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Abstract

Background: Japanese encephalitis (JE) is a major cause of mortality and morbidity for which there is no treatment. In
addition to direct viral cytopathology, the inflammatory response is postulated to contribute to the pathogenesis. Our goal
was to determine the contribution of bystander effects and inflammatory mediators to neuronal cell death.

Methodology/Principal Findings: Material from a macaque model was used to characterize the inflammatory response and
cytopathic effects of JE virus (JEV). Intranasal JEV infection induced a non-suppurative encephalitis, dominated by
perivascular, infiltrates of mostly T cells, alongside endothelial cell activation, vascular damage and blood brain barrier (BBB)
leakage; in the adjacent parenchyma there was macrophage infiltration, astrocyte and microglia activation. JEV antigen was
mostly in neurons, but there was no correlation between intensity of viral infection and degree of inflammatory response.
Apoptotic cell death occurred in both infected and non-infected neurons. Interferon-a, which is a microglial activator, was
also expressed by both. Tumour Necrosis Factor-a, inducible nitric oxide synthase and nitrotyrosine were expressed by
microglial cells, astrocytes and macrophages. The same cells expressed matrix metalloproteinase (MMP)-2 whilst MMP-9 was
expressed by neurons.

Conclusions/Significance: The results are consistent with JEV inducing neuronal apoptotic death and release of cytokines
that initiate microglial activation and release of pro-inflammatory and apoptotic mediators with subsequent apoptotic
death of both infected and uninfected neurons. Activation of astrocytes, microglial and endothelial cells likely contributes to
inflammatory cell recruitment and BBB breakdown. It appears that neuronal apoptotic death and activation of microglial
cells and astrocytes play a crucial role in the pathogenesis of JE.
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Introduction

Japanese encephalitis virus (JEV) continues to be the leading

cause of viral encephalitis in Asia and the Western Pacific, where it

is a significant cause of mortality and disability. Annually there are

estimated to be up to 70,000 cases, with 10,000–15,000 deaths [1].

Although vaccination is the most viable option to prevent the

disease, affordable vaccines are still not widely available, and there

is no established treatment for JE.

Despite the disease’s importance, little is known about the

pathogenesis. During in vitro studies neuronal apoptosis was

described [2], but its mechanisms and relevance for the disease are

still unclear, in particular in relation to the inflammatory response

that develops alongside direct viral cytopathology.

Opportunities for in depth neuropathogenic studies on JE in

humans are very limited, mainly because autopsy tissue from fatal

human cases is rarely available due to cultural constraints in many

areas where JE occurs. Mouse models of pathogenesis have some

similarities to human disease, but there are also differences [3,4].

The macaque model, developed in the 1990s to test JE vaccines is a

useful model for studying human disease, particularly since the

macaque immune system closely resembles that of humans [5]. We

therefore conducted a retrospective study on the brains of

experimentally JEV-infected macaques, to dissect the inflammatory
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response and the cascade of events that leads to neuronal damage.

We were especially interested in apoptotic pathways and inflam-

matory mediators including cytokines, inducible nitric oxide

synthase (iNOS) and matrix metalloproteinases (MMPs), because

these may point towards new targeted treatments to control the

inflammatory damage, even in the absence of antiviral therapy.

Materials and Methods

Ethics statement
The study does not involve animal use as it was conducted on

archived paraffin embedded brain tissue of rhesus macaques

(Macaca mulatta). The original research on challenge study was

conducted in compliance with the Animal Welfare Act and other

federal statutes and regulations relating to animals and experi-

ments involving animals and adheres to principles stated in the

Guide for the Care and Use of Laboratory Animals, NRC

Publication, 1996 edition. The original study was approved by the

Institutional Animal Care and Use Committee (United States

Army Medical Component, Armed Forces Research Institute of

Medical Sciences) and by the Animal Use Review Office, United

States Army Medical Research and Materiel Command (Permit

Number: 93-11).

Animals
The study was performed on archived paraffin embedded brain

tissue of twelve rhesus macaques challenged intranasally with a

well characterized wild-type JEV strain (KE93; Genotype Ia,

GenBank accession number KF192510.1) as part of an effort to

evaluate second-generation JEV vaccines [5] (Table 1). All

archived specimens used in this study are from unvaccinated

monkeys. The challenge study had been undertaken in several

phases and with different doses, ranging from 7.56105 to 261010

plaque forming units [6]. Monkeys originating from India and

screened negative for both JEV and Dengue virus neutralizing

antibodies (aged 3–7years, of both sexes, weighing 4.0–9.9 kg) had

been intranasally inoculated either with the virus isolate passaged

twice in culture (animals 1 and 2) or with an isolate prepared from

the brain of animal 2 that was subsequently passaged twice in

suckling mice to increase both virus titer and virulence [6]. The

monkeys were euthanized at the onset of stupor or coma (10–13

days post inoculation) and JEV infection was confirmed by virus

isolation from the brain. Five age-matched uninfected control

monkeys from an unrelated study served as negative controls.

