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Abstract: We propose surface acoustic wave (SAW) resonators as a complementary tool 

for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic 

and organic substances on a substrate the moment this substrate comes into contact with a 

liquid phase. In the case of implant insertion, for instance, initial protein adsorption is 

required to start wound healing, but it will also trigger immune reactions leading to 

inflammatory responses. The control of the initial protein adsorption would allow to 

promote the healing process and to suppress adverse immune reactions. Methods to 

investigate these adsorption processes are available, but it remains difficult to translate 

measurement results into actual protein binding events. Biosensor transducers allow  

user-friendly investigation of protein adsorption on different surfaces. The combination of 

several transduction principles leads to complementary results, allowing a more 

comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a 

novel complementary tool for time-resolved conditioning film monitoring. SAW 

resonators were coated with polymers. The adsorption of the plasma proteins human serum 
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albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. 

Frequency results were compared with quartz crystal microbalance (QCM) sensor 

measurements, which confirmed the suitability of the SAW resonators for this application. 

Keywords: surface acoustic wave (SAW); two-port resonator; conditioning film; human 

serum albumin (HSA); fibrinogen; plasma protein; implants; quartz crystal microbalance 

(QCM-D); polymer 

 

1. Introduction 

Biofilms are aggregates of microorganisms that can be found ubiquitously at interfaces as long a 

sufficient amount of humidity is provided. They occur in a wide variety of manifestations, ranging 

from beneficial biofilms in biotechnological processes to harmful biofilms in technical systems leading 

to biofouling. Though biofilms are a common phenomenon, they are not yet fully controllable and 

therefore still a topic of investigation [1–3]. Biofilm-related research includes the topic of conditioning 

films. The moment an interface is formed, for instance, when a substratum comes into contact with an 

aqueous fluid, inorganic, organic, and macromolecular substances will adsorb on the substratum 

surface forming the conditioning film. Such a film will alter the physico-chemical properties of the 

substrate surface. Furthermore, conditioning films comprising proteins may offer additional receptor 

sites for microorganisms to bind. As a result, initial conditioning layers greatly influence the adherence 

of subsequently adsorbing microorganisms, whereas conditioning film formation itself strongly 

depends on the underlying substratum material [4–8]. Therefore, it is necessary that methods 

investigating conditioning film formation allow the application of a variety of coatings, representing 

the respective substrata. Furthermore, time-resolved monitoring of the molecular deposition, as well as 

a fluidic handling system for in situ measurements, would be advantageous.  

As depicted above, proteinaceous films are of special interest as they may add biological 

functionality to the substratum. In the first step of implant surgery, for instance, blood proteins adsorb 

spontaneously on the implant surface. This starts the wound healing process, but also adverse immune 

reactions leading to inflammatory responses. Hence, a means to promote the former and suppress the 

latter would be the control of the initial protein adsorption [4,5,9–11]. The most abundant blood 

protein at a concentration of 35–53 mg/mL is human serum albumin (HSA). Physiological conditions 

provided, HSA is an approximately globular (“heart-shaped”) protein with a molecular weight (MW) 

of 66 kDa. Albumin adsorption typically results in dense single layers. Another important blood 

protein is fibrinogen. Occurring at plasma concentrations in the range of 1.5–4.5 mg/mL it is the most 

abundant plasma protein taking part in the coagulation cascade. Fibrinogen is described as an 

elongated molecule with a MW of 340 kDa. The elongated structure allows more variations in the 

molecular orientation on the surface than a globular structure as found, e.g., for HSA [12–18]. 

However, protein adsorption depends not only on the protein itself but also on external parameters, 

such as physical and chemical properties of the substrate surface, as well as composition (including 

pH) of the surrounding medium. Therefore, in most cases, results obtained with a specific protein  

(or protein mixture) on a specific surface in a specific medium cannot be readily transferred to another 
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protein (mixture) or surface or medium. Instead, it is necessary to investigate protein adsorption on the 

surface and the medium in question individually [17–19]. 

