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Abstract: Tunneling nanotubes (TNTs) are thin, F-actin-based membranous protrusions that connect
distant cells and can provide e a novel mechanism for intercellular communication. By establishing
cytoplasmic continuity between interconnected cells, TNTs enable the bidirectional transfer of nuclear
and cytoplasmic cargo, including organelles, nucleic acids, drugs, and pathogenic molecules. TNT-
mediated nucleic acid transfer provides a unique opportunity for donor cells to directly alter the
genome, transcriptome, and metabolome of recipient cells. TNTs have been reported to transport
DNA, mitochondrial DNA, mRNA, viral RNA, and non-coding RNAs, such as miRNA and siRNA.
This mechanism of transfer is observed in physiological as well as pathological conditions, and
has been implicated in the progression of disease. Herein, we provide a concise overview of TNTs’
structure, mechanisms of biogenesis, and the functional effects of TNT-mediated intercellular transfer
of nucleic acid cargo. Furthermore, we highlight the potential translational applications of TNT-
mediated nucleic acid transfer in cancer, immunity, and neurological diseases.
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1. Introduction

The ability of cells to communicate with one another is a prerequisite for multicellular
organisms, and is necessary for the physiological functioning of cellular systems, tissues,
and organisms. In pathophysiological settings, intercellular communication can contribute
to disease onset and progression, as well as to cellular, tissue, or organismal survival in
response to adverse environmental stress. Intercellular communication can occur through
different mechanisms involving both directed, contact-based communication and non-
directed, distant communication, such as through protein or vesicle release [1,2]. Contact-
dependent or juxtacrine signaling can be mediated through tunneling nanotubes (TNTs),
gap junctions, or the binding of a surface-bound ligand to its cognate receptor [2,3]. TNTs
provide directed communication between cells, and comprise membranous connections
that enable the exchange of biological cargo between cells [4,5]. Following their description
in PC12 pheochromocytoma cells by Rustom et al. [6], TNTs have been reported in many
different normal or diseased cells and tissues, and have been implicated in many diverse
biological activities [4,5,7–10].

TNTs are described as tubular extensions between two remote cells composed of
filamentous actin (F-actin), with diameters ranging from 50 to 200 nm, and with maximum
lengths that can span the distance of several cells [4]. A unique functional feature of TNTs
is their ability to transfer different types of cargoes between connected cells [4,10,11]. These
include organelles, pathogens, ions, genetic material, and misfolded proteins [12–17]. TNTs
enable rapid and efficient transfer of these cargoes between cells in a directed manner [18].
Their contribution to functional dynamic multicellular interactions underlies their contri-
bution to cellular and tissue physiology, and subsequent biological roles in physiological
and pathological processes [10,19,20].
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While detailed characterization of the ultrastructure and molecular composition of
TNTs is emerging through the use of advanced imaging technology, there are no unique
or specific markers for TNTs. Studies of TNTs from different cell types and settings reveal
cell-type-specific diversity in structural features such as length, cargo trafficking ability,
and mechanisms of biogenesis [6,11,19,21,22]. Consequently, the defining characteristics of
TNTs have been arbitrary. At present, TNTs can be identified on the basis of morphological
and functional criteria—(1) they are F-actin-based membranous protrusions that connect
at least two cells, (2) enabling the bidirectional transfer of a diverse array of cargo, and (3)
appear to hover above the substratum [21,23].

2. Morphology and Structure of TNTs

Morphological and structural criteria are used for the description of TNTs in vitro.
TNTs are membranous filaments that connect at least two cells and can provide cytoplasmic
continuity. TNT lengths can span several cell diameters, whereas their own diameters
range from 50 to 200 nm [4]. The length and diameter of TNTs differ based on the cells of
origin and their protein constituents. TNTs are predominantly composed of F-actin, but
can also contain other cytoplasmic and cytoskeletal-related proteins, such as tubulin and
microtubules. Their wide heterogeneity in diameter can be partly attributed to the presence
of these other proteins [15,24,25]. TNTs containing these additional cytoskeletal proteins
are commonly referred to as thick TNTs, whereas thin TNTs describe nanotubes comprised
of only F-actin [15]. The non-actin constituents within TNTs may provide structural
support to assist with the long-distance transport of larger cargo, such as organelles or
vesicles [15]. Lastly, TNTs do not attach to the substratum, thereby rendering them sensitive
to mechanical forces.

