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Abstract: In this paper, the fuel properties of mixtures of diesel fuel and ethanol and diesel fuel
and butanol in the ratio of 2.5% to 30% were investigated. The physicochemical properties of the
blends such as the cetane number, cetane index, density, flash point, kinematic viscosity, lubricity,
CFPP, and distillation characteristics were measured, and the effect on fuel properties was evaluated.
These properties were compared with the current EN 590+A1 standard to evaluate the suitability of
the blends for use in unmodified engines. The alcohols were found to be a suitable bio-component
diesel fuel additive. For most physicochemical properties, butanol was found to have more suitable
properties than ethanol when used in diesel engines. The results show that for some properties, a
butanol–diesel fuel mixture can be mixed up to a ratio of 15%. Other properties would meet the
standard by a suitable choice of base diesel.

Keywords: butanol; ethanol; biomaterials; alternative fuel; second generation; distillation; cetane
number; lubricity; CFPP

1. Introduction

Renewable fuels are increasing in the fuel mix every year. The increasing share is
driven by economic and political factors as well as oil scarcity. Renewable fuels are seen as
one of the options to reduce dependence on oil and contribute to reducing emissions from
internal combustion engines [1].

Diesel engines produce different types of emissions. Like petrol engines, they produce
CO2, CO, NOx, and unburned hydrocarbons (UHC). In addition, they also emit particulate
matter (PM2.5) of various sizes and compositions [2]. Based on available data on health
effects, these PMs can cause serious health problems. Exposition can cause pulmonary
fibrosis [3], lung cancer [4], asthma [5], or DNA mutation [6,7].

Reducing the amount of particulate matter emitted is therefore a major initiative that
has strong support from policy makers around the world [8]. The emissions can be lowered
by installing filters [9] or by the addition of other compounds that do not produce PM,
such as alcohols, including ethanol or butanol [10], or has overall lower emission levels,
such as biodiesel (fatty acid methyl ester—FAME) [11].

Yet, biodiesel is currently the most widely used alternative fuel. Currently, the most
widely used biodiesel production process is transesterification, which is a chemical reac-
tion between oil or vegetable or animal fat (triglycerides) and alcohol in the presence of
a catalyst to produce ethyl esters or methyl esters (biodiesel) and glycerol (byproduct).
There are many types of catalytic processes, including alkali-catalyzed transesterification,
acid-catalyzed transesterification, acid- and alkali-catalyzed two-step transesterification,
enzyme-catalyzed transesterification, or non-catalytic conversion techniques for transester-
ification, which further determine the quality characteristics of the fuel [12].
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The main raw materials for the current production of biodiesel are vegetable oils
(olive, sunflower seed, corn, peanut, soybean, rapeseed, corn, palm, etc.) [13], or algae and
microalgae (Chlorella sp., Chlamydomonas reinhardtii, Dunaliella tertiolecta, Bacillariophyceae,
Chlorophyceae, Chrysophyceae, etc.) [14,15]. Recently, the use of waste cooking (frying) oils
has gained much attention as an alternative, environmentally friendly, abundant, and
sustainable feedstock for biodiesel production, due to their lower cost, compared to other
feedstocks, and the elimination of the negative harmful environmental impacts of dumping
waste oils from households and industry down the drain [16].

Because of the above problems with biodiesel, scientists are focusing more on other
biofuels that can also be produced from waste and other non-edible materials, such as
alcohols. The conventional way to produce alcohol is by chemically converting simple
sugars from grains, such as corn or sugar cane. This type of fuel is considered a first
generation biofuel [17,18]. A more sustainable method is to use lignocellulosic materials,
i.e., materials composed of cellulose, hemicellulose, and lignin. Biofuels made from these
materials are considered to be second generation biofuels.

Cellulose, shown in Figure 1, is the main component of biomass (about 45% of the dry
weight of wood) and consists of a D-glucose polymer linked by a β-1,4 glycosidic bond to
form cellobiose molecules [19]. These polymer chains are linked by hydrogen bonds and
van der Waals forces in which the glucose unit is compactly bound to the others to form
so-called cellulose fibers. These are wrapped with hemicellulose [20].