Histopathology
Immediately after death, brains were exenterated and sections

of frontal lobe, thalamus, brainstem and cerebellum fixed in 10%

neutral buffered formalin for at least 72 hours. Following routine

paraffin wax embedding, 3–5 mm sections were prepared and

stained with haematoxylin-eosin (HE) or used for immunohistol-

ogy.

Immunohistology, immunofluorescence and TUNEL
method

For immunohistological studies, sections of thalamus and

brainstem (exhibiting the most consistent histological changes)

and, for comparison, the cortex (absence of inflammatory

infiltrates) were chosen. These were stained for the presence of

JEV antigen, apoptosis and apoptotic pathway markers, glial and

inflammatory cell markers, von Willebrand Factor (to confirm

blood brain barrier [BBB] breakdown, through the demonstration

of plasma protein leakage), and proinflammatory markers.

Commercial antibodies to human proteins were selected for this

study, especially those known to cross react with Macaca mulatta.

Details on the panel of antibodies and the detection methods used

are provided in Table S1. Briefly, sections were dewaxed in xylene

and hydrated through graded alcohols. To inhibit endogenous

peroxidase activity, they were treated with freshly prepared 3%

H2O2 for 15 min. Sections underwent heat-induced antigen/

epitope retrieval with a laboratory pressure cooker (Decloaking

Chamber, Biocare Medical, Concord, USA) using citrate buffer

pH 6 or pH 9 [7]. This was followed by incubation with normal

serum to block non-specific binding sites in tissues, and the

primary antibodies (15–18 hrs at 4uC) (see Table S1-A). Apoptotic

cells were also identified by the terminal deoxynucleotidyl

transferase-mediated deoxyuridine triphosphate nick end in situ
labelling (TUNEL) method using the Apoptag In Situ Apoptosis

Detection kit (Chemicon Inc., Millipore, Billerica, USA) to

demonstrate the characteristic DNA changes. Appropriate con-

trols were included for each marker: uninfected control monkey

brains as negative controls for JEV and to establish constitutive

expression of other markers, sections with known positivity for

specific markers as positive controls, and sections incubated with

normal mouse/rabbit IgG as isotype controls.

Double immunolabeling was performed on selected sections of

some monkeys (animals 2, 9, 11) to characterize the populations of

cells expressing apoptosis markers (TUNEL and caspase-3, -8, and

-9) and proinflammatory mediators (cytokines, iNOS and MMPs)

and to relate them to the expression of JEV antigen. For this

purpose, primary antibodies raised in different species were

sequentially localized using non-overlapping secondary reagents

and different chromogens (see Table S1-B).

Sequential staining was performed on consecutive sections,

mainly to detect tumor necrosis factor alpha (TNF-a) expression in

inflammatory cells and glial cells and to further characterize JEV-

infected cells when primary antibody were used that had been

generated in the same species or when the double immunolabeling

was difficult to interpret.

Author Summary

Japanese encephalitis (JE) is one of the most important
causes of viral encephalitis worldwide, with no specific
antiviral treatment available. Despite some recent success-
es with widespread vaccination, JE will likely remain an
important public health problem; because the virus is
mosquito-borne and has natural animal hosts, it will never
be eradicated. We have little understanding of what
determines the severity and outcome of infection. Data
from human post mortem studies is very limited because
of cultural constraints on autopsies in areas where JE
occurs. Circumstantial evidence suggests that in addition
to cytopathology caused directly by infection of neurons,
there may be bystander cell death of non-infected
neurons, caused by an excessive inflammatory response.
Our study used archived brain samples from a prior
challenge study in a validated macaque model of JE. We
stained for the presence of JEV antigen, apoptosis, and
pro-inflammatory markers in affected areas, such as the
thalamus and brainstem. We show that bystander neuro-
nal cell death is important, and elucidate the inflammatory
and apoptotic mechanisms underlying it. Currently there is
no proven efficacious therapy for most viral infections of
the central nervous system, including JE. Novel strategies
for treating such infections are urgently needed. Our
findings suggest new anti-inflammatory and anti-apoptot-
ic therapeutic approaches may be useful in treating this
debilitating disease.

