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Abstract

Background: Rainbow trout is a significant fish farming species under temperate climates. Female reproduction
traits play an important role in the economy of breeding companies with the sale of fertilized eggs. The objectives
of this study are threefold: to estimate the genetic parameters of female reproduction traits, to determine the
genetic architecture of these traits by the identification of quantitative trait loci (QTL), and to assess the expected
efficiency of a pedigree-based selection (BLUP) or genomic selection for these traits.

Results: A pedigreed population of 1343 trout were genotyped for 57,000 SNP markers and phenotyped for seven
traits at 2 years of age: spawning date, female body weight before and after spawning, the spawn weight and the
egg number of the spawn, the egg average weight and average diameter. Genetic parameters were estimated in
multi-trait linear animal models. Heritability estimates were moderate, varying from 0.27 to 0.44. The female body
weight was not genetically correlated to any of the reproduction traits. Spawn weight showed strong and
favourable genetic correlation with the number of eggs in the spawn and individual egg size traits, but the egg
number was uncorrelated to the egg size traits. The genome-wide association studies showed that all traits were
very polygenic since less than 10% of the genetic variance was explained by the cumulative effects of the QTLs: for
any trait, only 2 to 4 QTLs were detected that explained in-between 1 and 3% of the genetic variance. Genomic
selection based on a reference population of only one thousand individuals related to candidates would improve
the efficiency of BLUP selection from 16 to 37% depending on traits.

Conclusions: Our genetic parameter estimates made unlikely the hypothesis that selection for growth could induce
any indirect improvement for female reproduction traits. It is thus important to consider direct selection for spawn
weight for improving egg production traits in rainbow trout breeding programs. Due to the low proportion of genetic
variance explained by the few QTLs detected for each reproduction traits, marker assisted selection cannot be
effective. However genomic selection would allow significant gains of accuracy compared to pedigree-based selection.
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Background
Rainbow trout (Oncorhynchus mykiss) is a worldwide
cultured salmonid species with numerous breeding pro-
grams implemented over the last 50 years in closed pop-
ulations. Breeding goals, i.e., the number, the nature and
the importance given to the selected traits, are an essen-
tial feature of a breeding program because this deter-
mines the direction and extent of genetic trends in the
population under selective breeding. The traits of inter-
est can be recorded either directly on candidates for se-
lection, as in the case of growth and morphology traits
or on their sibs when the trait measurement requires a
fish to be killed, such as assessment of disease resistance
or processing yield. Until the 2000s, commercial lines
have been mainly selected for growth traits by mass se-
lection and external morphology assisted by ultrasound
to improve gutted yield [1]. Since then, sib-based selec-
tion to improve more efficiently gutted and fillet yields
and disease resistance traits have been more and more
emphasized [2, 3].
The egg productivity of rainbow trout has so far re-

ceived limited attention in commercial selective breeding
because its high relative fecundity (1500 to 2000 eggs /
kg of body weight) was not considered as a limiting fac-
tor [4]. However these traits play an important role in
the economics of a breeding company because of the
sale of eyed eggs. In addition, the production of caviar
from trout eggs is now a developing market, so an in-
crease in the egg number per ton of fish produced and
the limitation of egg size would allow an increase in this
production.
Reproduction is the basis of all animal production sys-

tems. Maintaining or improving reproductive efficiency
is essential to the productivity of animal farming. A high
reproductive capacity is also one of the main levers for
the genetic improvement of the species. It is therefore
important to estimate the performance and the genetic
trends for reproduction traits, especially since genetic
antagonisms are feared with production traits in all spe-
cies [5].
High selection for production traits in closed and

small broodstock populations of rainbow trout have also
induced significant levels of inbreeding [6]. Previous
works showed significant inbreeding depression effects
in female body weight and spawn weight [7] as well as in
egg number and spawning age of rainbow trout [8].
Therefore, it is important to evaluate the performance
for those female reproduction traits and the possibilities
of selecting them in current broodstock.
Early literature reported estimates of genetic parame-

ters for egg production trait in rainbow trout [9–12] or
Atlantic salmon [12] based on full-sib analysis of vari-
ance of a limited number of families and populations.
Only three publications (in rainbow trout: Su et al. [13,

14]; in Coho salmon: Gall and Neira [15]) reported esti-
mates based on REML procedures and animal models
that prevent the well-known issue of biased estimation
under full-sib analysis of variance.
Since early 1990’s, several breeding programs were de-

veloped in France based on combined mass selection on
growth and sib selection to improve processing traits
and, more recently, disease resistance [1, 16]. The aims
of the study were to estimate genetic parameters, to
identify quantitative trait loci (QTL) and to assess the ef-
ficiency of genomic selection (GS) compared to
pedigree-based BLUP selection for female reproduction
traits in one of these French rainbow trout selected line.
Concerning this last objective, change in selection effi-
ciency was investigated according to two main factors of
variation: the size of the reference population and the
degree of kinship between reference and candidate pop-
ulations for selection. Traits under study concerned fe-
male body weight, spawning date, fecundity and egg size.
As far as we know, it is the first report on the efficiency
of (genomic) selection for fish reproduction traits.