User-friendly methods for time-resolved monitoring of protein adsorption on substrata are readily 

available as detectors used in biosensor setups. Biosensors are integrated receptor-transducer devices 

used to detect a variety of analytes, including proteins. Furthermore, biosensor setups typically are 

accompanied by a fluidic system allowing the controlled handling of liquid samples. For protein 

adsorption in terms of conditioning film monitoring on a specific substrate, the receptor coating of the 

transducer would be redundant; instead, a coating with substratum material will be required. Most 

commonly used biosensor detectors are based on electrochemical, optical, and acoustic transduction 

principles [20,21]. In the case of conditional film monitoring, optical and particularly acoustic 

transducers enable a greater variety of coatings, which do not interfere with the transduction principle 

than electrochemical transducers. Hence, sensor setups reported for in situ proteinaceous conditioning  

film monitoring, thus far, are mainly based on surface plasmon resonance (SPR) and quartz crystal 

microbalance (QCM) [10,13,22,23]. Regarding the evaluation of sensor signals, it has to be considered 

that they usually result from a sum of events on the surface, such as molecular binding or conformation 

change. Consequently, such a sensor signal cannot be correlated with a single type of event only. As 

different sensors respond to different effects, a combination of several transduction principles should 

result in complementary information, allowing a more comprehensive characterization of the 

adsorbing protein layer. This has been shown, for instance, by combining QCM with optical 

waveguide lightmode spectroscopy (OWLS) and ellipsometry and by combining SPR, QCM, surface 

acoustic wave (SAW), and atomic force microscopy (AFM) for time-resolved in situ investigation of 

protein adsorption on Teflon AF, TiO2, and hydrophobized gold [14,24,25].  

QCM sensor setups are widely available as QCM-D setups, i.e., QCM with dissipation monitoring. 

This setup allows two independent signal readouts at the same time: frequency, which is linked to the 

mass of the adsorbed layer, and dissipation, which is linked to the viscoelastic properties of the layer 

and, thus, with the conformation of the adsorbed molecules included [26,27]. Similar to that, SAW 

sensor setups are available which read out both phase, which is mainly linked to the layer mass, and 

amplitude, which is linked to the layer viscoelasticity. The acoustic energy of SAW sensors is  

strongly confined at the surface of the devices. Therefore, the SAW is potentially very sensitive 

towards changing influences on the surface, such as mass loading as well as changes in viscosity and 

viscoelasticity [28–31]. SAW sensor frequencies are also more susceptible to temperature changes than 

QCM sensor frequencies, because the temperature coefficients of frequency (TCF) of the SAW sensor 

substrates (e.g., ST-cut quartz, LiTaO3, LiNbO3) are higher than the TCF of AT-cut quartz, which is 

typically used as QCM sensor substrate. However, this can be overcome by additional SiO2 layers, 

which reduce the TCF, or by an appropriate external thermostatic control [26,32–34]. Furthermore, 

resonance frequencies of SAW devices are usually higher than those of QCMs. This is particularly 

advantageous, because the mass sensitivity increases with increasing resonance frequency. Finally, 

being commonly produced using lithography and subsequent metal deposition, SAW sensor devices 

are compatible to mass production which typically minimizes production costs. SAW devices have 

proven to be suitable as cheap and disposable sensor elements. SAW sensor arrays guiding liquid 

samples across a set of different surfaces have recently been introduced [31,35–37]. 
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Most SAW devices presented to the scientific community are delay line devices (Figure 1a). Since 

the SAW has to travel a comparatively long distance on the surface of these devices, which is usually 

equipped with sealing elements to keep the transducers separated from passing fluids, uncoated delay 

line devices usually suffer from high insertion losses. Therefore, these devices are often coated with a 

wave-guiding layer to obtain Love mode devices with decreased insertion loss. As delay line devices 

do not feature a single defined resonance frequency, they are typically evaluated by detection of phase 

and amplitude shift, as mentioned before, which requires a more complex electronic setup. SAW 

resonators (Figure 1b), on the other hand, produce surface waves similar to surface transverse waves 

(STW), because the reflective fingers act as a mass grating, which guides the SAW on the substrate 

surface. The resonator design typically requires complete immersion in the liquid channel, including 

the transducers. Still, compared to a classical delay line setup, SAW resonators feature smaller insertion 

losses and, hence, can be used without additional wave-guiding layers. Furthermore, SAW resonators 

provide very distinct and sharp resonances. Therefore, the detection of the resonance frequency is 

easily achievable with simple and economical electronic setups, such as oscillators [28,31,38]. 

