - *** - *** - . - - 5,22E-11 1,568 -

Nb_ASsqrt * *** ** ** - * 0,029 - 0,125 2,397 0,11

Nb_Lsqrt - *** - *** - . - - 1,96E-10 1,089 -

Nb_Msqrt . *** *** *** - - 0,0173 - - 1,232 -

Nb_Ssqrt * *** *** *** - *** 0,0485 - 0,0869 1,525 0,25

P.value: ‘***’ <0.0001

‘**’ <0.001

‘*’ <0.01

‘.’ <0.1 ‘-’ NS
1 Key: G = genotype, E = site, Y = year and O = Branching order

doi:10.1371/journal.pone.0127539.t002
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among years and environments (Table 2). The GxY interaction was not significant for all stud-
ied variables and was thus excluded according to BIC criteria. The mean values of the projec-
tion of the longest branch in a tree (Proj), tree basis area (B_areasqrt) and volume (Vsqrt) and
trunk basal diameter (Tr_Bdiamsqrt) were higher in E1 than in E2, whereas the trunk height
(H) was higher in E2 than in E1 (Table 3). The G and GxE interaction effects were slightly sig-
nificant for both projection of the longest lateral branch of the tree (Proj) and tree basis area
(B_areasqrt). Although no significant G effect was revealed for the trunk basal diameter
(Tr_Bdiamsqrt) and height (H), a high variance associated to GxE effect was estimated
(Table 2). Lastly, the genotype effect was significant for the tree volume (Vsqrt) whereas GxE
was not significant (Table 2).

At GUs scale, no significant correlation was observed between consecutive years or branch-
ing orders for all GUs variables (data not shown). Even though variances were heterogeneous,
the models selected did not include a variance function, except for the maximal internode
length for which a power of covariate variance function was taken into account in the residual
term of the model (IN_Max; Table 2). The GxE interaction was not significant for all studied
variables (neither geometrical nor topological variables) and was thus excluded according to
BIC criteria (Table 2). The GUs length (Lsqrt) was significantly impacted by the effect of both
environment and branching order factors, but not by the year effect. Basically, GUs length was
higher in E1 than in E2 (Table 3) and decreased with higher branching orders (Fig 1).

The effect of genotype was not significant for this trait, whereas G×O effect was significant
(Table 2). For internode lengthening variables, a highly significant genotype effect was found
for both mean and maximal internode length (IN_Max, Mean_INLsqrt; Table 2). The maximal
internode length (IN_Max) was also significantly impacted by the effect of the year, whereas
the mean internode length (Mean_INLsqrt) was weakly influenced by G×O effect (Table 2).
The environment had no significant effect on IN_Max and Mean_INLsqrt and, accordingly, the
difference in means between E1 and E2 environments was not significant (Tables 2 and 3).

Table 3. Mean values and standard deviations of architectural traits as a function of environments (E1: Montpellier; E2: Cordoba) in ‘Olivière’ ×
‘Arbequina’ progeny (see Table 1 for variables definitions).

Scale Variables E1 (Montpellier) E2 (Cordoba)

Tr_Bdiam (mm) 34,62 (13,97) 24,59 (11,82)

Proj(m) 0,80 (0,25) 0,71(0,25)

Whole tree B_area (m2) 2,22 (1,29) 1,76 (1,13)

H(m) 1,49 (0,36) 1,60 (0,36)

V(m3) 1,22 (0,85) 1,03 (0,80)

Geometry

L (cm) 43,62 (27,17) 35,42 (25,01)

IN_Max (cm) 4,12 (1,33) 4,10 (1,34)

Growth Units Mean_INL (cm) 2,22(0,82) 2,15 (0,78)

Topology

Nb_IN 18,56 (10,39) 16,07(10,13)

Nb_AS 13,66 (13,33) 7,48 (8,72)

Nb_L 4,47 (4,86) 2,32 (3,41)

Nb_M 3,70 (4,59) 2,11 (3,24)

Nb_S 5,57 (7,48) 3,01 (4,35)

The highest values in the comparison between E1 and E2 are indicated in bold when significant.

doi:10.1371/journal.pone.0127539.t003
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The branching order effect was highly significant for all topological traits related to primary
growth and branching. As previously found for GUs length, the number of internodes per GU
and the number of sylleptic long laterals (Nb_INsqrt and Nb_Lsqrt), were not impacted by the
year (Table 2). All traits showed significant differences between environments, with higher
mean values found for trees grown in E1 (Table 3). The genotype effect was significant for two
branching variables only (Nb_ASsqrt and Nb_Ssqrt), whereas G×O was weakly significant to not
significant for most growth and branching traits, except for the number of sylleptic laterals of
short length (Nb_Ssqrt, Table 2).