Results
Genetic parameters
Estimates of genetic parameters are summarized in
Table 1. All heritability estimates were in a medium
range of values going from 0.27 to 0.44.
Our estimates of correlations for the two measures of

female body weight with (FW) or without (PW) consid-
eration of the spawning and coelomic liquid weights
showed that the two measures were essentially describ-
ing the female own weight since we estimated a pheno-
typic correlation between FW and PW of 0.96 with a
genetic correlation close to unity. Regarding correlations
between reproduction traits, it should be first mentioned
that genetically speaking, EN and SW on one hand, and
EW and ED on the other hand corresponded to almost
the same traits with genetic correlations (rg) estimated
to 0.86 (±0.05) and 0.99 (±0.02), respectively. All those
high correlations are partly due to the auto-correlations
originating from methods of deriving these traits from
common measures of biological components, as shown
by the high environmental correlations observed be-
tween those pairs of traits (0.82 between EN and SW
and 0.55 between EW and ED in our study).
Although EN and SW were highly correlated in our

study, those two traits did not behave similarly with ED
and EW. On the contrary, ED and EW could be consid-
ered as two different measures of a unique biological egg
size trait, those two traits being associated in a very simi-
lar manner to all the other traits in the analysis. SW was
significantly and positively associated with egg size traits
(rg in the range 0.5–0.6), while EN was genetically un-
correlated to egg size traits (rg in the range 0.01–0.10)
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in our study. Both EN and SW traits were genetically
weakly correlated to SD (0.22 and 0.34 respectively).
Intermediate positive genetic correlations were also esti-
mated between egg size traits and SD.
Regarding the correlations between SD and PW (or

FW), we did not observed any significant phenotypic or
genetic associations in our study. The female body
weights were also not genetically correlated to any of the
egg size traits (EW and ED) or egg quantity traits (EN
and SW). Considering FW as a covariate in the

modelling of EN and SW led to negative genetic correla-
tions between FW and the adjusted EN* and SW* while
regressing towards 0 the corresponding phenotypic
correlations.

Genetic architecture
With the only exception of SD, no QTL explained over
3% of the genetic variance (Table 2). Therefore, the gen-
etic architecture of all female reproduction traits ap-
peared to be highly polygenic (Fig. 1 and Supplementary

Table 1 Heritability (on the diagonal), genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal)
for female reproduction and weight traits

Trait SD FW PW SW EN EW ED

SD 0.27 (0.05) 0.12 (0.15) 0.03 (0.15) 0.34 (0.15) 0.22 (0.16) 0.46 (0.15) 0.51 (0.12)

FW 0.04 (0.04) 0.30 (0.06) 0.99 (0.01) 0.12 (0.15) 0.13 (0.16) −0.01 (0.16) −0.01 (0.15)

PW 0.04 (0.04) 0.96 (0.01) 0.33 (0.06) −0.06 (0.15) −0.02 (0.16) − 0.10 (0.16) −0.12 (0.14)

SW 0.05 (0.04) 0.34 (0.03) 0.17 (0.03) 0.32 (0.06) 0.86 (0.05) 0.49 (0.13) 0.59 (0.10)

EN 0.10 (0.04) 0.31 (0.03) 0.17 (0.03) 0.83 (0.01) 0.24 (0.05) 0.01 (0.17) 0.10 (0.15)

EW 0.06 (0.04) 0.09 (0.03) 0.03 (0.03) 0.33 (0.03) −0.18 (0.03) 0.27 (0.06) 0.99 (0.02)

ED 0.13 (0.04) 0.12 (0.03) 0.05 (0.03) 0.38 (0.03) 0.01 (0.03) 0.70 (0.01) 0.44 (0.07)

Standard errors are given in brackets. When adjusting SW and EN for a constant FW, their genetic correlations with FW dropped to respectively −0.26 (±0.14) and
− 0.17 (±0.16), while the phenotypic correlations were close to zero with respective estimates of − 0.05 (±0.04) and 0.06 (±0.04)
SD Spawning date; FW Female body weight; SW Spawn weight; EN Egg number; EW average egg weight; ED Average egg diameter

Table 2 Summary statistics for GWAS for female reproduction traits based on GBLUP and BayesCπ methods

Trait Peak SNP GBLUP BayesCπ

Omy Identifier Position (bp) -log(P-value) Confidence interval (Mb) LogBF Credibility interval (Mb) Vara (%)

SD 6 Affx-88,920,061 38,611,684 11.5 38.61–38.61 18.4 38.61–38.61 7.2

SD 11 Affx-88,936,987 44,670,771 7.4 43.17–45.32 1.9

SD 15 Affx-88,942,247 5,640,348 6.8 4.86–5.64 1.2

SD 27 Affx-88,907,414 8,854,196 6.1 7.04–8.95 1.7

SW 1 Affx-88,918,810 79,053,674 9.4 77.68–79.05 1.3

SW 2 Affx-88,951,720 5,801,797 6.3 5.80–6.18 9.2 5.80–6.18 2.9

SW 2 Affx-88,927,743 17,660,020 6.1 16.29–17.66 8.4 16.29–17.66 1.9

SW 12 Affx-88,950,456 5,349,425 6.9 4.56–6.22 9.2 4.56–6.80 2.5

EN 2 Affx-88,951,720 5,801,797 6.5 5.80–6.18 9.6 5.80–6.18 3.2

EN 8 Affx-88,953,704 50,018,409 5.9 49.64–50.02 8.6 49.64–50.02 1.4

EN 12 Affx-88,950,456 5,349,425 6.2 4.23–6.80 8.0 4.56–6.80 2.7

EW 1 Affx-88,932,157 48,339,143 5.4 48.34–48.60

EW 1 Affx-88,950,822 64,632,546 7.0 60.50–64.63 6.3 61.59–64.63 1.2

EW 1 Affx-88,915,911 67,153,692 7.2 66.61–68.88

EW 1 Affx-88,957,820 68,664,516 6.4 66.54–68.88 2.0

ED 1 Affx-88,941,218 68,345,854 6.0 68.35–68.66

ED 1 Affx-88,942,198 71,813,379 7.1 70.85–71.81 8.5 70.85–71.81 1.9

ED 2 Affx-88,930,958 17,234,307 6.6 16.14–18.25 1.5

ED 8 Affx-88,908,356 47,852,976 6.4 47.84–49.70 1.6

ED 12 Affx-88,930,328 68,199,037 7.5 67.33–68.79 1.1
aVar: % of genetic variance explained by all the SNPs included in the QTL credibility interval
SD Spawning date; SW Spawn weight; EN Egg number; EW Egg average weight; ED Egg average diameter
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Figure 1, Additional File 1). Only 2 to 4 QTLs were de-
tected that explained at least 1% of the genetic variance
for any of the five reproduction traits (Table 2). Ten of
the twelve QTLs that were at 1% chromosome-wide sig-
nificant under GBLUP analysis corresponded to QTLs
with strong evidence under the Bayesian approach. In