 

Figure 1. SAW sensor configurations (a) delay line (b) resonator (two-port). 

In this work, SAW resonators have been used for monitoring plasma protein adsorption—as part of 

the proteinaceous conditioning film formation—on polymers. Plasma proteins were HSA and fibrinogen. 

Polymers were parylene C (poly(2-chloro-p-xylylene)), polymethyl methacrylate (PMMA), and 

polystyrene (PS). These polymers served as examples for an implant coating material (parylene C), for 

components of intraocular lenses, dental fillings, and bone cement (PMMA), as well as standard 

surfaces for protein adsorption studies (PS) [13,39–43]. In the first part of this work, the adsorption of 

HSA and fibrinogen was monitored with parylene C coated SAW resonators. The frequency responses 

were compared with those obtained with parylene C coated QCM sensors to show that additional 

information was obtained using another acoustic sensor. Furthermore, SAW resonators were coated 

with PMMA and PS for use in HSA adsorption measurements to show the general suitability of SAW 

resonators for monitoring proteinaceous conditioning film formation on polymers.  

2. Experimental Section  

2.1. SAW Resonator (Sensor) Measurement Setup 

Shear horizontal SAW resonators type SR062 were delivered by SAW Components, Dresden, 

Germany. The resonators were based on small (4 mm × 4 mm) 36°YX-LiTaO3 devices with gold 

transducers (Figure 2). The acoustic aperture of the IDTs was 0.2 mm. The frequency of operation 

determined in PBS was 426.4 MHz. SAW measurements were performed in an oscillator circuit 

developed in-house with the SAW resonator sensor as frequency-determining element as described 

earlier [44]. The phase was set by selecting an appropriate drive voltage via a capacity diode. 
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Resonator frequencies were determined as difference frequencies relative to a reference resonator 

oscillating permanently at 433.9 MHz while the phase was kept constant. The frequency resolution 

was 1 Hz. For the sake of clarity, SAW resonator measurements were plotted to start at 0 Hz instead of 

starting at the actual difference frequency.  

 

Figure 2. SAW resonator type SR062 consisting of LiTaO3 substrate with gold transducers.  

A flow cell was designed (Figure 3) in which the SAW resonator device was mounted, face down, 

onto isolated contact pads on the electronic board and coupled capacitively to the driving electronics. 

The circuit board and driving electronics were interfaced by two standard SMA connectors for input 

and output signals. A flow channel in between the contact pads allowed guiding liquids along the 

active structure of the SAW resonator (Figure 3a). Channel dimensions were 4 mm (length) × 0.601 

mm (width) × 0.569 mm (depth), resulting in an effective sample volume above the sensor of 1.4 µL. 

The SAW resonator is sealed by closing the flow cell’s cover providing a rubber seal. Hollow screws 

guiding polytetrafluoroethylene (PTFE) tubes were used as connections to the fluidics (Figure 3b). 

 

Figure 3. Flow cell connecting the SAW resonator to the driving electronics and the 

peripheral fluidic system. (a) Open flow cell (top view), without cover; (b) Flow cell 

closed with cover (side view). 
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Protein binding experiments were performed by means of a flow injection analysis (FIA) system, as 

depicted in Figure 4. The FIA system was equipped with a two-channel peristaltic pump (Ismatec, 

Wertheim, Germany), a six-port sample injection valve (Besta-Technik, Wilhelmsfeld, Germany), and 

two flow cells with integrated SAW resonator devices. One flow cell was used for the protein binding 

measurements (Figure 4, flow cell “measurement”), the other was sampled with carrier medium only 

and served as reference (Figure 4, flow cell “reference”). PTFE tubes served as sample loop, V = 5 mL, 

and as connections between single components. The injection valve allowed switching between load 

and inject modes. In the load mode (Figure 4, valve mode “solid lines”), carrier medium (buffer) was 

driven by a pump through the measurement cell, while the sample loop was loaded with sample 

(protein solution) by means of a syringe. During the inject mode (Figure 4, valve mode “dotted lines”), 

the content of the sample loop was moved by the carrier medium through the measurement cell and, 

hence, across the SAW resonator.  