Neuropathogenesis of Japanese Encephalitis
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A confocal laser scanning microscope LSM 700 (Carl Zeiss

Micro Imaging, Germany) with solid state laser excitation

wavelength 488 nm (for FITC) and 555 nm (for Texas Red) and

ZEN 2009 software was used to detect immunofluorescent

staining. All other light microscopic assessments were undertaken

with conventional microscopes.

Results

Histopathology and phenotyping of inflammatory
response

All JEV-infected animals exhibited mild to moderate, multifocal

to diffuse, non-suppurative meningoencephalomyelitis with evi-

dence of neuronal degeneration and death. The inflammatory

response was similar in its extent and composition regardless of the

dose of inoculum and the day of euthanasia, and was dominated

by mononuclear perivascular cuffs (Figure 1A) and meningeal

infiltrates. These were accompanied by morphological evidence of

endothelial cell activation (represented by a tomb-stone like

luminal protrusion of endothelial cells; Figure 1B) and/or vascular

damage. The latter was indicated by perivascular haemorrhage

and substantial leakage of serum into the parenchyma, as

demonstrated by staining for von Willebrand factor (Figure 1C).

Neuronal cell death was indicated by morphological neuronal

changes suggestive of apoptosis, in association with satellitosis or

microglial nodules (Figure 1D,E). Reactive astrogliosis, represent-

ed by a multifocal increase in astrocyte numbers (Figure 1F) and

evidence of astrocyte activation (presence of gemistocytes) in areas

with inflammatory infiltrates was also identified in JEV infective

brains. T cells (CD3+) were the predominant leukocytes in both

perivascular and meningeal infiltrates. They were also present in

small numbers in the adjacent parenchyma (Figure 2A). B cells

(CD20+) were sparse and primarily seen in the perivascular

infiltrates (Figure 2B), while moderate numbers of macrophage/

microglial cells (CD68+) identified in perivascular and meningeal

infiltrates and the adjacent brain parenchyma (Figure 2C).

Staining for myeloid/histiocyte antigen, reported to stain macro-

phages [8] and microglial cells [9], identified a substantial number

of cells with a morphological appearance of macrophages

(Figure 2D), suggesting their recruitment into the tissue. Staining

for CD68, which is also expressed by microglial cells, and major

histocompatibility complex (MHC) class II antigen (expressed

mainly by activated microglial cells) confirmed the presence of

microglial nodules but also demonstrated diffuse microgliosis and

activation of microglial cells (presence of both reactive and

amoeboid microglial cells; Figure 2 C,E). Furthermore, endothe-

lial cells were shown to express MHC II, confirming their

activation (Figure 2E). The cells surrounding neurons in satellitosis

were also CD68-positive microglial cells (Figure 2F). For compar-

ison, in brain areas without evidence of viral antigen and

inflammation (cerebral cortex), only scattered MHCII-positive

microglial cells without morphological features of activation were

seen. There was no evidence of microglial MHC II expression in

control brains.

Identification of JEV target cells
JEV antigen expression, seen as finely granular cytoplasmic

staining, was observed in numerous neuronal cell bodies and

processes disseminated in the thalamic and brain stem nuclei of all

animals and in neuronal cell processes throughout the affected

parenchyma (Figure 3A). Most infected neurons appeared mor-

phologically unaltered (Fig. 3A inset), but some were surrounded

by microglial cells (satellitosis) and exhibited degenerative changes

(Figure 3B). JEV-positive microglial cells were found in some glial

nodules, but occasionally as individual cells in affected areas like

brainstem and thalamus, as confirmed by sequential staining for

CD68 and JEV antigen (Figure 3C). In contrast, there was no

evidence of JEV infection of astrocytes (Figure 3D). In one animal

with a particularly strong inflammatory response (animal 2), a

small percentage of slender perivascular cells (perivascular

macrophages) also expressed viral antigen (Figure 3E). There

was no evidence of JEV antigen in endothelial cells in any animal.

Nor was there any correlation between intensity of viral infection

as indicated by immunostaining and degree of inflammatory

response. Negative control brain sections did not show any positive

reaction.

Apoptosis
Morphological features of apoptosis were observed in degener-

ating neurons within glial nodules and in satellitosis, among

leukocytes in the perivascular infiltrates and in individual cells with

Table 1. Animals, JE challenge virus, infectious doses and time of necropsy.