most cases, the same peak SNPs were given by both
studies. The consistency of both GWAS was a bit less
clear for EW and ED traits. In total, the Bayesian ap-
proach allowed the detection of 17 QTLs that explained
at least 1% of the genetic variance, but only nine had a
very strong evidence (logBF > 8).

Fig. 1 Manhattan plot of QTL detected under Bayesian GWAS for female reproduction traits. The red line corresponds to the threshold logBF >
6.0 for defining evidence for a QTL; SD: spawning date; SW: spawning weight; EN: egg number; EW: egg average weight; ED: egg
average diameter
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Genomic selection
Efficiency of genomic selection in comparison to pedi-
gree BLUP selection is presented in Fig. 2 and Supple-
mentary Table 1, Additional File 2 for both size
scenarios (T- and T+) in terms of training population
size (Table 3).
Whatever the trait and the scenario, we noticed a

slight tendency to overestimate (b < 1) the variation of
GEBVs compared to the genetic variance although all in-
flation coefficients were statistically not different from 1
(see Supplementary Table 1, Additional File 2). The
GBLUP accuracy was higher than the BLUP accuracy in
most of the 40 validation samples (Fig. 2); less than 10%
of the samples failed to respect this rule in average over
all the traits. In 60% of the 40 samples, GBLUP was
more accurate than BLUP for any of the six traits; loss
of accuracy of GBLUP was less than 10% in 80% of the
remaining samples.
For T- scenario, the mean accuracy of GEBVs varied

from 0.50 for EW to 0.60 for ED whereas the corre-
sponding accuracies of EBVs were 0.41 and 0.47 (see
Supplementary Table 1, Additional File 2); when com-
paring GBLUP versus BLUP, the highest increase in ac-
curacy (+ 35%) was obtained for SW* while the lowest
increase (+ 10%) was observed for FW. The same trend
was observed for T+ scenario when comparing GBLUP
versus BLUP. The mean accuracy of GEBVs varied from
0.55 for EW to 0.66 for ED whereas the corresponding
accuracies of EBVs were 0.50 and 0.60 (see Supplemen-
tary Table 1, Additional File 2); the highest increase in

accuracy (+ 32%) was obtained for SW* while the lowest
increase (+ 16%) was observed for FW.
For T1 and T2 scenarios, the mean accuracy of GEBVs

varied from 0.24 to 0.39 whereas the corresponding ac-
curacies of EBVs were 0.01 and 0.23 (see Supplementary
Table 2, Additional File 2). When comparing selection
accuracy (Fig. 3) depending on the degree of kinship be-
tween the training and the validation populations (T1 or
T2 versus T-), we observed that the accuracy was dras-
tically reduced when the training population was less re-
lated to the validation population and that the accuracy
loss was more severe for BLUP (− 71% in average over
the 6 traits) than for GBLUP (− 43%).

Discussion
Genetic parameters
The estimated heritability values for FW and PW in the
present study are within the range (0.27–0.43) of values
reported in recent studies in the same species for female
body weight between 13 and 25months [17–19]. In a
study that accounted for random full-sib family effects
in an animal model, Su et al. [13] estimated lower herita-
bilities for PW with values ranging from 0.09 for a con-
trol line to 0.26 for a line selected for egg size while the
estimate was 0.13 for the line selected for yearling body
weight; the full-sib family effect was very significant ac-
counting for 22, 13 and 10% of the phenotypic variance
for the three lines, respectively. In our study, no signifi-
cant full-sib family effect was detected whatever the trait
under consideration. A maternal random effect was also

Fig. 2 Boxplots of accuracy of GBLUP versus BLUP in 40 simulations with a large training population T+ (A) and a small training population T- (B).
SD: spawning date; FW: female body weight; SW*: spawning weight (adjusted for FW); EN*: egg number (adjusted for FW); EW: average egg
weight; ED: average egg diameter
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tested for all traits, but were never significant. It is likely
due to the mixing of eyed-eggs from all the different
families and their rearing in common tanks.
Heritability estimated for SD in our study was moder-

ate in comparison to the large values (0.49 to 0.87 with a
pooled heritability of 0.65) estimated by Su et al. [13] for
their three rainbow trout lines bred derived from the
same experimental base population of University of Cali-
fornia. However, Gall and Neira [15] estimated a moder-
ate heritability (0.24) for SD in Coho salmon that may
be partially explained by the fact all the genetic variation
was not accounted for because the spawned females rep-
resented a selected group of earliest spawners. The same
explanation may also be considered to understand our
own moderate estimate of heritability for SD in rainbow
trout.
All our heritability estimates for rainbow trout repro-