Broad-sense heritability
Consistent with the genetic analysis results and variance components (Table 2), traits related to
overall tree form showed moderate heritability values ranging from 0.31 for the tree longest
branch projection (Proj) and basis area (Proj, B_areasqrt) to 0.52 for tree volume (Vsqrt). Con-
sidering geometrical traits, moderate to high heritability values were estimated for variables re-
lated to internodelengthening: Mean_INLsqrt (H

2 = 0.28), IN_Max (H2 = 0.74). Among
topological traits, only two branching traits showed low to moderate heritability values:
Nb_ASsqrt (H

2 = 0.11) and Nb_Ssqrt (H
2 = 0.25).

Between-Environments ontogenetic changes
The interaction between ontogenetic and environmental factors i.e YxE and OxE was initially
considered but was not significant for all architectural traits. These factors were thus excluded
from the mixed linear models (Table 2). This means that progenies showed similar ontogenetic
trends in both E1 and E2 environments that can be described qualitatively, as follows.

Fig 1. Ontogenetic trends in E1 and E2 environments.Ontogenetic trends illustrated by mean values and
standard deviation of the number of nodes per growth unit (GU) and GU average length (cm) as a function of
years (1st, 2nd and 3rd years of growth) and branching orders (0 to 6), calculated on ‘Olivière’ x ‘Arbequina’
progeny in the two environments (Montpellier: E1 and Cordoba: E2) considered.

doi:10.1371/journal.pone.0127539.g001
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During the first and second year of growth, the average length of GUs (L) was positively cor-
related to the number of internodes (Nb_IN, data not shown) and was maximal at orders 0 and
1. Lower values were observed from order 2 in the second year of growth and at all observed or-
ders for the third year of growth (Fig 1). The mean number of internodes ranged from 22.4
(E1) and 18.14 (E2) in the first year of growth, to 15.76 (E1) and 13.37 (E2) in the third year.
Yet, primary growth observed during the second year of growth in E1 conditions was lower
than that observed during the third year of growth at orders 2 to 4 (Fig 1). Nevertheless, the
number of internodes (Nb_IN) showed almost similar values in both environments at order 5
and 6 in the third year of growth (e.g. at order 6: Nb_IN = 9.8–10.6 in E1 and E2 respectively).
The mean number of sylleptic lateral GUs per parent GU decreased with years and branching
orders, in a similar way to that observed for GU length and number of nodes (data not shown).
The three types of GUs (long, medium and short) were observed as sylleptic laterals whatever
the year and environment (Fig 2).

Sylleptic lateral GU types changed depending on the parent GU age in a similar way in both
E1 and E2 environments. The percentage of long GUs decreased during the first 3 years of
growth whereas short GUs increased. Even though the proportion of long laterals was on aver-
age the highest in E1 during the three years studied, it was more abundant in E2 than in E1
during the first year of growth. Accordingly, its decrease observed in the second and third year
was greater in E2 than in E1 (Fig 2). Therefore, the proportion of GUs of medium length in-
creased in E2 during that period whereas it was almost stable over years in E1.

Structure of the phenotypic space
The multidimensional phenotypic space was explored using a multivariate factor analysis
(MFA) considering jointly the genotypic means of all studied traits in order to compare the

Fig 2. Percentage of sylleptic lateral growth units (GUs) types (long, medium or short) depending on
parent GU age. Percentage of sylleptic lateral growth units (GUs) types (long, medium or short) depending
on parent GU age in ‘Olivière’ x ‘Arbequina’ progeny: (a) traits recorded in Montpellier (E1); (b) traits recorded
in Cordoba (E2).

doi:10.1371/journal.pone.0127539.g002
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general pattern of trait co-variations across environments to the patterns of trait co-variations
within each environment.