 

Figure 4. Flow injection analysis system for the SAW resonator measurement setup. 

Carrier medium was driven by a pump through the reference flow cell or through a valve 

connected with the measurement flow cell. The solid lines in the valve represent the load 

mode, in which the sample loop is loaded while the measurement cell is rinsed with carrier 

medium. The dotted lines represent the inject mode in which the carrier medium moves the 

sample through the measurement cell. 

Additionally, for protein adsorption tests on various polymers a similar FIA system as shown in 

Figure 4 was applied, but with a smaller sample loop (V = 0.2 mL) and without a reference cell. 

2.2. QCM Sensor Measurement Setup 

QCM sensors were based on AT-cut quartz crystals (diameter: 14 mm), sandwiched between a pair 

of gold electrodes, and a frequency of operation of 4.95 MHz (type QSX 301, Q-Sense). QCM sensor 

measurements were performed with a commercial QCM-D instrument, Q-Sense E4, which was 

purchased from LOT-Oriel, Darmstadt, Germany. Resonance frequencies and dissipation shown in the 
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following were recorded at the third overtone. For the sake of clarity, QCM sensor measurements were 

plotted to start at 0 Hz instead of starting at the actual resonance frequency.  

Protein binding experiments were performed by means of a flow system as depicted in Figure 5. 

Three flow cells (flow modules type QFM 401, Q-Sense) were used in parallel, each one containing  

a QCM sensor. The effective sample volume above each sensor was specified as ~40 µL by the 

manufacturer. PTFE tubes served as connections between single components. Solutions were driven by 

an external four-channel peristaltic pump (Ismatec, Wertheim, Germany) through the flow cells and, hence, 

across the sensors (Figure 5, flow cells “sensor 1/2/3”). To switch between carrier medium (buffer) and 

sample (protein solution), the pump was stopped and the inlet tubes put in the respective reservoir. 

 

Figure 5. Flow system used for the QCM sensor measurement setup. Either carrier 

medium or sample was driven by a pump through the flow cells. 

2.3. Polymer Coatings and Contact Angle Measurements 

SAW resonator sensors and QCM sensors were coated with 0.1 µm parylene C by chemical vapor 

deposition (CVD) using a commercial parylene deposition system (type Labcoater 1, PDS 2010; 

purchased from Specialty Coating Systems, Indianapolis, IN, USA). Within this process, parylene C 

dimer (di(2-chloro-p-xylylene)) was sublimated and subsequently pyrolyzed at 690 °C. The resulting 

monomer spontaneously polymerizes on the sensor surfaces provided in a vacuum chamber at room 

temperature forming solvent-free thin films of high packing density and low internal stresses. The 

process has earlier been described in detail [45,46]. 

Polymethyl methacrylate (PMMA, Mr 550,000; purchased from Alfa Aesar, Karlsruhe, Germany) 

and polystyrene (PS, multiwell plate lids; purchased from VWR, Bruchsal, Germany) coatings of 

SAW resonators were made by using a spin coater (type WS-400-6NPP-LITE; purchased from 

Laurell, North Wales, PA, USA) and toluene solutions of the respective polymer. Parameters for the 

spin coating procedure are summarized in Table 1. To allow remaining solvent residues to evaporate, 

spin coated SAW resonators were used for protein adsorption experiments not until the next day.  
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Table 1. Spin coating parameters for PMMA and PS layers.  

Spin Coating Parameter PMMA PS 

Polymer concentration in toluene [mg/mL] 0.1 10 
Rotation speed [rpm] 5000 1500 
Rotation time [min] 3 2 

Acceleration step [a. u.] 10 (highest) 10 (highest) 

Contact angle measurements were performed by the sessile drop method using a contact angle 

measurement microscope (type 20668; purchased from Erma, Tokyo, Japan). 