ductive traits (SD but also PW, SW, EN and EW) were
in general close to those of Gall and Neira [15] in Coho
salmon, although their heritability for EN was higher
(0.42 vs 0.24 in our study) and more consistent with
their heritability of SW than in our study. Considering
EW as a measure of egg size, Gall and Neira [15] found
a similar estimate of heritability as ours. In Su et al. [13],
egg size was measured as a volume (in pl), neither corre-
sponding to EW or ED. They found high estimates of
heritability for their egg size trait with a pooled heritabil-
ity of 0.60 across their three rainbow trout lines. Rather
than measuring SW, Su et al. [13] measured the egg vol-
ume (ml) by allowing the eggs to settle in a volumetric
cylinder after water hardening; egg size was determined

by dividing 30 by the count of eggs in a 30ml sample.
Egg number was then obtained by dividing egg volume
by egg size and its pooled heritability was very high
(0.55) compared to ours and in a lesser extent to Gall
and Neira [15]‘s one.
Regarding correlations between reproduction traits,

the high correlation we estimated between EN and SW
was also observed in Coho salmon [15]. However these
authors estimated a large negative genetic correlation (−
0.63) between EN and EW for Coho salmon while we
did not observed any significant correlations between
EN and egg size traits in our study. Our result was only
consistent with Su et al. [13]’ one for this particular
point. Therefore the question is still pending whether or
not selection for egg size may cause or not a decrease in
egg number in salmonids or if the negative correlation
that we observed is only population specific.
Considering genetic correlations between egg size

traits and SD, our estimates were consistent with the es-
timate (0.51) in Su et al. [13]’ study while Gall and Neira
[15] reported a weaker (0.16) genetic correlation in Coho
salmon. The positive, but weak, genetic correlations we
estimated between egg quantity traits (EN and SW) and
SD were also reported by Su et al. [13] and Gall and
Neira [15] between EN and SD. However in Coho sal-
mon the genetic correlation estimated between SW and
SD was null [15].
Regarding the correlations between SD and female

body weights, our results were in contradiction with the
significant positive genetic correlation (0.51) reported by
Su et al. [13] but very consistent with those for Coho

Fig. 3 Selection accuracy for BLUP (light colors) or GBLUP (dark colors) considering the training scenarios T1 (diagonal hatching bars), T2
(horizontal hatching bars) and T- (full bars). For scenario T-, the sampling standard deviation over 40 replicates is indicated by a black segment
above and below the mean. SD: spawning date; FW: female body weight; SW*: spawning weight (adjusted for FW); EN*: egg number (adjusted
for FW); EW: average egg weight; ED: average egg diameter

Table 3 Number and cohort origin of animals in training and validation sets for cross-validation tests

Scenario T+ T- T1 T2

Training set 1077 fish randomly chosen in C1 + C2 672 fish randomly chosen in C1 + C2 726 fish in C1 620 fish in C2

Validation set 269 remaining fish in C1 + C2 same 269 fish as in scenario T+ 620 fish in C2 726 fish in C1
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salmon [15]. This may be due to the inclusion of only
early spawning females in our study as in Gall and Neira’
one.
Although female body weights did not significantly

correlated neither to egg quantity traits (EN, SW) or egg
size traits (EW, ED) in our study, significant positive
genetic correlations were found for PW with EN (0.47),
egg size (0.51) and egg volume (0.67) in US lines of rain-
bow trout [13]. Gall and Neira [15] reported also in
Coho salmon that PW correlated moderately with EN
(0.32) or EW (0.37), and more strongly with SW (0.56).
Therefore our results are not consistent with the two
previous studies in salmonid species regarding genetic
associations between female body weight and egg pro-
duction traits.
Earlier studies indicated that selection for body weight

at any age would result in a correlated response for body
weight at other ages including age at slaughter and age
at spawning for females [20] and that genetic correla-
tions between yearling weight, post-spawning weight of
females and egg size, egg number and egg volume were
moderate but positive in rainbow trout [14]. These find-
ings led to the assumption that breeding programs de-
signed to increase body size would result in improving
egg production traits [14]. However our results do not
really validate this assumption since FW and PW do not
appear to be genetically correlated - neither positively
nor negatively - to any of the reproduction traits (SD,
SW, EN, EW or ED). It is therefore important to con-
sider direct selection for improving egg production traits
in rainbow trout breeding programs.

Genetic architecture
The credibility/confidence intervals associated with the
QTLs were large in most cases, which precluded the
meaningful identification of potential underlying candi-
date genes that may explain the phenotypic variations
observed for female reproduction traits. Nevertheless,
based on the functional information given in the human
gene database GeneCards® [21, 22] and described pheno-
types in mutant mice or worms, we were able to propose
five candidate genes for female reproduction traits (3 for
SD, 1 for ED and 1 shared by EN and SW). No pheno-
types were described for these candidate genes in the
zebrafish database ZFIN [23]. As far as we know, our
study is the first report for QTLs and candidate genes
playing for fecundity and egg size traits in rainbow trout.
Fitness traits such as spawning date and body weight

are major factors in the life history of salmonid fishes.
Despite the fact that some recent QTLs studies have fo-
cused on growth traits in rainbow trout [17, 19] the only
significant SNP we detected for female body weight was
not in the vicinity of any QTL regions reported for trout
body weight. This SNP was not presented in Table 2

because the detected association was considered as a
spurious one. There was indeed no evidence for a QTL
under GBLUP analysis and only a single SNP was de-
tected on Omy1 with a logBF > 6 in an intergenic region
between crocc2 and slco1f1 genes that are not annotated
as playing a role in growth function.
In our study, the highest significant (p-value < 10− 6 at