Animal No. Sex Age (yr) Weight (Kg) Challenge virus Challenge dose (pfu) Day necropsied

1 M 6 6.1 KE93, AP61-1, C6/36-1 2.36107 12

2 M 7 9.9 KE93, AP61-1, C6/36-1 6.66106 12

3 M 7 8.5 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.06109 11

4 M 6 4.9 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.06109 11

5 M 5 5.3 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.06109 11

6 M 5 5.2 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.061010 12

7 M 4 4.3 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.061010 10

8 M 3 4.5 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 2.061010 11

9 M 3 4.0 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 7.56107 12

10 M 7 9.1 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 7.56107 10

11 F 7 5.5 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 7.56107 12

12 F 7 5.6 KE93, AP61-1, C6/36-1, DA-349-1, SM-2 7.56105 13

pfu – plaque-forming unit.
Animals were euthanized at the onset of stupor or coma.
doi:10.1371/journal.pntd.0002980.t001
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Figure 1. Histopathological changes in the thalamus of a rhesus macaque (No. 2) after intranasal inoculation with JEV. (A) Non-
suppurative encephalitis, represented by moderate, lymphocyte-dominated perivascular infiltration. (B) Small vein with mild perivascular infiltration
and activated endothelial cells (arrow). (C) The presence of serum, indicated by staining for von Willebrandt factor, in the parenchyma surrounding
vessels with perivascular infiltrates (arrows) indicates marked vessel leakage. (D) Degenerating neuron (arrow) surrounded by glial cells (satellitosis).
(E) Microglial nodule with occasional apoptotic cells (black arrow). (F) Staining for GFAP highlights the presence of large numbers of activated
astrocytes (reactive astrocytosis). A, B, D, E: Hematoxylin-eosin stain. C, F: Indirect peroxidase method, NovaRed (C), DAB (F), hematoxylin
counterstain. Scale bars: A, C, F = 50 mm; B, D, E = 20 mm.
doi:10.1371/journal.pntd.0002980.g001
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Figure 2. Inflammatory response in the thalamus of rhesus macaques after intranasal inoculation with JEV ((No. 2 (A, B, E) and
No. 9 (C, D, F)). (A) CD3+ T cells dominate the perivascular infiltrates and are present in smaller numbers in the adjacent parenchyma (arrows). VL:
vessel lumen. (B) CD20+ B cells represent a minority in the perivascular infiltrates. (C) Staining for CD68 identifies moderate numbers of macrophage/
microglial cells within and surrounding the perivascular infiltrates (arrows) and highlights the large number of disseminated activated microglial cells
in the adjacent parenchyma. (D) Macrophages in the perivascular infiltrates and the adjacent parenchyma (arrow) also express the myeloid/histiocyte
antigen which indicates that they have recently been recruited from the blood. VL: vessel lumen. (E) Activated microglial cells also express major
histocompatibility complex (MHC) class II antigen (arrowheads). MHC II is also expressed by vascular endothelial cells (arrows), confirming their
activation. (F) Microglial nodule with central degenerate neuron (arrow), surrounded by CD68-positive microglial cells. Indirect peroxidise method,
DAB, Papanicolaou’s hematoxylin counterstain. Scale bars: A–E = 50 mm; F = 20 mm.
doi:10.1371/journal.pntd.0002980.g002
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Figure 3. JEV target cells in the thalamus of rhesus macaques after intranasal inoculation with JEV ((No. 7 (A, B), No. 2 (C–G)). (A) JEV
antigen is seen in the majority of neurons (left: arrows). Right: Infected unaltered neurons express viral antigen in both cell body and cell processes.
(B) JEV-infected neurons that are surrounded by microglial cells in satellitosis appear shrunken (arrows). (C) Microglial cells in particular in microglial
nodules can be JEV-infected (top; arrow) and are identified based on their CD68 expression (bottom; arrow), as demonstrated in a consecutive
section. (D) Dual staining for JEV antigen (FITC) and GFAP (Texas red) indicates that JEV does not infect astrocytes. (E) While endothelial cells
(arrowheads) were not found to be JEV infected, perivascular macrophages in one animal were found to express JEV antigen (Texas Red); these cells
were also undergoing apoptosis, since they were TUNEL-positive (FITC) (arrows). VL: vessel lumen. (F) Dual staining for JEV antigen (Vector Blue) and
TUNEL (DAB) shows both the degenerating neurons and surrounding microglial cells in satellitosis undergo apoptosis (arrows). JEV-infected,
apoptotic microglial cells (arrowhead) are also observed. (G) Occasional TUNEL-positive, apoptotic lymphocytes (arrows) are present in the
perivascular infiltrates. V: vessel. Indirect peroxidase method (A–E, G), Vectastain Elite ABC-Alkaline Phosphatase Kit (F). DAB (A–G), BCIP/NBT blue (F),
Papanicolaou’s hematoxylin counterstain. Scale bars: A (left) = 100 mm; A (right), C = 25 mm; B, E = 20 mm; D, F, G = 50 mm.
doi:10.1371/journal.pntd.0002980.g003
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microglial features in the adjacent parenchyma. Cell death by