In vivo studies describe TNTs as thin, actin-based filamentous structures that connect
at least two cells and facilitate the transport of cargo between cells. The TNTs formed
in vivo do not need to establish cytoplasmic continuity between cells to transport cargo. In
the retina, TNTs were found to have one terminal that was continuous with the cytoplasm,
whereas the other terminal was connected to a gap junction [26]. This subtype of TNT,
referred to as closed-end TNTs, has also been observed in T cells in vitro [22].

Ultrastructural features of TNTs detected using cryo-correlative light and electron
microscopy were described in detailed studies of murine CAD and human SH-SY5Y
neuronal cells. Notably, TNTs were shown not to exist as singular hollow tubes, but
rather as structures that contained 2–11 individual TNTs (iTNTs), held together by N-
cadherin. Each iTNT comprised an F-actin bundle arranged in a parallel orientation
and with an average diameter of 123 nm. The TNTs between neuronal cells established
cytoplasmic continuity, enabling bidirectional transfer of cargo between cells. Analysis of
cargo trafficking revealed that the vesicular and organelle cargo could be transferred either
within a single iTNT or within the luminal space between several iTNT units. Intra-iTNT
cargo transport was facilitated by the molecular motor myosin X (Myo10), and appeared to
cause a transient bulging-out of the iTNT [27].

2.1. Mechanisms of TNT Biogenesis and Formation

Several mechanisms have been proposed for TNT formation, and include actin-driven
formation and cell dislodgement [6,19,20,28,29]. Actin-driven TNT formation involves an F-
actin-driven de novo process. This begins with the formation of a filopodia-like protrusion
from the plasma membrane of a donor cell that elongates and eventually fuses with a
neighboring cell, resulting in a TNT. Once an intercellular connection is formed, the cells
can continue to develop additional TNTs with other neighboring cells, thus engendering
a network of interconnected cells [6]. In several studies of TNT-mediated intercellular
communication, treatment of cells with actin inhibitors greatly diminished TNT formation
and subsequent intercellular cargo transfer [25,30,31]. These findings support the F-actin-
driven mechanism of TNT biogenesis.
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Several molecular mediators of de novo actin-driven TNT formation have been de-
scribed [25,32–34]. While the expression of many of the identified mediators was restricted
to myeloid-lineage-derived cells, their ectopic expression in other cell types was suffi-
cient to drive TNT formation [25,32]. One such mediator—leukocyte-specific transcript 1
(LST1)—induced the formation of both thin and thick TNTs through a RelA-dependent
mechanism. Upon recruitment to the plasma membrane, active RelA (RelA-GTP) mediated
the interaction of LST1 with filamin—a protein that has previously been associated with
filopodia formation [35]. Filamin and LST1 were co-localized at the sites of nascent TNT
protrusions, and were also present in fully formed TNTs [25]. Another myeloid-lineage-
specific protein—M-sec—has also been implicated in de novo formation of thin TNTs [32].
Expression of M-sec as well as exocyst complex component Sec3 has been shown to be nec-
essary for TNT-mediated cargo trafficking [32,36,37]. Other molecular mediators identified
as playing a role in de novo TNT formation include myosin X (Myo10) and p53 [33,34].
Knockdown of Myo10 or p53 resulted in a reduction in—but not abolition of—TNT forma-
tion, which implies a redundancy in the functional activities of the proteins involved in
TNT biogenesis [33,38]. The diversity in the molecular mediators responsible for inducing
de novo TNT formation reported in these studies suggests that multiple mechanisms of
TNT biogenesis may exist within a given cell type [11,21].

Cell dislodgement is a different method of TNT formation that has been observed
in vitro [11,15,20]. TNT formation occurs after two cells that were in close contact with
one another become dislodged and move apart, leaving a membrane thread that can
subsequently mature into an actin-supported TNT structure. Cell dislodgement resulting
in TNT formation has been reported in many types of cells, including macrophages, NK
cells, T cells, neuronal cells, and cancer cells [6,15,22,39–41]. Some studies suggest that the
two cells must maintain contact for at least 4 min before dislodging in order for TNTs to be
established [22,39].