the genome level) SNP was found for SD on Omy6. It
corresponds to the only significant QTL for SD under
GBLUP analysis and this single SNP explained over 7%
of the genetic variance under BayesC approach. The
SNP Affx-88,920,061 is located within the importin-11
gene (alias Ran-Binding Protein 11) that plays a receptor
role in nuclear protein import. The phenotypes observed
in a MGI mouse strain (ID MGI:5617259) with a muta-
tion in this gene may help to understand the effects of a
variant allele may have on spawning date in rainbow
trout. The double mutant homozygote is a pre-weaning
lethal phenotype in mouse and the heterozygote exhibits
decreasing levels of iron and glucose levels in the blood.
In addition, the heterozygote male had an abnormal eye
(lens) morphology. However we may wonder whether
the association is a spurious one due to a very high rate
of mendelian errors at this SNP position when compar-
ing genotypes from progeny and their parents. Indeed,
104 mendelian errors were observed at this SNP while
the medium number of mendelian errors was only 3 for
the 4067 SNPs (out of 27,799 SNPs) with at least one
mendelian error detected.
While the genetic architecture underlying SD is still

largely unknown, a lot of QTLs affecting SD or age at
sexual maturation have been detected in salmonid spe-
cies during the last 20 years [24–30]. Due to the low
density of markers and the non standardisation of link-
age group names in early studies, it is difficult to report
whether our QTLs may have been detected in other
studies. Nevertheless, as far as we know, no QTL for SD
in salmonid species has been reported in the neighbor-
hood of the highly significant SNP we observed on
Omy6. Under Bayesian GWAS, three others QTLs for
SD were detected on Omy11, Omy15 and Omy27. Each
of them explained between 1.2 and 1.9% of the genetic
variance of SD. There is no obvious candidate gene for
the large QTL region on Omy11. On the contrary, it is
worth mentioning that the peak SNP on Omy15 is posi-
tioned within the ARHGEF4 (Rho Guanine Nucleotide
Exchange Factor 4) gene that acts as guanine nucleotide
exchange factor (GEF) for RHOA, RAC1 and CDC42
GTPases. MGI mutant phenotypes for ARHGEF4 con-
cern in particular immune system and metabolism with
decreased hemoglobin content, decreased IgE level, de-
creased IgG1 level, decreased T cell number, increased
mature B cell number, increased circulating alkaline
phosphatase level, increased circulating total protein
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level and decreased circulating triglyceride level. Despite
the large credibility interval for the last QTL on Omy27,
we may also propose NR2E1 as a convincing candidate
gene because the peak SNP is located just behind this
estrogen-related receptor gamma-like gene. This gene is
an orphan receptor that binds DNA as a monomer to
hormone response elements and is in particular involved
in the regulation of retinal development and essential for
vision. It may be involved in retinoic acid receptor regu-
lation in retinal cells. MGI mutant phenotypes for
NR2E1 have abnormal optic nerve and retina morph-
ology, abnormal brain morphology, decreased body size
and total body fat amount and decreased female fertility.
Interestingly, we can hypothesize that two of the four
QTLs detected for SD may be associated to abnormal
eye morphology and defects in vision that may render
trout less sensitive to the photoperiod stimuli.
Concerning the fecundity traits EN and SW, two QTLs

sharing the same SNP peaks on Omy2 (Affx-88,951,720)
and Omy12 (Affx-88,950,456) were detected, confirming
that the two traits are biologically very close. The QTL
on Omy2 explained 3.2 and 3.0% of the genetic variance
for EN and SW, respectively. The QTL on Omy12 ex-
plained about 2.5–2.7% of the genetic variance for each
trait. For EN, a third QTL was detected on Omy8 that
explained 1.4% of the genetic variance. No obvious gene
candidate could be proposed for this QTL. For SW, a
third QTL was detected on Omy2 that explained 1.9% of
the genetic variance and a last QTL was detected on
Omy1 that explained 1.3% of the genetic variance. These
last two QTLs for SW had large credibility intervals (> 1
Mb) and no obvious candidate gene could be proposed.
Concerning the common peak SNP for the QTL on
Omy2 shared by EN and SW, its location is in-between
the MPRD gene (cation-dependent mannose-6-
phosphate receptor-like) and the PHC1 gene (polyho-
meotic-like protein 1). This PHC1 gene is a homolog of
the Drosophila polyhomeotic gene, which is a member
of the Polycomb group of genes. It is a component of a
Polycomb group (PcG) multiprotein PRC1-like complex,
a complex class required to maintain the transcription-
ally repressive state of many genes, including Hox genes,
throughout development [31]. MGI homozygous mutant
phenotypes for the PHC1 gene exhibit perinatal lethality,
posterior skeletal transformations and defects in neural
crest derived tissues, including ocular abnormalities, cleft
palate, parathyroid and thymic hypoplasia and cardiac
anomalies. We hypothesize that this gene may have a
role in rainbow trout fecundity.
For egg size traits measured by EW and ED respect-

ively, we will focus on the three QTLs on Omy1 showing
the highest consistency of results across GWAS (Table
2). Among those QTLs, the same QTL region on Omy1,
spanning between 66.539Mb and 68.881Mb was

detected for the two traits, although the peak SNPs were
different across GWAS (67.15Mb for GBLUP and 68.66
Mb for BayesCπ). No obvious candidate gene could be
proposed in this large QTL region that explained 2% of
the genetic variance for EW.
Regarding EW, there was a strong evidence for a dis-

tinct QTL explaining 1.2% of the genetic variance, in the
region spanning from 60.498Mb and 64.633Mb on
Omy1 with the peak SNP very close to 64.633Mb in an
uncharacterized protein (LOC110527930). No candidate
gene could be proposed within this QTL region, but in
the close vicinity of this QTL region, let us mention the
presence of the prkg2 gene (located between 64.660 and
64.676Mb on Omy1) whose role is important in oocyte
maturation in mammals and zebrafish [32]. This prkg2
gene may be therefore suggested as a functional candi-
date gene.
Regarding ED, there was evidence for another QTL on

Omy1 that explained nearly 2% of the genetic variance
in the region spanning between 70.848Mb and 71.813
Mb. The peak SNP (at 71.813Mb) is close to the pos-
ition (71.675–71.699Mb) of the WAPLA gene (wings
apart-like protein homolog) which is a straightforward
gene candidate for explaining this last QTL on Omy1.
Indeed this gene is a regulator of meiotic chromosome
structure and function, playing a role in sister chromatid
cohesion, cohesin association with chromatin, DNA
double strand break repair and polar body positioning
following meiotic divisions during oogenesis [33, 34].
Worm C. elegans mutants have an egg-laying defect and
reduced brood size with 21% displaying embryonic le-
thality whilst 28% arrest at the larval stage [34].