2.4. Protein Adsorption Measurements for Conditioning Film Monitoring 

Carrier medium was phosphate buffered saline (PBS), pH 7.4, ionic strength 0.15 M, representing 

physiological conditions. PBS was prepared from tablets (Sigma-Aldrich, Taufkirchen, Germany), 

which were dissolved in distilled water according to the manufacturer’s instructions. Protein samples 

contained HSA, fraction V, MW 66 kDa (VWR, Bruchsal, Germany), or fibrinogen from human 

plasma, MW 340 kDa (Sigma-Aldrich, Taufkirchen, Germany). The proteins were dissolved in the 

carrier medium at a concentration of 250 µg/mL or 1 mg/mL.  

Measurements were performed at room temperature. The polymer-coated sensors were inserted in 

the flow cells of the respective measurement setups and rinsed with carrier medium. The flow rate was 

set to 0.05 mL/min. The continuous flow ensured a constant temperature in the flow cells and, hence,  

of the sensors. When a stable baseline signal was obtained, the protein sample was applied on the 

sensor surface by the respective fluidic system, as described above. The SAW resonator measurement 

setup was operated with a sample injection interval of 1–76 min (5 mL sample loop) or 1–5 min  

(0.2 mL sample loop). The QCM sensor measurement setup was operated with a sampling interval of  

3–103 min. Each protein adsorption experiment was performed with a separate sensor. In between the 

measurements, the PTFE tubings were thoroughly rinsed with distilled water, 1 M hydrochloric acid 

(Sigma-Aldrich, Taufkirchen, Germany), and 1% (v/v) Hellmanex II (Hellma Analytics, Müllheim, 

Germany) solution.  

3. Results and Discussion 

3.1. Conditioning Film Formation on Parylene C: Adsorption of Plasma Proteins  

The adsorption of the plasma proteins HSA and fibrinogen on parylene C was monitored with 

parylene C coated SAW resonator sensors (Figure 6) as well as with parylene C coated QCM sensors 

(Figure 7). The SAW resonators and the QCM sensors showed opposite frequency signal responses 

resulting from protein adsorbing on the sensor surface. This contrast is mainly based on the difference 

in the signal output: The mass increase on the acoustic sensors’ surface leads to a decrease of the 

resonance frequency. This is directly shown by the QCM sensor signals (Figure 7a). As the SAW 

resonator frequencies are determined as difference frequencies relative to a reference resonator 

oscillating at a higher frequency (see Section 2.1), the mass increase here results in increasing 

difference frequencies (Figure 6, red and blue curves). The reference resonators included in the SAW 
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resonator measurement setup were in contact with carrier medium PBS only. They showed no signal 

change linked to sample injection (Figure 6, gray curves), which confirmed that the signal increase 

observed with the measurement resonators resulted from adsorption of proteins present in the 

respective samples.  

 

Figure 6. Conditioning film monitoring with SAW resonators coated with parylene C: 

Adsorption of plasma proteins HSA (red curves) and fibrinogen (blue curves). Samples 

contained 250 µg/mL protein in PBS and were injected into a PBS carrier stream. Injection 

started 1 min after start of the measurement (see arrow). Gray curves represent the signals 

obtained with the reference resonators, which were rinsed with carrier medium PBS 

throughout the complete measurement. 

 

Figure 7. Conditioning film monitoring with QCM sensors coated with parylene C: 

Adsorption of plasma proteins HSA (red curves) and fibrinogen (blue curves). Samples 

contained 250 µg/mL protein in PBS. The PBS carrier stream was switched to sample 

solution 3 min after start of the measurement (see arrow). (a) Frequency; (b) Dissipation. 

Table 2 summarizes frequency shifts obtained with parylene C coated SAW resonators and QCM 

sensors after adsorption of the plasma proteins HSA and fibrinogen in PBS (see Figures 6 and 7a). The 

frequency shifts were determined as mean frequency in the last minute of the respective adsorption 

interval. Furthermore, in the time interval prior to fibrinogen adsorption, the noise amplitudes of the 
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sensors were determined. With the frequency shift obtained by protein adsorption set as signal 

amplitude, the respective signal-to-noise ratio (S/N ratio) was calculated as ratio of signal amplitude to 

noise amplitude. HSA adsorption on parylene C coated sensors resulted in S/N ratios of 158 (SAW 

resonator) and 169 (QCM sensor); fibrinogen adsorption resulted in S/N ratios of 1524 (SAW 

resonator) and 396 (QCM sensor). Based on these data S/N ratios obtained with SAW resonators are 

comparable with those obtained with QCM sensors or may also be higher, depending on the protein. 