These two proposed modes of TNT formation are neither mutually exclusive, nor
exclude other potential mechanisms of biogenesis [11,21]. Other mechanisms contributing
to biogenesis may reflect the stability of tubular structures due to the intrinsic shapes of
phospholipid molecules within biological membranes [29,42]. In some cell types, TNT
biogenesis is achieved exclusively via cell dislodgement; however, in other cell types, TNTs
are established by both actin-driven and cell dislodgement mechanisms [6,40]. Thus, it
is likely that the mechanism of TNT biogenesis may be cell-type-dependent and regu-
lated or influenced by intracellular signaling pathways or paracrine signals present in the
microenvironment.

2.2. Distinguishing TNTs from Other Types of Cell Protrusions

TNTs represent a specific type of cell protrusion. Other types of canonical cell pro-
trusions include filopodia, microvilli, spines, cytonemes, and intercellular bridges [43–46].
While filopodia serve many cellular functions and microvilli are known to increase the
apical surface area for absorption, only the latter three abovementioned cell protrusions
play roles in mediating intercellular communication (Table 1) [47,48]. However, spines
differ from TNTs in that they are found exclusively on neuronal cells, and do not connect
neighboring cells [43]. TNTs resemble a specialized type of filopodia, called cytonemes.
Like TNTs, cytonemes are thin, membranous protrusions composed of F-actin. Cytonemes
facilitate signal transduction by transferring signaling molecules from a donor cell to a
nearby recipient cell [44]. The cytoneme-mediated mechanism of cargo delivery differs
from that of TNTs in that the former does not establish cytoplasmic continuity. TNTs also
resemble intercellular bridges, which form as a result of incomplete cytokinesis [46]. While
the cargo-trafficking ability of intercellular bridges is similar to that of TNTs, intercellular
bridges are restricted to forming homotypic interactions between two cells of the same cell
type [46].

A distinguishing feature of TNTs is their functional ability to transfer cargo of various
types and sizes—including organelles such as mitochondria—and structural continuity
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across the cytoplasm of adjacent cells [49]. However, the use of actin-driven structural or
biogenetic mechanisms is a common feature in the formation of many cell protrusions, and
the specific determinants of formation of TNTs versus other cellular protrusions remain
enigmatic. In addition, it is unclear as to why some cells form open-end TNTs, while other
cells form closed-end TNTs, which lack cytoplasmic continuity between the interconnected
cells; however, both subtypes of TNTs enable cargo transfer [22,26,49].

Table 1. Overview of canonical communicative cell protrusions.

Type of Cell
Protrusion

Mechanism of Cargo
Transfer Identity of Cargo Functional Effects References

Spines N/A N/A

Induce signal
transduction in

neuronal cells; establish
synaptic plasticity

[43]

Cytonemes
Endocytosis of the

receptor–ligand complex by
the recipient cell

Ions and signaling ligands Signal transduction [44,45,50,51]

Intercellular
bridges

Direct transfer by
establishing cytoplasmic

continuity
Nutrients and organelles

Nutrient and organelle
exchange; cell

synchronization.
[46]

TNTs
Direct transfer by

establishing cytoplasmic
continuity

Organelles, nucleic acids,
viruses, proteins, lipids, and

pathogenic molecules

Bidirectional transfer of
biological cargo [52–60]

Abbreviations: TNT, tunneling nanotubes.

2.3. Modulation of TNT Formation

The existing research on TNTs in physiological and pathological conditions demon-
strates that TNT formation is highly sensitive to extracellular environmental stimuli [61,62].
Indeed, TNT formation is greatly augmented by cells exposed to oxidative stress, neurode-
generative oligomers, inflammation, radiation, or trauma, as well as in cells undergoing
apoptosis [63–69]. In fact, the activation of several signaling pathways has been associated
with the stress-induced increase in TNT formation [33,34,62,70]. In addition to enhancing
TNT formation, exposure to certain types of environmental stress also accelerates the cargo
transfer rates [52]. These findings suggest that the TNTs serve to assist cells in adapting to
unfavorable environmental conditions.