The crystallinity of cellulose depends on this ordered structure of cellulose fibers. The
strong interaction of hydrogen bonds between the cellulose fibers makes it insoluble in
water but soluble in dilute acid solutions at high temperature [19,21].
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Figure 1. Chemical representation of a single cellulose chain repeat unit depicting two glucose units
with a β-1,4-glycosidic linkage [22].

Hemicellulose, shown in Figure 2, is a copolymer composed of various pentoses,
hexoses, and uronic acids. Common sugars contained in hemicellulose are xylose, ara-
binose, mannose, or galactose with 50–200 units. The main component of agricultural
biomass and hardwood hemicellulose is xylan, while the main component of softwood is
glucomannan [17]. Due to the presence of pentose sugars, hemicellulose has an affinity for
water, and at high concentrations, aqueous solutions are viscous [19,21].
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Figure 2. Chemical representation of a hemicellulose chain consisting of xylose and arabinose
pentoses [23] (edited).

Lignin is a copolymer of cross-linked polymers of phenolic monomers. i.e., coumaryl
alcohol, sinapyl alcohol, and coniferyl alcohol. These phenolic monomers are linked to
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each other by carbon–carbon (C–C) and carbon–ether (C–O) bonds [24]. This type of
binding increases plant cell wall stability and resistance to pathogenic infections [25].
It acts as a physical barrier against enzymatic hydrolysis and microbial decomposition
because it is tightly bound to cellulose fibers [24]. Enzymatic or microbial delignification
is difficult because lignin derivatives act as toxic compounds for microorganisms and
reduce the activity of hydrolytic enzymes. The location of lignin is between cellulose and
hemicellulose, which bind to each other [21,24].

Different lignocellulosic sources have different chemical compositions. Table 1 shows
common examples of lignocellulosic materials with approximate proportions of the differ-
ent biopolymers [26].

Table 1. Composition of various agricultural and other lignocellulosic residues [26].

Material Cellulose
(C6H5O10)n [%]

Hemicellulose
(C5H8O4)n [%]

Lignin
(C31H34O11)n [%]

Algae (green) 20–40 20–50 —
Bagasse 32–48 19–24 23–32

Barley straw 31–45 27–38 14–19
Chemical pulp 60–80 20–30 2–10

Coir 36–43 0.15–0.25 41–45
Corn stalk 39–47 26–31 3–5

Corn stover 38–40 28 7–21
Cotton, flax 80–95 5–20 —

Grasses 25–40 25–50 10–30
Hardwood barks 22–40 20–38 30–55

Hardwoods 43–47 25–35 16–24
Newspaper 40–55 25–40 18–30
Rice straw 28–36 23–28 12–14

Softwood barks 18–38 15–33 30–60
Softwoods 40–44 25–29 25–31

Sorghum stalks 27 25 11
Sorghum straw 32 24 13

Sweet sorghum bagasse 34–45 18–28 14–22
Wheat straw 37–41 27–32 13–15

The complex structure of lignocellulosic material makes the processing of fermentable
sugars difficult. Prior to fermentation, the tight structure of the plant biomass must be
disrupted to make it amenable to enzymatic hydrolysis, which is done by various types of
pretreatment [27,28].

Pretreatment of lignocellulose can be carried out by physical, chemical, physico-
chemical, and biological agents. Physical pretreatment includes mechanical interactions
and irradiation [29]. Chemical pretreatment includes acid or alkaline pretreatment, treat-
ment with ionic liquids, organic solvents, the use of sulphites, alkaline wet oxidation or
ozonation [30]. Physicochemical pre-treatment includes steam explosion (catalyzed or
uncatalyzed), hot water pre-treatment, ammonia fibers explosion or carbon dioxide explo-
sion [31]. Biological agents include the use of microorganisms to pre-treat lignocellulose.
Combinations of individual pretreatments that target specific chemical components of
lignocellulose have proven to be a promising path [32].

Pre-treatment is followed by hydrolysis and fermentation, which can take place
separately or simultaneously. During hydrolysis, polysaccharides are broken down into
simple sugars. This process may take place in the presence of acids, enzymes or both
simultaneously [33].

The success of fermentation depends on the quality of the pretreatment. In addi-
tion, parameters such as temperature, pH, agitation or oxygen concentration can cause
undesirable effects on the metabolism of microorganisms [34].