apoptosis was confirmed by the TUNEL method which identified

apoptotic JEV-infected neurons in glial nodules and satellitosis as

well as apoptotic microglial cells disseminated in the parenchyma,

in satellitosis and in microglial nodules (Figure 3F). Occasional

lymphocytes in the perivascular infiltrates were also apoptotic

(Figure 3G) and the JEV-infected perivascular macrophages were

apoptotic in animal 2 (Figure 3E).

Key apoptosis molecules, including caspases-8, -9 (both initiator

caspases) and cleaved caspase-3 (an executor caspase) were

identified by staining to detect cells undergoing early apoptosis

and not exhibiting representative morphological features. Small

numbers of neurons with normal morphology expressing cleaved

caspase-3 and more cells expressing caspase-8 were seen in JEV

infected brains. Both caspases were also expressed by some

leukocytes in the perivascular infiltrates (Figure 4A, B). Caspase-9,

however, was only detected in astrocytes and microglial cells

(Figure 4C). Double staining for JEV and the various apoptosis

markers confirmed that some JEV-infected neurons were under-

going apoptosis (data not shown).

In order to better understand the regulation of apoptotic

processes in response to JEV infection, the expression of

representative pro- and anti-apoptotic proteins was assessed.

While numerous microglial cells and occasional neurons stained

positive for the pro-apoptotic protein Bax (Figure 4D), the anti-

apoptotic protein Bcl-2 was mainly expressed by lymphocytes in

the perivascular infiltrates (Figure 4E).Dual staining showed JEV

antigen in some Bax-positive neurons and occasional Bax-positive

microglial cells (data not shown).

In uninfected control brains TUNEL positive cells were not

identified. Caspase and Bcl-2 staining was negligible; weak and

infrequent Bax expression was seen in neurons.

Proinflammatory mediators
Having characterized the inflammatory response and the

patterns of cell death in the brains for monkeys infected with

JEV, we aimed to identify relevant mediators of these processes

frequently identified in viral mediated infections. To assess local

nitric oxide (NO) production, we investigated the expression of

iNOS and nitrotyrosine (NT). We stained for MMP-2 and -9,

Figure 4. Apoptosis related proteins in the thalamus of rhesus macaques after intranasal inoculation with JEV ((No. 2 (A, D, E),
No. 9 (B), No. 11 (C)). (A) Some leukocytes in the perivascular infiltrates (left, arrowheads) and scattered unaltered appearing neurons (right;
arrows) express cleaved caspase-3, an executor caspase. (B) The initiator caspase-8 is expressed by unaltered neurons (arrows) and some cells in the
perivascular infiltrates (arrowheads). V: vessel. (C) Caspase-9, another initiator caspase, is expressed by microglial cells (arrowheads) and astrocytes
(arrows). (D) Bax, a pro-apoptotic protein, is expressed by unaltered neurons (arrows) and microglial cells (arrowheads). (E) Bcl-2, an anti-apoptotic
protein, is expressed by cells in the perivascular infiltrates. Indirect peroxidise method, DAB, Papanicolaou’s hematoxylin counterstain. Scale
bars = 50 mm.
doi:10.1371/journal.pntd.0002980.g004
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which are known to cause BBB disruption by degrading collagen

IV, its main component [10], interferon (IFN)-a, a potent antiviral

cytokine and microglial activator [11], and TNF-a which has been

shown to directly activate microglia [12] and induce neuronal

apoptosis [13]. Both iNOS and NT were expressed by microglial

cells and astrocytes. iNOS expression was also seen in some

macrophages in the perivascular infiltrates and the adjacent

parenchyma (Figure 5A,B) where staining for NT was only very

weak. MMP-2 was expressed in cells with the morphology of

reactive astrocytes (Figure 5C) and, to a lesser extent, in microglial

cells and in infiltrating macrophages, whereas MMP-9, known to

be constitutively expressed in human neurons, was intensely

expressed by neurons and relatively weakly by microglial cells

(Figure 5D). TNF-a expression was seen in microglial cells,

infiltrating macrophages and astrocytes, as confirmed by dual

staining with CD68 and sequential staining with GFAP (Fig-

ure 5E). It was also occasionally seen in endothelial cells (data not

shown). IFN-a expression, however, was seen both in uninfected

and infected neurons, as confirmed by dual staining with JEV

antigen (data not shown), and in astrocytes and microglial cells

(Figure 5F). In control brains, only minimal expression of

inflammatory mediators was seen, represented by staining in

occasional vascular endothelial cells (iNOS, TNF-a), neurons

(MMP-9, iNOS) and vascular smooth muscle cells (TNF-a).