3. Role of TNTs in Transferring Nucleic Acids

TNTs provide an important mode of communication between cells by enabling the
bidirectional transfer of intracellular cargo [4,16,18]. This cargo can include organelles,
nucleic acids, lipids, pathogenic molecules, and proteins [55,57–60,71,72]. The transfer of
cargo can occur through direct transfer of cytoplasmic constituents, or through facilitated
transfer of extracellular vesicles [14]. The exchange of functionally active nucleic acid cargo
between interconnected cells by TNTs provides a conduit for a donor cell to genetically
modulate gene and protein expression in recipient cells (Figure 1) [72,73]. TNTs have been
reported to serve as conduits for DNA and RNA, with intercellular transfer demonstrated
for diverse types of nucleic acids, including mRNA, non-coding RNA, viral RNA, and
mtDNA (Table 2) [67,72,74,75]. The transfer of nucleic acids through TNTs is distinct from
other mechanisms of intercellular transfer—such as through apoptotic bodies or extracel-
lular vesicles—in being both directed and bidirectional, as it involves direct cytoplasmic
continuity [74,76,77].
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Figure 1. Functional effects of TNT cargo in recipient cells: The TNT-mediated intercellular transfer
of nucleic acid cargo has diverse biological effects. This phenomenon is observed in physiological
and pathological conditions, and the transfer of cargo can be either bidirectional or unidirectional;
the latter mechanism is observed in the spread of several pathological molecules. Abbreviations: EC,
endothelial cells; miR, micro RNA; mtDNA, mitochondrial DNA; siRNA, small interfering RNA.
TME, tumor microenvironment. This figure was created in BioRender.

Table 2. Intercellular nucleic acid transfer via TNTs.

Donor Cells Recipient Cells Type of Nucleic Acid
Cargo Functional Effects References

Laryngeal squamous-cell
carcinoma (LSCC) cells LSCC cells DNA/siRNA Bidirectional transfer of

DNA and siRNA [54]

Healthy PC12
pheochromocytoma-derived

rat cells

Ultraviolet
(UV)-irradiated PC12

cells
mtDNA/mitochondria

Unidirectional transfer of
mitochondria to

UV-irradiated PC12 cells
[71]

WJ-MSC Patient-derived
fibroblasts mtDNA

Unidirectional transfer of
WT mtDNA to

patient-derived fibroblasts
[78]

MDA-MB-231 breast cancer
cells

Human endothelial
cells (EC) miR-132 Unidirectional transfer of

pro-angiogenic miRNA to EC [74]

K7M2 osteosarcoma cells MC3T3 murine
osteoblast stromal cells miR-19a

Unidirectional transfer of
oncogenic miRNA to stromal

cells
[79]

T24 high-grade human urinary
bladder cancer cells

RT4 low-grade human
urinary bladder cancer miR-155

Promoted bladder cancer cell
reprogramming via

activation of the
DEPTOR-mTOR pathway

[80]
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Table 2. Cont.

Donor Cells Recipient Cells Type of Nucleic Acid
Cargo Functional Effects References

Primary murine smooth
muscle cells

Primary murine
endothelial cells miR-143/145 Cluster Suppressed the angiogenetic

activity of EC [56]

Murine embryonic fibroblasts
(MEF) Transgenic MBS-MEF mRNA Unidirectional transfer of

mRNA to WT MEF [52]

Keratinocytes (KC) Langerhans cells (LC) mRNA Unidirectional transfer of
mRNA from KC to LC [73]

PR8-influenza-virus-
transfected A549 human

alveolar lung epithelial cells
Uninfected A549 cells Viral RNA Spread of viral RNA to

uninfected A549 cells [81]

PRRV-infected MARC-145
monkey kidney cells MARC-145 cells Viral RNA Spread of viral RNA to

uninfected MARC-145 cells [55]

HMPV-infected BEAS-2b
human lung epithelial cells

HMPV-infected
BEAS-2B human lung

epithelial cells
Viral RNA Spread of viral RNA to near

BEAS-2B cells. [82]

Abbreviations: EC, endothelial cells; HMPV, human metapneumovirus; KC, keratinocytes; LC, Langerhans
cells; LSCC, laryngeal squamous-cell carcinoma; MBS, MS2 coat protein (MCP)-binding sequence; MEF, murine
embryonic fibroblasts; miR, micro RNA; mtDNA, mitochondrial DNA; PRRV, porcine respiratory and reproductive
syndrome virus; siRNA, small interfering RNA.