Across environments, the first three principal components (PCs) explained together 66% of
the total variance in the phenotypic data (Table 4). Each PC was defined by a set of variables
corresponding to the three scales considered, i.e. tree, GU and internode (Table 5): whole tree
form traits contributed mostly to PC1; topological growth and branching traits to PC2, whereas
geometrical traits (i.e. L, IN_Max and Mean_INL) contribution was the highest along PC3.
Based on these PC, it was possible to identify contrasted trait combinations defining some ex-
treme architectural phenotypes among the progenies, through their internal grouping structure
(Fig 3): (i) high tree volume and high internode length (Group 1); (ii) medium tree volume
with high primary growth and branching (Group 2); (iii) low tree volume, GU length and inter-
node length, with medium branching and internode number (Group 3); (iv) low tree volume,
primary growth, branching and internode length (Group 4) and (v) high tree volume and GU
length, with low internode length and branching (Group 5). These phenotypes were mainly
site specific as the mean values of a given genotype grown either in E1 or E2 did not belong to
the same group (Fig 3). Interestingly, the most extremes genotypes in Groups 1 and 5, which
corresponded to trees with high volumes, were individuals grown in E2. Also, almost all Group
3 individuals and the most extreme individuals of Group 4 corresponded to trees grown in E2,
and corresponded to weak trees.

Within each environment, the first three PCs explained together 67% of the total variance
in the phenotypic data (Table 4). As found across environments, PC1, PC2 and PC3 repre-
sented the three studied groups of variables related to whole tree form, GU topology and GU
geometry, respectively (Table 5). Looking for the internal structure of traits co-variation within
each environment, traits contributions to the principal components under E1 and E2 environ-
ments were remarkably similar (Table 5). However, some minor differences were found when
comparing the internal structures in each site. Globally, variables were more grouped in the
phenotypic space in E2 than in E1 (Fig 4). Correlation coefficients between whole tree form
traits and PC1 were higher and their relative positions were closer to each other in E2 than in
E1 (Fig 4A and 4D; Table 5). By contrast, correlation between growth and branching traits and
PC2 were slightly higher in E1 than in E2 even though these variables were still closer to each
other in E2 than in E1 (Fig 4A, 4C, 4D and 4F; Table 5). Although evenly correlated to PC3 in
both E1 and E2 environments, GU length (L), its contribution to PC2 was different in E1 and
E2, mainly because it was closer to internode length variables in E2 than in E1 (Fig 4A and 4D;
Table 5). Lastly, the maximal internode length (IN_Max) positive correlation to PC3 was
higher in E1 than in E2 (Fig 4B, 4C, 4E and 4F; Table 5).

Table 4. Eigenvalues and Percentage of Explained Inertia by the first three components across andwithin environments

MFA analysis PC Eigen value %Variance % Cumulative Variance

PC 1 4,05 31,19 31,19

across environments PC 2 2,89 22,26 53,45

PC 3 1,59 12,20 65,65

PC 1 3,88 29,85 29,85

E1 PC 2 2,86 22,04 51,89

PC 3 2,02 15,56 67,46

PC 1 4,51 34,74 34,74

E2 PC 2 2,87 22,13 56,88

PC 3 1,32 10,18 67,06

doi:10.1371/journal.pone.0127539.t004
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To represent efficiently their structures of correlation, traits recorded in E1 and E2 were
clustered on the basis of their similarities (Fig 5). At tree scale (Fig 5A), all variables recorded
in E2, except the trunk basal diameter, were tightly grouped together (Cluster 2). In contrast,
variables recorded in E1 were in two different clusters (Clusters 1 and 3). Both these clusters
and the variables within each of them exhibited relatively high distances between each other.
Trunk basal diameters recorded in either E1 or E2 were grouped together in cluster 3, with the
trunk height recorded in E1 whereas tree volume, basal area and the projection of the longest
branch were grouped in Cluster 1 (S1 Table; Fig 5A). This configuration was due to the fact
that correlation coefficient between trunk height and tree volume, Basal area and Projection
was higher in E2 than in E1 (S2 Table).