Discussion

The present study used macaques, which have previously been

established as a good model for neuropathological studies on JE in

humans [5,6], to evaluate the cytopathic effects of and inflamma-

tory response to JEV in the brain. The apoptosis pathways and the

full spectrum of proinflammatory factors have not been fully

studied in any previous animal models of JE, or autopsy tissues.

This study utilized monkeys challenged with JEV intranasally

rather than a route more consistent to natural infections to

increase the likelihood of encephalitis. Peripherally challenged

monkeys generally do not typically develop encephalitis [14] and

with direct intracerebral challenge the encephalitis develops early

[15]. The intranasal route was therefore the most useful route in

our model and has been reported to provide a useful model for the

study of anti-viral compounds and vaccine candidates [5,15] albeit

this unnatural infection route may be a limitation in our study.

As in humans, JEV induces a non-suppurative meningoenceph-

alitis with neuronal cell death, microgliosis and astrogliosis in

macaques [16,17]; these classic findings are also common in other

viral encephalitides [18]. However, the ‘punched-out’ areas of

focal necrosis, often seen in fatal human JE cases [16,19] were not

observed in our experimentally infected monkeys. It is possible

that this pathology had not yet developed in the macaques that

were euthanized at the onset of stupor or coma in contrast to

human infections where histological observations are always made

on post mortem material at the end of the disease process [16,19].

The inflammatory response in macaques even with the chosen

challenge route was consistent with the changes seen in humans,

characterised by perivascular mononuclear cuffs, with less intense

infiltrates in the adjacent parenchyma [16]. While T cells

dominated in the perivascular infiltrates and recently recruited

macrophages were the largest population in the parenchymal

infiltrates, B cells represented a minority and were restricted to the

perivascular cuffs. Cytotoxic T cells (CTLs) have been reported to

play a key role in mouse models of JE [20], but it remains unclear

if these cells are beneficial or deleterious, or both. In the present

study, it was not possible to assess the role of CTLs, due to the

non-availability of antibodies suitable for macaques. In viral

encephalitis, macrophages are known to migrate from the

perivascular space into the surrounding parenchyma where they

become activated [21].In addition to microglia, known to cause

neuronal death in JE [3,19], the relative contribution of peripheral

macrophages that migrate into the CNS should be elucidated.

Our study confirmed neurons as the main targets of JEV, as

previously shown in fatal human cases [16,19,22]. We also

demonstrated viral antigen in microglial cells, mainly within

microglial nodules surrounding infected neurons, suggesting virus

uptake by phagocytosis. However, productively infected microglial

cells cannot be excluded, since they do support viral replication in
vitro [23,24]. Viral antigen was not detected in other glial cell

types, despite evidence that astrocytes can become infected in

culture systems [23]. There was also no evidence of endothelial cell

infection. A similar viral target cell pattern has been reported in

human cases, with the exception that some studies found evidence

also for endothelial cell infection [16,19]. Interestingly, we

detected JEV antigen in perivascular macrophages in one animal.

These cells found at the interface between blood and brain

parenchyma are resident macrophages with high phagocytic

activity and MHC-II expression [25], which suggests that they

had phagocytosed virus that entered the brain via the blood.

Viral infection and inflammatory responses were associated with

cytopathic changes, and, although not excessive, neuronal death

via apoptosis was clearly observed. Apoptosis was shown by the

TUNEL assay which has been used in the past to demonstrate

apoptosis, although interpretation of the findings can be difficult in

the presence of necrosis and autolytic changes [26]; we therefore

also confirmed apoptosis by staining for cleaved caspase-3.