3.1. DNA

In a study using laryngeal squamous-cell carcinoma (LSCC) cells, DAPI-stained
vesicular-like cargo was observed within the membranous tunneling tubes connecting two
LSCC cells. While the identity of the DAPI-stained cargo within the tubular structures was
not elucidated, these observations suggest that nuclear DNA could be translocated into the
cytoplasm and siphoned between interconnected cells [54]. The possibility that DNA could
be directly transferred between cells has important implications for our understanding of
the role of genetic influences on cellular physiology within the tissue microenvironment.
The directed transfer of DNA between cells via TNTs could modulate cell behavior. In
contrast, other modes of transfer of DNA between cells—such as through the release and
subsequent uptake of cell-free DNA, or release within EVs—occur in a non-directed manner,
and may result in non-specific responses.

3.2. Mitochondrial DNA (mtDNA)

The intracellular transfer of mitochondria across cells has long been recognized, and
primarily involves TNT-mediated transfer. Mitochondrial transfer between cells has been
functionally implicated in cellular responses such as treatment resistance and metabolic
plasticity [53,83,84]. Intercellular unidirectional transfer of mitochondria from healthy
PC12 neuronal cells to ultraviolet (UV)-irradiated PC12 cells occurred predominantly
through TNTs. Mitochondrial DNA (mtDNA) in healthy cells was labeled with ethynyl-2′-
deoxyuridine, and was detected within UV-irradiated cells after co-culture. However, it
was not determined whether the transferred mtDNA was extramitochondrial mtDNA, or if
it was contained within the mitochondria [71]. TNT-dependent unidirectional transfer of
mitochondria was also observed between Wharton’s-jelly-derived MSCs (WJMSCs) and
patient-derived fibroblasts bearing a point mutation in the mtDNA (mt3243A∆G). Delivery
of WT WJMSC-derived mitochondria greatly reduced the mutation burden in the recipient
fibroblast cells [78]. The WT mtDNA was detected in the recipient fibroblast cells for
up to 28 days in culture. These observations demonstrate that TNT-mediated transfer of
mitochondria enables the introduction of donor cell mtDNA to recipient cells.
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3.3. Messenger RNA (mRNA)

Intercellular transfer of mRNA has been observed between keratinocytes (KCs) and
Langerhans cells (LCs), resulting in the delivery of KC-specific mRNA transcripts to LCs.
ATAC-sequencing of the recipient cells revealed that the region of chromatin with the KC-
specific genes was transcriptionally silent in LCs, confirming that the mRNA transcripts
had originated from the KCs. The intercellular transfer of mRNA occurred through a
contact-dependent mechanism. Imaging studies revealed networks of TNTs between LCs
and KCs, which suggests that TNTs may serve as a conduit for mRNA transfer [73]. Using
single-molecule fluorescence in situ hybridization, Haimovich et al. showed that a modified
β-actin mRNA transcript bearing a 24-repeat sequence in the 3′ untranslated region could
be transferred via TNTs from donor murine embryonic fibroblasts to recipient cells that
exclusively expressed WT β-actin. It should be noted that the physiological state of the
acceptor cells influenced the rate of mRNA transfer. Following exposure of the acceptor
cells to oxidative stress, protein-folding stress, or serum starvation, mRNA transfer rates
were increased, whereas heat-shock exposure reduced mRNA uptake by the acceptor
cells [52]. Even though the intercellular transfer of mRNA within extracellular vesicles
(EVs) is now increasingly recognized, the finite size constraints of EVs imply that only
smaller transcripts can be transferred within EVs [75,85]. Thus, TNT-mediated mRNA
transfer may provide a more physiological mechanism of intercellular RNA transfer.