At GU scale (Fig 5B), growth and branching traits recorded in E1 and E2 were clustered in
two groups corresponding to the two environments i.e. cluster 1 and cluster 2 for E1 and E2 re-
spectively. Within each of these clusters, primary growth traits were distinguished from
branching traits yet with minor distances between the two sub-groups of traits (S1 Table). The
proximity of Nb_IN and Nb_L in both clusters was in accordance with their positive correla-
tion (S2 Table; Fig 5B). A third cluster included internode lengthening variables (i.e. IN_Max
and Mean_INL) recorded in both environments (cluster 3; Fig 5B). Under E1 conditions, GU
length was grouped with the primary growth traits in cluster 1, whereas in E2 it was clustered
with the mean internode length in cluster 3. In fact, a high positive correlation was found be-
tween GU length and number of internodes in E1. This correlation was weaker under E2 and
GU length appeared to be strongly correlated to the mean internode length (S2 Table).

Discussion
In the present study, our objective was to determine the relative contributions of genotype, en-
vironment and GxE interaction to variation in architectural traits in a segregating olive popula-
tion. As previously recommended by [35], ontogenetic factors i.e. year of growth and/or
branching orders were taken into account in the quantitative genetics analysis. Observing only
two replicates per genotype in each site could be considered as a limiting factor in estimating

Table 5. Correlations among variables and PCs across andwithin environments (The highest contribution of variables to PCs are indicated in
bold whereas differences in variables contribution to PCs between E1 and E2 are underlined).

Scale Variables MFA analysis

across environments E1 E2

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Tr_Bdiam 0.63 -0.19 0.01 0.54 -0.02 0.05 0.71 -0.37 -0.05

H 0.64 -0.29 0.18 0.55 -0.29 0.29 0.73 -0.30 0.05

Whole tree V 0.87 -0.38 -0.23 0.84 -0.34 -0.30 0.90 -0.43 -0.15

B_area 0.81 -0.35 -0.36 0.74 -0.29 -0.49 0.87 -0.42 -0.20

Proj 0.82 -0.34 -0.33 0.77 -0.27 -0.46 0.87 -0.41 -0.17

Nb_IN 0.44 0.54 0.05 0.53 0.59 0.03 0.35 0.50 0.09

L 0.51 0.10 0.55 0.57 0.32 0.56 0.45 -0.12 0.55

Nb_AS 0.47 0.84 -0.01 0.49 0.87 -0.03 0.45 0.81 0.02

Growth Units Nb_L 0.47 0.55 0.23 0.53 0.53 0.25 0.41 0.56 0.20

Nb_M 0.19 0.66 0.01 0.23 0.70 0.02 0.16 0.62 -0.01

Nb_S 0.39 0.69 -0.14 0.37 0.69 -0.19 0.40 0.68 -0.09

IN_Max 0.21 -0.23 0.58 0.10 -0.25 0.67 0.31 -0.22 0.49

Mean_INL 0.23 -0.33 0.73 0.08 -0.39 0.73 0.36 -0.27 0.75

doi:10.1371/journal.pone.0127539.t005
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the genetic effect. However, the balanced experimental design that was used (i.e. an equal num-
ber of tree replicates in the two-site analysis) gives unbiased estimator of population mean and
avoid the loss of variance estimation efficiency by a sampling or design factor which could in-
crease the error terms [50]. Moreover, the increasing structural complexity of the olive tree
over years would have made describing a larger number of genotypes hard to manage. Despite
the fact that mixed modelling is particularly recommended for unbalanced data, missing data
is still difficult to handle for complex models including several fixed effects and random
interaction effects.

Combined effects of environment and tree management enhanced tree
growth in E1
In the studied olive progeny, most traits related to whole tree form and growth unit topology
and geometry were significantly impacted by the environment, which also correspond in our
case to a site effect. For each site, environmental conditions were characterized by seasonal var-
iation in daily air temperature, humidity and precipitation only. Considering detailed

Fig 3. Progenies position in principle component analysis (PCA). Dim 1: whole tree form variables; Dim
2: Primary growth and branching variables; Dim 3: Internode lengthening variables. Group 1: high tree
volume and high internode length; Group 2: medium tree volume with high primary growth and branching;
Group 3: low tree volume, GU length and internode length, with medium branching and internode number;
Group 4: low tree volume, primary growth, branching and internode length; Group 5: High tree volume and
GU length, with low internode length and branching.

doi:10.1371/journal.pone.0127539.g003
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information on the seasonality of additional key environmental drivers such as vapor pressure
deficit (VPD) and soil water content as well as field micro environment could be valuable to
further investigate the environmental effect. Given that trees were irrigated at both Montpellier
(E1) and Cordoba (E2) sites in order to allow a non-limiting growth, we can presume that the
major sources of environmental variability in our study were the air temperature and VPD.
However, this climatic effect cannot fully be distinguished from other factors such as soil com-
position and tree management differences between sites. Indeed, trees were trained as single
trunk after plantation in E2 where plantation density was the highest. In contrast young trees
were cut back to 50 cm in E1, which may have enhanced growth in a combined way with
favourable climatic conditions. Distinguishing factor effects is a tricky issue in most outdoors
GxE experiments [51].