Table 2. Frequency shifts Δf obtained by adsorption of HSA and fibrinogen, c = 250 

µg/mL, in PBS on parylene C coated SAW resonators (f0 = 426.4 MHz) and QCM sensors  

(f0 = 4.95 MHz). Each protein was tested three times using a separate sensor for each 

experiment. The noise amplitudes were determined in the respective time interval prior to 

fibrinogen adsorption. 

Adsorbed 

Protein 

SAW Resonator  

Difference Frequency Shift 

QCM Sensor  

Frequency Shift 

Δf [kHz] Δf/f0 [ppm] Δf [Hz] Δf/f0 [ppm] 
HSA  12.6 ± 2.3 29.5 ± 5.3 −54.2 ± 2.3 −10.9 ± 0.5 

Fibrinogen  121.9 ± 11.9 285.9 ± 27.9 −126.7 ± 2.4 −25.6 ± 0.5 

None Noise: 0.08 ± 0.02 Noise: 0.19 ± 0.04 Noise: 0.32 ± 0.06 Noise: 0.06 ± 0.01 

As depicted above, HSA and fibrinogen adsorption on parylene C coated sensors resulted in 

increasing difference frequencies of the SAW resonators and decreasing frequencies of the QCM 

sensors. Both increase and decrease came to a stop until a plateau was reached, which level was 

maintained till the end of the respective sampling interval. Though the same protein concentration was 

applied as for HSA adsorption, frequency shifts obtained with fibrinogen were higher (according to 

amount) than frequency shifts obtained with HSA. At a first glance this is in accordance with the 

higher molecular weight of fibrinogen (MW 340 kDa) compared to HSA (MW 66 kDa). However, 

while the molecular weight ratio MW(fibrinogen) : MW(HSA) is 5.15, the ratio of the respective SAW 

resonator signals is 9.67 and the ratio of the QCM sensor signals is 2.34, which means that none of the 

signal ratios represent the molecular weight ratio. Instead, the SAW resonator signal ratio is higher, 

and the QCM sensor signal ratio is lower than the molecular weight ratio. It comes as no surprise that 

the frequency ratio of the acoustic sensors is different from the molecular weight ratio, because the 

resonance frequency is influenced by both the protein mass (including water) and the viscoelasticity of 

the adsorbed protein layer. The viscoelasticity in turn is influenced, among others, by the protein 

conformation (depending on size and shape) and orientation on the surface. As the fibrinogen molecule 

is larger than the HSA molecule and elongated instead of almost globular, it is obvious that different 

packaging densities and, hence, viscoelastic properties of the protein layers are obtained, as confirmed 

by dissipation monitoring (Figure 7b). The influence of the viscoelasticity on the acoustic sensor signal 

depends on the type of the acoustic sensor. However, to explain the wide discrepancy between the 

signal ratios fibrinogen: HSA of SAW resonator and QCM sensor, an additional parameter has to be 

taken into account, i.e., changes in the electrical environment influencing the electromechanical 

coupling. This effect can effectively be reduced in QCM sensor setups [32], but it has a high impact on 

the SAW resonator signal response [47]. Dissolving the protein to be investigated in the same buffer as 
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used as carrier medium, as done in this work, helps to minimize such effects if they arise from  

the sample background. At physiological conditions, however, i.e., pH 7.4 and ionic strength  

0.15 M (KCl/NaCl) as used in this work, different net charges have been predicted for the proteins:  

−19 elementary charges for HSA (isoelectric point: 4.7) [48,49] and −8 elementary charges for 

fibrinogen (isoelectric point: 5.8) [17]. Hence, differences in mass and viscoelastic properties of the 

adsorbed protein layers are combined with differences in the electrical environment of the layers, as 

suggested by the SAW resonator measurements. Consequently, the use of both QCM sensor and SAW 

resonator allows a more comprehensive characterization of the adsorbed layer than the use of one of 

these acoustic sensors alone. 