Microorganisms that are able to ferment pentose or hexose sugars to alcohols are, for
example, Clostridium acetobutylicum, Klebsiella pneumoniae, Leuconostoc mesenteroides, Sarcina
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ventriculi, or Zymomonas mobilis. Some species of fungi are also capable of fermentation
to form alcohols, including Aspergillus oryzae, Endomyces lactis, Kloeckera sp., Kluyreromyees
fragilis, Mucor sp., Neurospora crassa, Rhizopus sp., Saccharomyces beticus, S. cerevisiae, S.
elltpsoideus, S. oviformis, S. saki, or Trulaporium cutaneum [35].

Due to the aforementioned feedstock implications and subsequent processes that
require extensive and costly chemical or physical pretreatment, this has proven to be a
major impediment to large-scale fuel production [18,36,37].

The most common biocomponent in diesel fuel in the European Union is a biodiesel.
Despite the advantages of using biodiesel, one of the main issues concerning the use of
biodiesel is its poor low-temperature flow property, and many researchers have found that
adding biodiesel to diesel fuel will increase NOx emissions [38–44]. For this reason, using
the same bioalcohols used in a gasoline engine can be an interesting option. Table 2 shows
the fuel properties of winter diesel fuel Class F, FAME Class F, ethanol, and n-butanol.

In addition to suitable fuel properties, it has also been shown that the use of these
alcohol blends can suppress soot formation (problem of pure diesel fuel) without sig-
nificantly increasing NOx emissions (problem of FAME), eliminating the smoke–NOx
trade-off [45–47].

Table 2. Comparison of the properties of butanol isomers with other conventional fuels [48–59].

Properties Diesel Fuel (Class F) FAME (Class F) Ethanol n-Butanol

Molecular weight 198.4 242–294 46.07 74.11
Cetane number >49 >51 5–8 12

Research octane number 20–30 — 108 94
Motor octane number — 860–900 89–103 78

Density [kg/m3] at 20 ◦C 820–860 >101 789 808
Flash point [◦C] >55 <−20 14 35

CFPP [◦C] <−20 — <−51 <−51
Cloud point [◦C] −10 to −34 — — —

Lubricity WSD [µm] <460 427–671 1057 607
Water solubility at 25 ◦C [g/L] <0.2 <0.5 miscible 73

Boiling point [◦C] 180–370 295–366 78.5 117.7
Flammability [vol%] 0.6–7.5 — 3.3–19 1.4–11.2

Reid vapor pressure [kPa] 0.2–0.7 0.2–0.6 16.5 6
Viscosity [mm2/s] at 25 ◦C 2–4.5 3.5–5 1.07 2.63

Energy density [MJ/L] 35.86 32.7 25 29.2

Ethanol–diesel fuel blends are commonly used in some countries, sold under commer-
cial names, such as E-diesel (containing about 7–15% ethanol), or O2Diesel™ (consisting of
7.7% vol. ethanol), among others [60]. However, the engine usually has to be modified for
these blends.

This article aims to answer what is the maximum permissible level of ethanol and
butanol in diesel fuel to ensure that the mixture can be used for unchanged engines, i.e.,
to meet the EN 590+A1 standard, and also, which alcohol–diesel blend has better fuel
properties. This analysis will provide a comprehensive and practical view of these fuel
blends in terms of everyday usability.

2. Materials and Methods

To determine the effect of n-butanol and ethanol in diesel fuel, mixtures with working
names were selected as follows:

• ETH x: vol% ethanol and (100 − x) vol% diesel fuel (e.g., ETH 5).
• BUT x: vol% n-butanol and (100 − x) vol% diesel fuel (e.g., BUT 5).

Pure diesel fuel was used for the measurements. It complies with the standard EN
590 class F—winter without FAME content (produced by Čepro, a.s.). The water content
was 105 mg.kg−1, and the oxidative stability exceeded 20 h. n-Butanol AR (Analytical
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Reagent purity) was produced by LachNer, s.r.o. The tested bioethanol for comparison
fully complied with the requirements of EN 15376:2014 standard.

To identify the fuel properties of the mixtures, the physiochemical properties were
determined. In the evaluation of the fuel, the cetane number, cetane index, density, flash
point, kinematic viscosity, lubricity, cold filter plugging point, cloud point, and distillation
characteristics were measured. These fuel properties were compared with fuels containing
different volumetric amounts of alcohols.