Whatever the source of this variation, trees exhibited growth limitation in Cordoba (E2)
which resulted in a restricted, narrower phenotypic space in E2 than in E1. Without underesti-
mating the effect of tree management, we can suspect that growth limitation was also due to
hot and dry weather in orchard conditions in E2, where photosynthetic capacity and stomatal
conductance response have been shown to parallel changes in soil water content and

Fig 4. Duale Multiple factor analysis (DMFA).Within-environment structure: Points display the covariation
between phenotypic trait and PCs. Giving that PCs are not orthogonal, ellipses show the quality of the traits
representation on the PCs plane. ‘Corr’ is the coefficient of correlation between PCs. (a-c) Structure of the
phenotypic space in E1. (d-f) Structure of the phenotypic space in E2. (See Table 1 for variable definitions)

doi:10.1371/journal.pone.0127539.g004

Fig 5. Unrooted trees based on the Euclidean distance and the minimum variance algorithm. (a)
variables related to the overall tree form (b) variables related to the GUs growth and branching and internode
lengthening variables.Variables in blue were recorded in E1 (Montpellier) and those in purple were recorded
in E2 (Cordoba).

doi:10.1371/journal.pone.0127539.g005
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temperature [52,53]. Limiting organs growth expansion and stopping morphogenesis are also
considered as adaptations to high irradiances and prolonged extreme air temperature and in-
creased VPD [54]. Knowing that organ growth is tightly linked to carbon (C) availability, the
observed growth reduction under Cordoba’s conditions could be caused by energy deprivation
through a weakening of various mechanisms of use of C compounds (i.e. energy supply to
highly consuming meristematic regions [55], cell wall [56], osmotica for turgor maintenance in
expanding cells [57] and signal molecules for triggering developmental or metabolic processes
[58]. Trees experiencing heat stress undergo structural and biochemical changes in their leaves
properties too with a reduction in nitrogen concentration as well as nitrogen-use efficiency.
Thus, trees adapt to prolonged high temperatures by developing small thick leaves and maxi-
mizing dissipation of latent heat through stomatal aperture adjustment [59]. It would thus be
of interest to perform comparative measurements on leaf morphology and functioning in both
Cordoba and Montpellier. Lastly, growth reduction could also result from a non-optimal water
transport in Cordoba’s conditions. In fact, temperature has been shown to affect root and
shoot hydraulic conductance mostly by changing water viscosity [60].

Ontogenetic growth variation during tree establishment were preserved
in both sites
Traits related to whole tree form and growth unit topology and geometry were significantly im-
pacted by ontogenetic effects (i.e. significant effects of the year of growth and/or branching
order). The number of short GU laterals was also significantly impacted by an interaction be-
tween genotype and branching order. This suggests higher changes in mean values and vari-
ance between orders than between years. It must be noticed that our experimental design did
not allow us to separate tree age from climatic year effect as previously proposed by [8].

Trees architectural components showed similar ontogenetic variation in both sites during
the three first years of growth. In spite of the predictability of the observed ontogenetic decrease
in primary growth and branching traits at growth units scale as well as the global increase in
trees volume, trees were able to tolerate the variation in their environment through growth
plasticity without altering their internal structure of architectural traits co-variation. These
findings confirm that at an early stage of tree development, young tree structure establishment
follows intrinsic organization rules which appear to be generic [5] and suggests that the struc-
ture of architectural phenotypic space is well conserved among environments [43]. However,
GU at the tree periphery, composed of about 10 nodes and 20 cm in both environment, and
which can be interpreted as the minimal unit in the tree [5], were observed sooner during tree
development in Cordoba than in Montpellier. This suggests that the more constraining the cli-
matic conditions, the quicker the tree is ageing.