To allow for a better comparison of how HSA and fibrinogen adsorption rates are visualized by 

SAW resonator and QCM sensor measurements, frequencies were normalized to the respective 

maximum values. Figure 8 summarizes the frequencies obtained during the first hour of injection, 

normalized to the respective values obtained at the end of this interval.  

 

Figure 8. Conditioning film monitoring with (a) SAW resonators and (b) QCM sensors 

coated with parylene C: normalized frequency curves (dashed lines) obtained by adsorption 

of plasma proteins HSA (red curves) and fibrinogen (blue curves). Solid lines represent 

average curves. Samples contained 250 µg/mL protein in PBS. The PBS carrier stream was 

switched to sample solution (a) 1 min and (b) 3 min after start of the measurement  

(see arrows).  

Both SAW resonator and QCM sensor measurements show significantly steeper normalized 

frequency curves for fibrinogen (Figure 8, blue curves) than for HSA (Figure 8, red curves), i.e., 

fibrinogen adsorbs more rapidly than HSA on the parylene C coated surfaces. This is in agreement 

with earlier investigations on protein adsorption on hydrophobic surfaces [15,23]. Remaining 

discrepancies between normalized SAW resonator and QCM sensor frequencies result from 

differences in the fluidic setups and, hence, measurement protocols; details see “Experimental 

Section”. The SAW resonator measurement setup was realized with reduced tube connections and flow 

channel dimensions compared to the QCM sensor measurement setup. As a result, SAW resonator 

signals increased earlier and with a higher slope after start of injection compared to the respective 

QCM frequency curves.  
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3.2. Conditioning Film Formation on Polymers: Adsorption of HSA on Parylene C, PMMA, and PS 

SAW resonators were coated with the polymers parylene C, PMMA, and PS. Static water contact 

angles on the polymer coated SAW resonators were determined to verify the quality of the coating  

(Table 3). The water contact angles obtained with the polymer coatings were in agreement with contact 

angles published earlier on similar surfaces. Furthermore, all contact angles obtained with the polymer 

coated SAW resonators were different from the contact angle determined with uncoated resonators. 

This shows that both the CVD coating (parylene C) and the spin coating (PMMA and PS) processes 

were applied successfully for polymer coating of the SAW resonators. 

Table 3. Polymer coated SAW resonators (f0 = 426.4 MHz): Contact angle with water and 

difference frequency shifts Δf obtained by HSA adsorption (n = 4). Samples contained  

1 mg/mL HSA in PBS and were injected into a PBS carrier stream, injection interval:  

1–5 min. Difference frequency shifts of the plateau were determined at the end of the 

injection interval. 

Polymer Contact Angle [°] 
Contact Angle [°] 

in Literature 

Difference Frequency Shift by 
HSA Adsorption 

Δf [kHz] Δf/f0 [ppm] 

none 77.9 ± 0.9 n/a 24.2 ± 5.2 57 ± 12 
Parylene C 85.4 ± 2.2 85.1 ± 1.2 [50] 23.5 ± 2.8 55 ± 7 

PMMA 71.3 ± 1.4 67.8 ± 1.4 [51] 22.3 ± 2.1 52 ± 5 
PS 80.4 ± 3.1 80 [52] 22.0 ± 2.6 52 ± 6 

Uncoated and polymer coated SAW resonators were used to monitor the adsorption of HSA on the 

respective surfaces. HSA adsorption led to similar SAW resonator signal shifts within the standard 

deviation range (Table 3). This is in agreement with the similar water contact angles, which show that 

the polymers provide similar hydrophobic surfaces, because HSA, as most proteins, adsorbs readily on 

hydrophobic surfaces [16,18]. 

4. Conclusions 

In this work, we investigated the suitability of SAW resonators for proteinaceous conditioning film 

monitoring. SAW resonators were successfully coated with polymers by CVD and spin coating 

procedures and could be applied for time-resolved monitoring of plasma protein adsorption. Comparing the 

results obtained with SAW resonators with results obtained with QCM sensors demonstrated that SAW 

resonators provide complementary results, which are beneficial for a comprehensive characterization 

of protein adsorption. Investigation of protein mixtures and real samples with SAW resonators will be 

performed in the next future.  
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