3.4. Non-Coding RNA

TNTs have been shown to shuttle microRNA (miRNA) cargo between interconnected
cells. TNT-mediated miRNA transfer is frequently observed in cancer cells, and can elicit
pro-tumorigenic responses in the recipient cells. Several studies have demonstrated the
potential of TNTs to transform the local microenvironment to promote tumor growth. In
breast cancer, cells with a higher metastatic potential were noted to form more intercellular
connections compared with cells with a lower metastatic potential. Nanoscale membrane
bridges between MDA-MB-231 metastatic breast cancer cells and endothelial cells (ECs)
facilitated the transfer of miR-132—a pro-angiogenic miR—to the ECs. Once delivered to
the ECs, miR-132 was functionally active, and modulated the endogenous expression of
a downstream target. The observed nanoscale membrane bridges exhibited cytoplasmic
continuity between interconnected cells, and were composed of F-actin and tubulin—two of
the defining components of TNTs. Pharmacological inhibition of the nanoscale membrane
bridges reduced—but did not abolish—miR-132 levels in the ECs. In the absence of TNTs,
miR-132 was delivered to the ECs via EVs [14]. TNTs between osteosarcoma (OS) cells and
stromal osteoblasts enabled the unidirectional transfer of oncogenic miR-19a to stromal
cells. Heterotypic TNTs have also been observed to form between malignant SKOV3 and
non-malignant ISOE ovarian cancer cells. These TNTs mediated the unidirectional transfer
of miR-199a to ISOE cells. Similarly, high-grade bladder cancer cells transported miR-155 to
low-grade bladder cancer cells in a TNT-dependent manner. Upon receipt, the low-grade
bladder cancer cells exhibited features characteristic of the high-grade cells [80].

TNT-mediated transfer of miRNA can also support the crosstalk between vascular
smooth muscle cells (SMCs) and ECs. Once contact is established between the two cells,
TGF-β is secreted by the EC and internalized by the SMC, which subsequently results
in the differentiation of the SMC. TNTs formed between differentiated SMCs and ECs
enabled the unilateral transfer of the mature miR143/145 cluster to ECs. Upon delivery of
the miRNA cluster, the proliferation and angiogenic activities of the recipient ECs were
suppressed [56]. TNTs can serve as a conduit for non-coding RNA transcripts other than
miRNA. In studies using LSCC cells transfected with fluorophore-labelled double-stranded
siRNA, fluorescently labeled cargo was visible within membranous tunneling tubes, and
began to accumulate in the recipient cells. Notably, these tunneling tube structures had a
closed-end morphology, with one terminal end possessing a gap junction, which served to
regulate the entry of the siRNA construct into the recipient cells. [54].



Int. J. Mol. Sci. 2022, 23, 5487 8 of 13

3.5. Viral RNA

The formation of TNTs has been shown to be enhanced following viral infection of cells
in several reports [55,67,81,82]. TNTs are extremely efficient at spreading viral infections by
providing a larger surface for viral entry or propagation, by enabling transfer of viruses from
infected to uninfected cells, and by circumventing antiviral defenses or cellular responses.
TNTs can facilitate the intercellular transfer of the virus without the death of the host
cell. Moreover, TNT-mediated intercellular transfer protects the virus from extracellular
antiviral molecules, pre-existing antibodies, immune cells, and/or drugs. Furthermore,
TNTs can enable the spread of the entire virion to cells that do not express the cognate
receptor(s) required for cell-free viral infection [55]. In addition to the direct spreading
of intact virions, TNTs can transfer viral proteins or viral genomes from infected to naïve
cells [55,81,82]. The porcine reproductive and respiratory virus (PRRV) was observed
to spread through intercellular nanotubes composed of F-actin and myosin IIA. Viral
RNA was detected within nanotubes between PRRV-infected MARC-145 cells, and was
co-localized with the viral nucleocapsid proteins [55]. However, the functional implications
of TNT-mediated viral RNA transfer remain to be established. Vast networks of TNTs have
also been observed between PR8-influenza-virus-infected and naïve A549 adenocarcinoma
cells. After co-culturing the cells, the PR8 positive-sense genome was detected within the
formerly naïve cells. Given the abundance of heterotypic TNTs, the authors speculated
that the intercellular viral RNA transfer was mediated by TNTs. However, influenza
nucleoprotein expression in recipient cells was unchanged over an 18 h period. Thus,
despite the transfer of the viral genome, viral replication may have been impaired by intact
intrinsic antiviral activities in recipient cells [81]. Human metapneumovirus (HMPV) viral
RNA was also found to spread via a TNT-like mechanism. F-actin-based intercellular
extensions that formed between HMPV-infected and naïve lung epithelial cells mediated
the unidirectional transfer of viral cargo to the latter cells. Some of the fluorescently labeled
viral RNA cargo appeared as large punctate dots, suggesting that structures resembling
intact viral nucleocapsids could also be transported via TNTs [82].