Apoptotic neurons were often surrounded by microglial cells

(satellitosis and formation of microglial nodules) which indicated

their impending phagocytosis. Some apoptotic neurons were JEV

infected. In addition, several morphologically unaltered, infected

neurons were shown to express the pro-apoptotic protein Bax, the

initiator caspase-8 or the active effector caspase-3, which indicates

that these cells were destined to become apoptotic. These results

confirm the in vivo relevance of previous in vitro studies which

demonstrated that JEV replication can lead to neuronal apoptotic

death [27] and support findings from the mouse model that JEV

replication contributes to Bax activation [28]. Taken together,

these findings provide clear evidence of a direct, although possibly

not rapid, cytopathic effect of JEV on neurons. The demonstration

of caspase-8 in affected neurons also indicates that neuronal

apoptosis is initiated by the fas-mediated or extrinsic pathway, a

mechanism that is central to the process of immune-mediated viral

clearance [29] and seen in a number of CNS viral infections

including West Nile virus [30].

Importantly, apoptotic cell death or pre-apoptotic caspase-8

expression was also seen in a proportion of JEV antigen-negative

neurons, which suggests some degree of bystander neuronal death.

In addition, a proportion of microglial cells, often in close

proximity to infected neurons but generally not JEV-infected, were

apoptotic. Furthermore, the observation of morphologically

unaltered microglial cells expressing caspase-9 suggest that

microglial apoptosis is initiated by the mitochondria or the

intrinsic pathway. A recent in vitro study showed that JEV

infection can lead to apoptosis of microglial cells [24].Our results

indicate that in vivo this direct mechanism is probably less relevant

and that pro-inflammatory factors are more important; this is also

seen in other CNS conditions, such as experimental autoimmune

encephalomyelitis (EAE) where microglial apoptosis is considered

an important homeostatic mechanism to control microglial

activation and proliferation [31]. Apoptotic cell death was also

observed in a proportion of infiltrating inflammatory cells in our
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Figure 5. Proinflammatory markers in the thalamus of rhesus macaques after intranasal inoculation with JEV (No. 2 (A, B, D–F),
No. 11 (C)). (A) Microglial cells (small arrows), leukocytes in the perivascular infiltrates (arrowheads), perivascular macrophages (large arrow) and
astrocytes (inset) express iNOS. (B) Nitrotyrosine expression is observed in microglial cells (arrowheads) and astrocytes (arrows). VL: vessel lumen. (C)
MMP-2 expression is diffusely seen in reactive astrocytes. (D) MMP-9 is mainly expressed by neurons. (E) TNF-a (left: brown signal) is expressed by
microglial cells (left: arrows; right: arrowheads) that are identified based on their CD68 expression (left: blue signal) and astrocytes (right: arrows). (F)
IFN-a expression is seen in astrocytes (left; arrow) and neurons, both unaltered (left: arrowheads; right: arrow) and degenerating (right: arrowhead), as
demonstrated in satellitosis. Microglial cells surrounding the neuron are also positive. Indirect peroxidase method (A–F), Vectastain Elite ABC-Alkaline
Phosphatase Kit (E, left); DAB (A–F), BCIP/NBT blue (E, left), Papanicolaou’s hematoxylin counterstain. Scale bars A–D, F left = 50 mm. E, F right = 20 mm.
doi:10.1371/journal.pntd.0002980.g005
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JEV infected monkeys. Considering that these cells were not JEV-

infected, this most likely represents a normal mechanism to

eliminate activated leukocytes and thereby limit the inflammatory

response in the CNS. On the other hand, infiltrating leukocytes

(predominantly T cells) were found to express the anti-apoptotic

protein Bcl-2. This supports a murine in vivo study that provides

evidence of a critical role of Bcl-2 in the survival of virus-specific

CTLs [32].

The occurrence of apoptosis in apparently uninfected neurons

suggests that indirect mechanisms (bystander cell death) contribute

to neuronal damage in JE, and indeed recent in vitro and in vivo
murine studies demonstrated that microglial cells can induce

neuronal apoptosis via the release of pro-inflammatory mediators

[3,4]. Also, TNF-a, via its receptor on neurons, has been shown to

induce caspase-8 activation in mouse neurons [33]. Indeed, we

observed TNF-a upregulation in astrocytes, microglial cells,

endothelial cells and infiltrating macrophages in infected macaques.

It is likely that these cells were also responsible for the TNF-a
upregulation observed in JEV-infected mice [3,34]. TNF-a related

neuronal death is also reported in a recent in vitro study with WNV

[35]. The results of our study suggest that JEV might simultaneously

trigger, both directly and indirectly, the caspase dependent extrinsic

apoptotic pathway in neurons and the intrinsic apoptotic pathway in

microglial cells. Further definition of the underlying mechanisms will

allow us to understand the processes involved in disease progression

and to assess the potential of anti-apoptotic treatment strategies.

Alongside the inflammatory infiltration and the cytopathic

effects, we found distinct evidence of activation of a range of cells,

namely microglial cells, astrocytes and vascular endothelial cells.