Genomic selection
The implementation of genomic selection in a breeding
program for female reproduction traits would allow a
gain in accuracy of 16 to 32% (depending on the trait
studied) compared to BLUP selection when considering
a reference population of about 1100 individuals. For a
smaller reference population of 670 individuals, genomic
selection will also be more efficient than pedigree-based
selection. In the literature, several studies in salmonids
[17, 35–38] reported moderate to strong gains in accur-
acy (+ 11% to 110%) for genomic selection compared to
BLUP selection of depending on the genetic architecture
of the traits and the size of the reference populations. In-
creasing by 60% the size of the training population
(starting from 670 individuals) in a fish line whose ef-
fective population size is estimated around 50 [6], in-
creased the accuracy of GEBVs by 6% to 11% depending
on the trait considered. Considering Goddard [39] pre-
diction equation of GS accuracy, we could have expect
an increase of accuracy of about 20% in our rainbow
trout line when increase our training population from
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670 to 1070 animals. Significantly higher gain in accur-
acy (about + 80%) was described for gestation length
(h2 = 0.4) in a pig line when increasing by 130% the
training population size (starting from 550 sows) in a
Large White line with effective population size estimated
to be about 100 [40].
We showed a severe loss of accuracy when the degree

of kinship between the training and the validation popu-
lations was less related and this was more important for
BLUP than GBLUP. It is well known that close relation-
ships between animals in the training and validation sets
increase the accuracy of genomic predictions compared
to the ones derived for an independent validation popu-
lation [41]. Under scenarios T1 and T2, our estimates of
GS accuracy are close to the theoretical estimates de-
rived from Goddard [39]’ formula, which makes sense
since one of the basic assumption beyond his formula is
that GS accuracy comes only from linkage disequilib-
rium across the whole population and not from any link-
age association and family structure. The fact that the
loss of accuracy was less severe for GBLUP than for
BLUP had also be shown on poultry [42]. This
phenomenon has also been quantified in a salmon popu-
lation dedicated to genomic selection for sea lice resist-
ance [36]. What is less known is that these strong
decreases in accuracy are also associated with strong
biased in the predictions (see Supplementary Table 2,
Additional File 2). While the variance of GEBVs was not
significantly overestimated when the training and valid-
ation sets were closely related (see Supplementary
Table 1, Additional File 2), it became either strongly in-
flated or deflated when relationships became more dis-
tant. The same observation held for BLUP predictions,
even in a larger extent. This may be a strong issue to
correctly predict genetic trends or performing optimal
multitrait index selection since the magnitude of the in-
flation varied a lot across traits. Nevertheless, when per-
forming selection within cohort based on a training
population including sibs of the candidates, it does not
appear to be a problem.

Conclusions
In our study, all female reproduction and weight traits
were moderately heritable with spawn weight showing
strong and favorable genetic correlations with number of
eggs in the spawn and individual egg size traits (egg
average diameter or weight). On the contrary, number of
eggs in the spawn was uncorrelated to egg size traits and
female body weight (just before or after spawning) was
not genetically correlated to any of the reproduction
traits. Therefore it is unlikely that selection for growth
will induce any indirect improvement for female
reproduction traits. It is thus important to consider

direct selection for spawn weight for improving egg pro-
duction traits in rainbow trout breeding programs.
The GWAS results suggested that female reproduction

traits are highly polygenic. Only six QTLs over the 19
identified across the five traits studied explained at least
2% of the genetic variance. These results suggest that
gene-assisted selection will be useless for improving
reproduction traits. However, genomic selection based
on a reference population of only one thousand individ-
uals related to candidates may improve the efficiency of
BLUP selection from 16 to 37% depending on female
reproduction traits. Cross-validation test of genomic pre-
diction highlighted the clear increase in prediction ac-
curacy compared to that of pedigree-based prediction in
almost all population samples. The accuracy of GBLUP
was the highest when training and validation sets were
closely related but the relative advantage over pedigree-
based prediction within a population was the largest
when relationships were more distant.

Methods
Phenotypes
Phenotypes were collected at 2 years of age in females
from two successive cohorts produced in 2014 and 2015,
hereafter named C1 and C2, and composing the 9th gen-
eration of selection of the trout breeding company
“Viviers de Sarrance”. Those cohorts constituted the
broodstock of the company and came from two related
paternal cohorts S1 and S2 and from different groups of
dams D1 and D2 of the same maternal cohort produced
in 2011 (Fig. 4). The animals used in the study were
reared at the French farm “Viviers de Sarrance” (Pisci-
culture Labedan, 64,490 Sarrance, France). They were
released after the data and egg collection and they repro-
duced a second time the year after the study.
Raw phenotypes collected were the weight of the

ready-to-spawn female (FW), its post-spawning weight
(PW), the weight of the total egg mass hereafter called
the spawn weight (SW), the length of 50 eggs aligned
along a graduated rule, the weight and the number of
eggs in a sampling spoon of 2.5 ml, the spawning week
number in the calendar year and the presence of over-
mature eggs in the spawn. All performance records
which were more than 4 standard deviations from the
mean in absolute value were considered as outliers and
discarded from the study. Analyzed traits were the raw
phenotypes FW, PW and SW and four derived pheno-
types: egg average diameter (ED), egg average weight
(EW), egg number of the spawn (EN) and spawning date
(SD). ED was calculated as the length of 50 aligned eggs
divided by 50. EW was derived as the ratio of the weight
of eggs to the number of eggs in the sample of 2.5 ml.
EN was calculated as the ratio of SW to EW. SD corre-
sponded to the rank of the week number within the
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spawning period, with discrete values ranging from 1
(for the first week) to 5 (for the 5th and after weeks)
within cohort. In total, the phenotypes of 1517 fish were
considered in the study (Table 4).