An analytical method for the determination of ethanol and n-butanol in diesel fuel
using gas chromatography with flame-ionization detection (GC-FID) was also validated
and conducted. GC analyses were carried out, using the gas chromatograph Varian 3300
(Varian, Walnut Creek, CA, U.S.A.), equipped with a fused silica capillary column DB-5
(30 m × 0.25 mm I. D., film thickness 0.25 µm) and a flame ionization detector (FID), where
hydrogen (30 mL/min) in air (300 mL/min) was used. The column temperature program
was 50 ◦C for 3 min, at a gradient of 8 ◦C/min, and upper isotherm of 260 ◦C for 5 min;
the injection port and detector temperature was 260 ◦C, at a split ratio of 1:20, with carrier
gas nitrogen (flow 1 mL/min). The test samples were dissolved in isooctane, and to all
samples, nonane was added as an internal standard. Samples were mixed according to the
following scheme: 1000 µL of isooctane + 10 µL of diesel fuel + 10 µL of nonane. Diluted
samples with a suitable solvent, in this case, isooctane, improved the separation efficiency
of the chromatographic column.

All measurements were conducted according to the valid standards; a list of them is
provided in Table 3.

Table 3. Standards for the evaluation of the physicochemical properties.

Property Standard

Diesel fuel BS EN 590:2013+A1:2017 [61]
Cetane number ISO 5165:2017 [62]

Cetane index ISO 4264:2018 [63]
Density ISO 3675:1998 [64]

Flash point ISO 2719:2016 [65]
Kinematic viscosity ISO 3104:1994 [66]

Lubricity ISO 12156-1:2018 [67]
Cold filter plugging point DIN EN 116 [68]
Distillation characteristics ISO 3405:2011 [69]

Gas chromatography EN 14078:2014 [70]

All parameters were always measured three times, and the results represent the aver-
age value from three measurements with the expanded uncertainty with a 95% confidence
interval. The expanded uncertainty U of the measurand was obtained by multiplying
the combined standard uncertainty u(y) by a coverage factor k, which provides the best
estimate of the value attributable to the measurand. The value of the coverage factor k was
chosen to meet the probability of coverage of about 95%, which, for a normal distribution,
corresponds to the factor k = 2 [71].

Matlab 2015b (MathWorks, Natick, MA, USA) and R 4.0.3 (R Core Team) [72] were used
for statistical evaluation and graphical representation of the results. Star Chromatography
Workstation vs. 4.51 software (Varian, Walnut Creek, CA, USA) was used for GC data
collection.

3. Results
3.1. Fuel Parameters

The cetane number determines the ability of diesel fuel to ignite during compression
ignition. Increasing the cetane number shortens the length of the ignition lag time. De-
creasing the cetane number results in erratic engine operation and higher noise levels and
has a negative effect on emissions, especially during cold starts when the engine does not
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generate sufficient heat to burn through the entire fuel charge. The result is increased CO
and unburned and partially oxidized hydrocarbons—black smoke. The minimum cold
start cetane number limit is 40 units; in the future, it is expected that the cetane number
should be at least 56 units. Measurements are made on special diesel measurement engines,
where a specific fuel sample is compared with a reference sample, and the ignition pattern
is monitored to see if the ignition is the same in both cases when the compression ratio is
changed. The reference samples used are cetane (n-hexadecane—C16H34) with a cetane
number of 100 and 1-methylnaphthalene with a cetane number of 0.

Since the engine test is quite demanding for the cetane number measurement, a cetane
index (CI) was later introduced to describe the ignition ability of fuel. The cetane index is
determined based on the density (ρ) at 15 ◦C and distillation (temperature values of 10%,
50% and 90% recovered—T10, T50, and T90), according to the Equation (1) [63]. The cetane
index does not come out the same as the cetane number for the same fuel; in practice, it is
always several units lower.