Microglial activation was confirmed by the demonstration of MHC

II antigen, iNOS, NT, TNF-a and MMP expression by microglial

cells and has been reported previously in JEV-infected mice [3]. To

shed light on the potential mechanism of microglial activation, we

assessed the expression of IFN-a (type I IFN); this potent antiviral

cytokine is an activator of microglia in response to CNS viral

infection [11], and is elevated in the cerebrospinal fluid of patients

with JE, where it is associated with a poor outcome [36]. We

demonstrated IFN-a expression in neurons which suggests that they

might be responsible for microglial activation early after infection;

expression by microglia and astrocytes suggests they might be

responsible for sustained microglial activation in JE.

As described in earlier reports [22], reactive astrogliosis and

astrocyte activation was also observed in the present study.

Astrocyte activation is considered as a non-specific response to

degenerative changes including virus-induced damage in the CNS.

However, a recent study provided evidence that this activation

might be an effect of TNF-a release from microglial cells [23]. So

far, little is known about the role of astrocytes in neuroinflammation

caused by JEV, whether they are protective or pathogenic.

Nevertheless, the demonstration of TNF-a, IFN-a, iNOS, NT

and MMP-2 expression by astrocytes in our study provides the first

in vivo evidence that astrocytes may play an important role in the

pathogenesis. The same is true for microglial cells and macrophages

in the inflammatory infiltrates, through release of the inflammatory

mediators, all these cells might actively contribute to the damage of

other cells in the brain and in particular induce bystander apoptotic

death of neurons [3,4]. iNOS and NT expression indicate NO

production, which is in accordance with results from a mouse study

[37]. There, a gradual increase in iNOS activity was observed after

intracranial JEV infection, and was considered a consequence of

release of cytokines, such as TNF-a or IL-8 which might be

beneficial through the inhibition of viral replication and release

[37]. However, NO has also been discussed as a potential mediator

of pathogenesis in tick-borne encephalitis virus infection [38]. MMP

levels have been shown to correlate with the severity of some CNS

infections [39]. MMP-9 is known to be constitutively expressed in

human neurons. However, it was intensely upregulated in neurons

of the JEV-infected macaques and weakly expressed by microglial

cells, while glial cells and infiltrating macrophages were sources of

MMP-2. MMP release is stimulated by proinflammatory cytokines

including TNF-a [40]. In JE, MMPs might play a detrimental role

and not only be responsible for BBB disruption through collagen IV

degradation, but also contribute to neuronal destruction via

stimulation of TNF-a release.

We observed endothelial cell expression of MHC II antigen and

TNF-a, which confirms that they are activated and suggests they

have a role in inflammatory cell recruitment and potential

contribution to immune reactions, glial cell activation and

neuronal apoptosis. Endothelial cells might also be a source of

the increase in serum TNF-a seen in JE patients [36].

Based on our findings we postulate that infection of neurons by

JEV triggers a network of inflammatory mediators [41]. Through

release of IFN-a, neurons activate microglial cells which, via release

of cytokines such as TNF-a, activate astrocytes and endothelial cells.

Together, these mediators contribute to BBB breakdown, leukocyte

recruitment into the parenchyma and further neuronal apoptosis.

Glial cell apoptosis should limit the extent of inflammation.

However, the release of further mediators by infiltrating leukocytes,

in particular macrophages, results in sustained glial and endothelial

cell activation and further leukocyte recruitment, ultimately

augmenting the inflammatory response and neuronal cell loss.

Although the inflammatory response is intended to be protective,

and presumably is so in cases which improve and recover, if

uncontrolled it can contribute to disease progression in JE.

Our study is mostly descriptive as we used archived materials

from a previous challenge study. However it might shed some light

on some novel processes mediating pathogenesis which could aid

in the experimental design for future studies investigating

inflammatory responses to JE. Viral encephalitis is a major cause

of morbidity and mortality worldwide. The pathogenesis of

flavivirus encephalitis remains incompletely understood but it

appears that the immune response is crucial in limiting viral spread

to the brain [42]. The cascade of events that we have outlined for

JE may also apply to other viral encephalitides. Currently there is

no proven efficacious therapy for most viral infections of the CNS

including JE. Novel strategies for treating viral CNS infections are

urgently needed. Our results from a macaque model indicate that

neuronal apoptosis and glial activation are crucial steps in the

pathogenesis of JE. They imply that adjunctive therapy with

inhibitors of caspases or targeted anti-inflammatory treatments

might be a promising therapeutic approach for JE in the future.
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