Genotypes
Among the 1517 phenotyped fish, 1346 fish (726 and
620 individuals from C1 and C2 cohorts, respectively)
were genotyped for 57,501 SNPs (Single Nucleotide
Polymorphism markers) with the Axiom™ Trout Geno-
typing array [43] at the INRAE genotyping Platform
Gentyane. Most of the fish have their parents also geno-
typed for the 57,501 SNPs. Only 45 phenotyped fish had
ungenotyped dams and 2 other phenotyped fish had
ungenotyped sires. Those fish were retained for the gen-
etic analysis considering either unknown dam or un-
known sire in their pedigree. The remaining 1301 fish
were produced by 83 dams and 71 sires within 7 factor-
ial plans of 12 dams mated to 10 or 11 sires. The gen-
omic relationships among fish were in average 0.05
between cohorts C1 and C2, 0.08 within cohort C1 and
0.07 within cohort C2. The highest genomic relationship

values were 0.30 across cohorts, 0.69 and 0.66 within co-
hort C1 and C2, respectively.
Quality controls of genotyped SNPs were performed

as described in D’Ambrosio et al. [6] in particular to re-
move SNPs with probe polymorphism and multiple loca-
tions on the genome assembly (accession number: GCF_
002163495.1). Only the 29,799 SNPs with a call rate
higher than 0.97, a test of deviation from Hardy-
Weinberg equilibrium with a p-value > 0.0001 and a
minor allele frequency higher than 0.05 were retained
for the analysis. All missing genotypes for the 29,799
SNPs were imputed using the FImpute software [44].

Pedigree-based BLUP-animal model and estimation of
genetic parameters
Mixed linear BLUP - animal models were used to get
the estimated breeding values (EBV) and to estimate
genetic parameters based on pedigree information.
For any trait i among the six reproduction traits con-

sidered in the study, the following statistical model was
considered to describe the vector of performance yi of
the 1346 fish:

Fig. 4 Pedigree structure of cohorts C1 and C2 produced in 2014 and 2015, respectively. MGP: maternal grandparents of C1 and C2; PGS1 (PGS2):
paternal grandsires of C1 (C2); D1 (D2) and S1 (S2): dams and sires of C1 (C2)

Table 4 Summary statistics of 2-year female reproduction and weight traits in the rainbow trout broodstock

Trait Number Mean SD Min Max

Spawning date (SD, week rank) 1517 2.52 1.54 1 5

Ready-to-spawn female body weight (FW, g) 1516 2067 448 1010 3580

Post-spawning body weight (PW, g) 1515 1845 408 840 3116

Spawn weight (SW, g) 1517 187 71 12 398

Egg number (EN, #) 1507 4710 1743 577 10,434

Average egg weight (EW, mg) 1501 39.9 6.5 20.0 68.1

Average egg diameter (ED, mm) 1504 4.03 0.19 3.32 4.72

SD Standard deviation
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yi ¼ Xiβi þ Ziui þ ei ð1Þ
where βi, ui and ei are the vectors of fixed environmen-
tal effects, genetic additive effects and residual effects
explaining the performance of all phenotyped animals,
respectively. X and Z are the incidence matrices for βi
and ui, respectively.
For all the traits, the cohort group (C1 or C2) was

considered as the main fixed effect. For the traits FW,
SW, EN and ED, an additional fixed effect due to the
presence of overmature eggs was significant and there-
fore considered in the models. The week of spawning
had also a significant effect on the traits FW, PW, SW,
EN, EW and ED and was considered as a covariate factor
nested within cohort.
Because the targeted breeding goal was to increase egg

production at a constant weight of female, additional genetic
and genomic analyses of SW and EN were performed con-
sidering those two traits adjusted (SW* and EN*) for female
weight (considered as a covariate factor within cohort).
Tracing back over 8 generations the pedigree of the

1346 phenotyped fish, the vector ui corresponded to the
breeding values of 15,265 individuals related through the
pedigree relationship matrix A.
To estimate all variance components by Average Infor-

mation Restricted Maximum Likelihood algorithm [45],
eight multi-trait models were run considering four traits
in joint analyses. With the female body weight (BW)
representing FW in a first set of 4 multi-trait analyses
and PW in a second set of 4 multi-trait analyses, the fol-
lowing combinations of traits were considered in the
joint analyses: [BW, SD, EW, SW], [BW, SD, EW, EN],
[BW, SD, ED, EN] and [BW, SD, ED, SW]. For a given
BW, results for any genetic or phenotypic parameter
were the averages of 4 estimates, except for the correla-
tions between FW and PW, SW and EN, EW and ED
that were estimated under unique bivariate models due
to convergence issues related to the very high correla-
tions between those pairs of traits.
The EBV were estimated using BLUPf90 package and

the variance components using AIREMLf90 program [46].