CI = 45.2 + 0.0892T10N + (0.131 + 0.901B)T50N + (0.0523 − 0.420B)T90N
+0.00049

(
T2

10N − T2
90N

)
+ 107B + 60B2 (1)

where T10N = T10 − 215, T50N = T50 − 260, T90N = T90 − 310, B = [e−3.5(ρ − 0.85)] − 1
The most important advantage of alcohol-based blends is that they can be used in

diesel engines without any modifications. On the other hand, alcohols have a low cetane
number, so their addition reduces the overall cetane number of the mixture. Ethanol has a
cetane number of 5–8, and butanol, 12. The cetane number can be increased by the correct
choice of the base diesel fuel at the refinery or by adding cetane booster additives, such as
2-ethylhexyl nitrate or 2,2-dinitropropane [73,74].

Figure 3a,b shows the change in the cetane number and cetane index as a function
of the amount of butanol and ethanol added. The minimum permissible cetane number,
according to EN 590, is 51, and the minimum cetane index, according to the same standard,
is 46, both shown in purple. The grey area represents a measurement accuracy of ±0.76%.
The addition of alcohol to diesel fuel results in a significantly lower cetane number. When
5% vol. ethanol or butanol is added to the diesel fuel tested, the cetane number of the fuel
tested is already at the limit defined by the standard. There is a statistically significant
difference between the cetane number and cetane index (p-value = 0.01053, resp. 0.0323);
the data are normally distributed (p-value = 0.59, resp. 0.125). Similar results were found
also in [75,76].
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One of the most frequently monitored quality parameters is also the flash point. In
general, it ranks flammable liquids into hazard classes. The minimum admissible value
of the flash point of a diesel fuel is 55 ◦C, which characterizes it as Class II—shown by
the purple area. The values of the flash point of pure diesel fuel are usually between
58 ◦C and 75 ◦C. The results in Figure 4 show (with ±1 ◦C accuracy) that the addition
of butanol has a strong decreasing influence on the flash point, depending solely on its
content in the diesel fuel. As results show, its value is below the minimum requirement
of the EN 590 standard, even at 2.5 vol%. At higher concentrations of butanol, the value
corresponds to the flash point of pure butanol. In comparison with ethanol, the temperature
drop is even greater, and the mixture does not comply with EN 590. Without any other
treatment, n-butanol–diesel fuel mixtures can be classified as Class I-C or Class II, whereas
an ethanol–diesel fuel mixture would be classified as Class I-B or Class I-C. The flash point
can be increased by the addition of terpineol [77]. This value, however, does not affect the
combustion properties within the engine. It affects necessary safety measures related to the
manipulation with a fuel. There is a statistically significant difference between flash points
(p-value = 0.01379); the data are not normally distributed, so a non-parametric test was
used (p-value = 0.000622). The same trend of a significant drop right after the first addition
of light alcohol was also found by [78–80].
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Figure 4. Flash point of diesel fuel–alcohol mixtures. Purple area highlights exceeding the limit given
by the standard.

The cold filter plugging point (CFPP) is the temperature at which a layer of solidi-
fied paraffin forms a layer so thick that the liquid portion of the diesel no longer passes
through the fuel filter sufficiently. When this temperature is reached, although the diesel
is pumpable, the engine will shut down. Paraffins (a mixture of n-alkanes) are solids that
are normally dissolved in the diesel, but as the temperature drops, they begin to release
from the mixture and crystallize back into a solid, making it impossible to transport fuel to
the engine. The CFPP temperature is the most important cold-flow parameter and roughly
determines the temperature to which the diesel is usable.

The CFPP is measured by the defined cooling of a diesel fuel sample in an apparatus
where the diesel fuel is periodically passed through a system of fine sieves. Crystallized
paraffins gradually clog the sieves and increase the pressure difference in front of and
behind the sieves. The temperature at which a given pressure difference is reached is the
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temperature of the CFPP. The cold parameters differentiate the types of diesel fuel and are
critical to the use and serviceability of diesel fuel in winter and in arctic climate zones.

The addition of ethanol or n-butanol to diesel fuel has a positive effect on the CFPP as
can be seen in Figure 5 together with the ±1 ◦C accuracy. The CFPP gradually decreases
from Class F to Class 1 (around 2.5%) and Class 2 (around 20%). This means that the fuel is
usable, even in arctic climatic zones. There is no statistically significant difference between
CFPP (p-value = 0.5271); the data are not normally distributed, so a non-parametric test
was used (p-value = 0.0346). The CFPP was also measured by [78] with ~14% lower values,
due to the use of arctic diesel fuel as a base.
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by the standard.