Young olive tree growth is affected by GxE interaction at whole tree
scale
It is remarkable that all studied primary growth and branching traits were not affected by GxE
interaction effect whereas more integrated traits at whole tree scale, such as trunk height and
basal diameter, were mainly impacted by this interaction. This result shows that the variability
observed between sites on local mechanisms such as growth unit lengthening and branching is
negligible compared to that observed within the trees (i.e. year and order effects previously dis-
cussed) or over time on more global variables. This suggests that the reduction of traits mean
values observed in Cordoba (E2), was almost similar among progenies and that there was no
adaptability of these traits to specific environments. Such a low adaptation has been previously
underlined for some horticultural crops by [15]. By contrast, significant GxE effect was
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observed on more integrated traits, suggesting that environmental effects that are not detect-
able at local scales require to be cumulated over time to become significant. These results are
consistent with previous ones on adult forest trees growth and stem characteristics i.e. stem di-
ameter, branch size and trunk height [26,27,21] as well as pea canopy traits i.e. internode
length, length of the main stem to the first flower, the number of basal branches and the num-
ber of nodes to the first flower [61]. These studies were mostly integrated in breeding programs
with multi-site trials involving multiple adult families which could generate a large variability
for GxE assessment. However, given the tree management differences between sites, the signifi-
cant GxE effect revealed for whole tree form traits could also result from different trunk train-
ing at plantation. Deepening the GxE interaction in other progenies and core-collections of
olive tree in international, multi-environment and collaborative experiments, as proposed in
[62], could constitute a natural prolongation of this study.

Overall tree form and internode lengthening are genetically controlled
In this study, the genetic variability and parameters were obtained on a single F1 progeny only.
Therefore, the results might not reflect genetic variation that could be present in other proge-
nies or in a broad genetic base population. Considering whole tree form traits, the highest heri-
tability value was found for the tree volume, which is consistent with previous observations,
showing that the global variables are suitable for capturing genetic effects [35]. However, the
trunk height appeared to be not significantly impacted by the genotype effect. This result differs
from that found on the same character observed over the first five years of growth in E1 loca-
tion, revealing a highly significant effect of both genotype and year of growth [35]. The ob-
served variance of most primary growth and branching traits was not explained by the genetic
factor and measurements on consecutive years and branching orders were independent. In
fact, only the total number of axillary shoots and those of short length appeared under a weak
genetic control. These results confirm that metamers appearance is a process sensitive to envi-
ronmental variation leading to architectural plasticity in young olive trees [63,8]. It also sup-
ports the idea that considering topological and geometrical variables at intermediate scales (i.e.
growth units and annual shoot) is not appropriate for capturing the genetic foundation of
growth and branching habit during the first years of growth [35]. Yet, the differential orchard
management in E1 and E2 could have increased artificially the overall phenotypic variability,
but not the genetic variability, leading to underestimation of heritability. Interestingly, inter-
node length variables (i.e. IN_Max and Mean_INL) were mainly genetically determined and
showed stability across environments. These results confirm the genetic control of the inter-
node lengthening process as previously proposed by [35] and suggests that only the type of
growth units produced by a meristem vary from year to year according to endogenous and ex-
ogenous factors. As leaves separators, shoot internodes play an important role in optimizing
water conductance and light interception [60,64,65]. Maintaining stable internode length could
allow preserving a balance between an optimized hydraulic efficiency and a mechanical stabili-
ty [66]. As nodal diaphragms sustain internodal walls against lateral contraction, they increase
the stiffness of shoots and maintain their stature [67,68]. Lastly, the strong genetic control of
internode length strengthens the relevance of such traits for breeding programs. The impor-
tance of internode length for breeding has been underlined in various woody and annual spe-
cies—Coffea [69], Radiata pine [70],Wheat [71,72], Rice [73], Pea [61]. In vase-trained olive
trees, it is crucial to control the canopy shape and density which affects mechanical harvesting
and depends on the interaction among the length of the internodes, the number and vigour of
the shoots and the size of the leaves [74,75]. For hedgerow-trained olives, cultivars with low in-
ternode length are necessary to have high productivity in low canopy volume [76,77].
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Therefore, internode length may be of interest when breeding for suitability to different grow-
ing systems in olive. In fact, significant differences among olive progenies have been reported
for internode length [34]. Since internode lengthening traits are controlled by genetics and are
so important for overall tree architecture, they constitute good candidates for breeding elite
cultivars using molecular markers.
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