4. Translational Implications

TNT formation occurs under both physiological and pathological conditions, and is
strongly influenced by the state of the local microenvironment.

4.1. Cancers

In solid tumors, TNTs may contribute to the maintenance of tissue homeostasis, dis-
ruption of which contributes to transformed cell behavior. In tumors, crosstalk by TNTs
between tumor cells and stromal cells may enhance tumor growth [86,87]. Within unicellu-
lar organisms such as bacteria, the transfer of genetic material provides a mechanism of
therapeutic resistance to antibiotics. Demonstration of similar effects with solid tumors
will open up new avenues for therapeutic modulation. The potential contributions of TNTs
to tumor invasion, metastasis, angiogenesis, metabolic plasticity, chemotherapy resistance,
radiosensitivity, bystander effects, and drug delivery have been postulated by several
groups [88–90].

4.2. Immune System

Cells of the innate and adaptive immune systems can participate in TNT-mediated
cargo transfer. The role of TNT-mediated nucleic acid transfer in physiological or patholog-
ical processes involving immune cells is increasingly being recognized [20,67]. Tunneling
nanotubes can contribute to normal physiological functions, such as intercellular antigen
trafficking, as well as pathological states, such as the spread of viral or bacterial infec-
tions [67,91]. According to several reports, TNTs act in concert with EVs to mediate nucleic
acid transfer and intercellular communication [1,14]. While nucleic acid cargo encapsulated
within immune-cell-derived EVs can elicit potent immunomodulatory activities on both
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myeloid and lymphoid cell lineages [92,93], nucleic acid transfer within TNTs could elicit
similar responses, but in a direct and targeted fashion.

4.3. Neurological Diseases

Although TNTs have been implicated in the spread of pathogenic molecules in several
neurological diseases, these cellular conduits represent a unique mechanism for the delivery
of therapeutic nucleic acid cargo [12,57]. Since most cerebral parenchymal cells exist in
a post-mitotic state, TNT-mediated delivery of RNA-based cargo can be most effective
in altering the expression profiles of the recipient cells. Intercellular cargo transfer via
TNTs can elicit neuroprotective effects or facilitate the reversion of disease phenotypes by
restoring the expression of disease-repressed nucleic acids.

Consequently, understanding the regulation of biogenesis of TNTs and defining their
contributions to cell adaptation or survival under adverse conditions may enable targeting
these factors to improve therapeutic responses. In settings where TNTs contribute to thera-
peutic resistance or the spread of pathogens or toxic chemicals, blocking their formation
may be desirable. Conversely, in settings where TNTs serve to support cell survival under
stress, or facilitate the delivery of drugs or protective factors, supporting their formation
may be appropriate. We currently lack knowledge of the mechanisms by which nucleic
acids or other cargoes are selected or transported within TNTs, and elucidating these
will be necessary to explore the modulation of TNT-mediated transport for translational
applications.

5. Conclusions

Efficient communication between cells within the tissue microenvironment is greatly
facilitated by direct contact provided by TNTs [18]. Intercellular transfer of nucleic acids by
TNTs is distinct from other modalities by which this can take place, such as through EVs,
direct release, or gap junctions, all of which are very limited, non-directed, and require
proximity of cells for optimal effect. This is particularly relevant within highly complex
tissue environments such as those within tumors, which may comprise many different
types of cells. The functional impact on the recipient cell phenotype and molecular events,
as well as the involvement of TNTs in pathophysiological conditions such as viral RNA
transmission, highlights the need to further characterize mechanisms of TNT biogenesis and
formation, their composition, and the determinants of cargo selection and transfer [74,81].
Targeting these processes may elicit novel approaches for ameliorating disease states in
which TNT-mediated nucleic acid transfer occurs.
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