Density is mainly determined by the aromatic content. It influences the calorific
value of the fuel, which is related to the composition and proportion of each hydrocarbon,
and it has also commercial importance in fuel supply, where it is used for conversions
(mass–volume). The effect of the diesel fuel density on engine performance is due to the
fact that the injection pump operates by volume, and therefore, the amount of fuel injected
increases with the density. The specific fuel consumption decreases with increasing density.
If the density of the diesel fuel is around the lower limit of the standard, there is a risk of
damage to the moving parts of the fuel system (together with the lubricity). A lubricating
film does not form on the moving parts, and excessive wear occurs. On the other hand,
at high density, the mixture formation is impaired, due to insufficient fuel atomization—
fuel droplets burn only on the surface, resulting in imperfect combustion. The share of
unburned hydrocarbons, soot, and carbon monoxide in emissions then increases, which is
reflected during acceleration and in full power mode as increased engine smokiness (black
smoke). In addition, the density is also used to calculate the cetane index and can be used
to infer the approximate composition of the diesel.

In the case of the density of alcohol–diesel fuel mixtures, there is no rapid decrease
with the addition of n-butanol or ethanol (see Figure 6) together with the ±0.5 kg·m−3

accuracy. According to the EN 590, the lowest admissible density is 820 kg·m−3 at 15 ◦C—
shown by the purple area. The requirement is met up to the concentration of 20 vol% of
ethanol and 25 vol% of n-butanol. There is a statistically significant difference between
densities (p-value = 0.00206); the data are normally distributed (p-value = 0.59). The density
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of butanol–diesel fuel mixtures was also investigated by [78], who found almost identical
results (±1%).
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Figure 6. Density of diesel fuel–alcohol mixtures. Purple area highlights exceeding the limit given by
the standard.

The kinematic viscosity is a measure of the fluidity of diesel fuel and has some
influence on its lubricity (as does density). Diesel with low viscosity does not adhere to the
moving parts of the fuel system, reducing lubricity and increasing wear and risk of seizure.
Viscosity has a significant effect on the droplet size of the fuel injected into the cylinder.
Low viscosity has a positive effect on aerosol formation during diesel fuel injection into the
combustion chamber. High viscosity causes imperfect fuel dispersion in the cylinder and
can also lead to impaired diesel pumpability and impaired filter passage.

According to the results of kinematic viscosity depicted in Figure 7, the influence of
ethanol is very significant, whereas the influence of butanol is much lower. The require-
ments of EN 590 set the limits between 2.0 and 4.5 mm2·s−1 (the lower limit is shown
by the purple area). The viscosity of the n-butanol–diesel fuel mixture meets the limit in
the whole tested interval. On the other hand, the addition of ethanol exceeds the limit by
around 17.5%. Under this limit, there is a risk of damaging the moving parts of the fuel
system, due to loss of the lubricating layer. There is a statistically significant difference
between viscosities (p-value = 3 × 10−4); the data are normally distributed (p-value = 0.410).
In comparison to [76,78], kinematic viscosity has same slowly declining trend.

Lubricity is an important property of diesel fuel, which is necessary to ensure the
proper functioning of fuel pumps and injectors.

The standard defines the minimum lubricity of diesel fuel as the diameter of the
abrasion area, which is created by the friction of a vibrating ball on a metal surface. It is
carried out in a special apparatus (high frequency reciprocating rig—HFRR) with the diesel
fuel at 60 ◦C. The better the lubricity of the diesel, the smaller the friction area produced.
In modern, sulfur-free diesel, it is increased by an additive, which is simpler than material
or design modification.
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Figure 7. Kinematic viscosity of diesel fuel–alcohol mixtures. Purple area highlights exceeding the
limit given by the standard.