Genomic BLUP model and QTL detection
Genomic BLUP (GBLUP) is an analogous approach to
BLUP considering a genomic related matrix G [47] in
place of a pedigree matrix A. The performance modeling
is the same as for the BLUP model described in eq. (1),
but only the performance of the genotyped animals can
be integrated into a conventional GBLUP analysis:

yi ¼ Xiβi þ Zigi þ ei ð2Þ
with the vector gi corresponding to the breeding values
of 1346 phenotyped and genotyped individuals related
through the genomic relationship matrix G.

The G matrix and the genomic estimated breeding values
(GEBV) were estimated using BLUPf90 package [48].
Genome-wide association studies (GWAS) were per-

formed considering the GBLUP models to identify QTL.
The postGSF90 module [49] of the BLUPF90 package
makes it possible to obtain the estimated effects of the
SNPs (âi) from the genomic breeding values ĝ i predicted
for the genotyped animals according to the equation:

âi ¼ d Z
0
Z d Z0½ � − 1

bg i ð3Þ

where d is the vector of weights associated with the SNP
effects.
A region of the genome was considered to be a QTL

when the -log10(p-value) for a SNP of this region was
equal or greater than 5.0 (which corresponds to a
chromosome-wide significance threshold of 1% derived
as -log10(0.01/(n/30)) after Bonferroni correction with
n = 29,799 the total number of SNPs included in the
analysis). The peak SNP was considered as very signifi-
cant when its -log10(p-value) was at least equal to
-log10(0.01/n) = 6.5, corresponding to a genome-wide
significance threshold of 1% after Bonferroni correction.
Considering a drop-off value of 1.5 log unit of p-value
[50], the QTL confidence interval was delimited by inte-
grating all the SNPs into a 1Mb sliding window around
the peak SNP as long as the new SNPs exhibited a
-log10(p-value) greater than the peak value −1.5.
A Bayes Cπ strategy [51] was used to confirm those

QTLs and to better estimate the variance explained by
those QTLs. Therefore, a general linear mixture model
was defined in which a fraction π of the 30 K SNPs was
assumed to have a non-zero effect at each cycle of the
MCMC algorithm. A total of 100,000 cycles were per-
formed, with a burn-in period of 5000 cycles. Results
were saved every 20 cycles. Convergence was assessed by
visual inspection of plots of the posterior density of gen-
etic and residual variances and by deriving high correla-
tions (r > 0.99) between GEBVs estimated from different
chains of the MCMC algorithm. Assuming for π a beta
distribution B(α,β) with α = 300 and β = 29,800, the π
value was kept almost constant at 1%, corresponding to
approximatively 300 SNPs selected at each iteration
among the 29,800 markers. By trial-and-error, this π
value was considered as a good compromise in our vari-
able selection algorithm between the high degree of pol-
ygeny of the quantitative traits under study and the
limited number of individuals (n ~ 1300) in our dataset
that led to consider p = 300 < n to correctly estimate p
SNP effects simultaneously. We used the BESSiE soft-
ware [52] to perform the Bayesian analyses.
The degree of association between each SNP and phe-

notypes was assessed with the Bayes Factor (BF) that
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involves π and Pi, the probability of the ith SNP to have

a non-zero effect: BF ¼ Pi=ð1 − PiÞ
π=ð1 − πÞ

As proposed by Kass and Raftery [53], the logBF was
computed as twice the natural logarithm of the BF and
the threshold logBF ≥6 was used for defining evidence
for a QTL. As proposed by Michenet et al. [54], a cred-
ibility interval was built around the peak SNP integrating
to the QTL region the SNPs with logBF ≥3 that were lo-
cated close to the peak SNP using a sliding window of 1
Mb on both sides of the peak SNP. Following Michenet
et al. [54], we considered that a peak SNP with 6 ≤ logBF
< 8 corresponded only to a putative QTL unless the
QTL region explained at least 1% of the genetic variance;
in that case, the QTL was considered as having a strong
effect on the trait of interest.
Candidate genes located within the confidence or

credibility intervals estimated using either GBLUP or
BCπ analysis were listed from the NCBI Oncorhynchus
mykiss Annotation Release 100 (GCF_002163495.1).

Criteria of validation of selection efficiency
To assess the BLUP or GBLUP selection efficiency,
cross-validation tests were performed for different sce-
narios varying the training population size and its re-
latedness to the validation population. Efficiency was
assessed by the accuracy of selection and the inflation
coefficient of EBV as a measure of selection bias. The ac-
curacy of selection was derived as the correlation be-
tween (G) EBVs of individuals in the validation set and
their corrected phenotypes (adjusted for the covariate
and fixed effects) divided by the square root of the trait
heritability [55]. The inflation coefficient was derived as
the regression coefficient of the corrected phenotypes on
the (G)EBVs. In the absence of selection bias, this coeffi-
cient is expected to be equal to 1; the coefficient value is
below 1 in case of EBV over-dispersion (inflation) and
the value is above 1 in case of EBV under-dispersion.
To test the training size effect, 40 replicates of Monte-

Carlo ‘leave-one-group-out’ cross-validation tests [56]
were run. For a given replicate, 269 fish for the valid-
ation set, 672 fish for the small training set (T-) and
1077 fish for the large training set (T+) were randomly
chosen across the 1346 individuals phenotyped and ge-
notyped. For the T+ and T- scenarios, accuracy of selec-
tion and inflation coefficient were derived as the mean
over the 40 replicates of the correlation and regression
coefficients previously described between (G) EBV and
corrected phenotypes for the validation population.
To test the relationship effect between the training

and validation populations, the C1 and C2 fish were al-
ternatively used as the training and validation sets, the
scenarios T1 and T2 corresponding to C1 and C2 fish in
the training sets, respectively (Table 3).
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accuracy (r) and inflation coefficient (b) of EBVs and GEBVs for training
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