According to the standard, the maximum permissible area diameter is 460 µm—
shown by the purple area. This limit was exceeded above 25 vol% of n-butanol in diesel
fuel (shown in Figure 8 together with the ±1% accuracy). Ethanol keeps the lubricity in
almost the same values, much more than n-butanol. Since a lubricating layer is formed
on the moving parts, there is no excessive wear. From this point of view, the addition of
butanol does not represent any risk. Furthermore, this parameter can also be adjusted
with suitable additives. There is a statistically significant difference between lubricities
(p-value = 0.02689); the data are normally distributed (p-value = 0.137).
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Almost identical results in butanol–diesel fuel lubricity were found by Kuszewski,
(±4%) [78]. A decrease in ethanol–diesel fuel lubricity was found also by Kuszewski
et al. [81].

A summary of the physicochemical properties of mixtures that still meet the standard
is given in Table 4.

Table 4. Mixtures which comply with EN 590 + A1.

Mixture Cetane Number Cetane Index Flash Point Density Kinematic Viscosity Lubricity

Ethanol ≤5% ≤15% <5% ≤20% ≤15% >30%
n-Butanol ≤5% >30% <5% ≤25% >30% ≤25%

As stated, the lubricity of the fuel is, to some extent, dependent on the kinematic
viscosity of the fuel and the extent to which the lubricating layer adheres to the lubricated
surfaces. For confirmation of this claim, a statistical evaluation of the dependence of
lubricity on kinematic viscosity was performed. In order to cover the whole range, the
lubricity of pure substances (100% ethanol and n-butanol) was taken from Table 2. Results
are shown in Figure 9a,b, and Table 5. The grey area is the 95% confidence interval. The
purple area highlights exceeding the limit given by the standard. A strong correlation
was found for both alcohols in the whole range of concentrations. Assumptions for linear
regression were satisfied (Table 6).
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Table 5. Parameters of the regression equation WSD = A + Bµ+ Cµ2 depicted in Figure 9. Correla-
tion coefficients, R2

adj, and p-value for both fuel mixtures.

Fuel A B C R2
adj p-Value

Ethanol 2916.57 −2313.84 512.43 0.9238 5.071 × 10−5

n-Butanol 200,024 −146,405 26,838 0.9762 8.578 × 10−7
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Table 6. Assumptions tests.

Dataset Shapiro–Wilk Normality Breusch–Pagan Heteroscedasticity

Ethanol
W = 0.8855 X2 = 0.1018

p-value = 0.1508 p-value = 0.7496

n-Butanol
W = 0.9345 X2 = 0.3172

p-value = 0.4939 p-value = 0.5733

3.2. Distillation Properties

The determination of the distillation curve is a dominant test, which has to be per-
formed when the quality of the diesel fuel is assessed. By constructing a distillation curve,
a picture of the predominant fraction is obtained, and the presence of higher or lower
boiling fractions can be determined. For the fuel to burn in the cylinder, it needs to be
vaporized and mixed with air, i.e., sufficiently fine atomization of the fuel during injection
(small droplets have a larger total surface area and a higher evaporation rate), but also, a
certain proportion of easily evaporable components, which low-alcohol fuel fulfils. The
composition of the fuel should be such that it evaporates sufficiently quickly after injection
into the cylinder and, therefore, runs regularly. Diesel fuel has to be sufficiently volatile
so that the entire volume of fuel injected is vaporized, ideally starting with the lightest
fractions, and at the same time, regularly, so that combustion is uniform. Additionally,
fuel should contain heavier components, which will evaporate during the compression
stroke when the combustion chamber walls are cooled. If, on the other hand, the diesel
fuel contains too many light components, there is a risk of damage to the moving parts
of the fuel system. Such diesel has significantly impaired lubricity. A lubricating film
does not form on the moving parts and excessive wear occurs, which is not the case with
low-percentage diesel–alcohol mixtures.

It can be seen from Figure 10a,b that both ethanol and n-butanol significantly affect the
beginning of the distillation curve. Mixtures up to 30 vol% of alcohol ensure the presence
of heavier components contained in diesel fuel, which evaporate gradually during the
compression stroke, during which the walls of the combustion chamber are cooled. The
figures also show that after the distillation of alcohol, the distillation curve continues with
the typical trend of diesel fuel distillation.
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The addition of alcohol in the diesel fuel will ensure a fine atomization of the fuel
during injection, as the resulting droplets have a larger total surface area and a higher
evaporation rate. Regarding the boiling point of butanol, it should not evaporate too
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quickly after injection into the cylinder, and thus, will not produce irregularity of the
engine operation.

According to the BS EN 590+A1 standard, at 250 ◦C, the alcohol has to be distilled at
less than 65 vol%, and at 350 ◦C at least 85 vol%; the temperature at 95 vol% distillation
has to be at most 360 ◦C. This requirement is met for all fuels.

3.3. Gas Chromatography Analysis

There is no standard for the application of alcohols to diesel fuel that allows a more
detailed analysis. Therefore, a simple analytical method for the determination of ethanol
and butanol in diesel fuel, using GC-FID (gas chromatography with flame ionization
detector), was developed and validated.

Gas chromatography can also provide a number of useful indicators about diesel fuel.
In addition to information about the distillation profile and the content of individual com-
pounds, it is possible to detect the presence of various impurities, or the presence of ethanol
and n-butanol. In Figure 11a,b, chromatograms of 10 vol% mixture of ethanol–diesel fuel
and n-butanol–diesel fuel are shown. The diesel components represent hydrocarbons
C14, C15, and C16. All chromatograms were terminated after 12 min. In Table 7, precise
concentrations of the fuel mixtures are given.
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Figure 11. (a) Distillation curve of E10 mixture; (b) distillation curve of BUT10 mixture.

Table 7. Measured concentrations of ethanol and n-butanol in diesel fuel.

Fuel The Measured Concentration of Alcohol [vol%]

BUT 5 5.28
BUT 10 11.83
BUT 20 22.54

E10 10.72

Deviations of the measured values from the reference values may be due to variations
in the detector response or sorption of some components of the sample in the injection
chamber. Variability of the measured values can be improved by using the auto-sampler
and devices with electronic gas flow control.
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4. Conclusions

Most of the literature deals mainly with the production process of biobutanol as a
potential biofuel for internal combustion engines, but detailed testing of the properties
of butanol blends are rather scarce and even more so for use in diesel engines and fuel
standards.

With regard to their boiling points, both bioethanol and biobutanol affect the very
beginning of the distillation curve of the blended fuel. However, blends of up to 30%
alcohol by volume ensure the presence of the heavier components contained in diesel fuel
for the proper combustion function of a diesel engine.

With the addition of bioethanol and biobutanol to diesel fuel, the density and viscosity
are also reduced. Too low a density and viscosity can adversely affect the loss of the
lubricating film necessary to lubricate the moving parts of the fuel system. Biobutanol has
a higher viscosity, compared to both hydrocarbons and lower alcohols. While the drop in
density corresponds to the density differences between diesel and alcohol, the effect of the
hydrocarbon chain is clear from the viscosity drop, and biobutanol favors bioethanol in
particular in this parameter. In terms of density, a maximum of 20% vol. bioethanol in the
fuel and 25% vol. biobutanol is set as the limit, and in the case of viscosity, up to 15% vol.
bioethanol, while biobutanol has almost no effect on the diesel viscosity parameter.

The admixture of biobutanol in diesel fuel has a positive effect on the cold filter
plug point (CFPP). Experiences with competing bioethanol have encountered difficulties
with the miscibility of the two fuels and the stability of the blends at low temperatures
as well as water binding, due to its hygroscopicity. However, there is no problem in the
homogeneity of mixtures, even at very low temperatures when adding biobutanol to diesel
fuel. Thus, biobutanol is also less corrosive to metal tanks and pipes, and the tested blends
are completely stable at low temperatures, compared to bioethanol–diesel fuel.

The addition of biobutanol to diesel also poses less risk of degradation of fuel lubricity,
compared to bioethanol. Lubricity in diesel is also largely affected by changes in the
kinematic viscosity parameters. However, diesel lubricity was not much exceeded in all
tested blends (up to 30%) of biobutanol in diesel. In addition, this parameter can also be
adjusted by using suitable additives (also by commercially available additives of biodiesel,
where lubricity is above the measurement limit).

The admixture of both bioethanol and biobutanol also has a significant effect on the
flash point of diesel fuel, which is categorized as a Class III flammable substance, according
to EN 590. The addition of biobutanol at 2.5% and above can characterize the mixture as a
hazard Class II combustible (the mixture with bioethanol is a hazard Class I combustible);
however, even such a drop in the flash point does not affect the operation of the diesel
engine.
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