
fmicb-10-01097 May 15, 2019 Time: 16:33 # 1

REVIEW
published: 16 May 2019

doi: 10.3389/fmicb.2019.01097

Edited by:
Marco De Andrea,

University of Turin, Italy

Reviewed by:
Chen Liang,

Lady Davis Institute (LDI), Canada
Olivier Schwartz,

Institut Pasteur, France

*Correspondence:
Ji-Long Chen

chenjl@im.ac.cn

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 17 January 2019
Accepted: 30 April 2019
Published: 16 May 2019

Citation:
Liao Y, Goraya MU, Yuan X,

Zhang B, Chiu S-H and Chen J-L
(2019) Functional Involvement

of Interferon-Inducible
Transmembrane Proteins in Antiviral
Immunity. Front. Microbiol. 10:1097.

doi: 10.3389/fmicb.2019.01097

Functional Involvement of
Interferon-Inducible Transmembrane
Proteins in Antiviral Immunity
Yuan Liao1, Mohsan Ullah Goraya1, Xu Yuan1, Baoge Zhang1, Shih-Hsin Chiu1 and
Ji-Long Chen1,2*

1 Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry
University, Fuzhou, China, 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology,
Chinese Academy of Sciences, Beijing, China

Interferons (IFNs) play crucial roles in host defense against viral infections by inducing
the expression of numerous IFN-stimulated genes (ISGs) that can activate host
antiviral immunity. Interferon-inducible transmembrane proteins (IFITMs), a family of
small transmembrane proteins, are critical ISG products. Compelling evidence has
implicated that IFITMs can establish an innate immune state to eliminate pathogens
efficiently. IFITM proteins can impede broad-spectrum viral infection through various
mechanisms. It is generally believed that IFITMs can block the viral entry by suppressing
viral membrane fusion. However, some findings indicated that IFITMs might also inhibit
viral gene expression and viral protein synthesis and thereby impair viral replication.
IFITMs may incorporate into virions during viral assembly and thus reduce the infectivity
of nascent virions. The precise inhibitory mechanism of IFITMs on viral infection and
replication still requires further exploration. In this review, we highlight the recent findings
regarding critical roles of IFITMs in host-virus interaction. We also discuss the molecular
mechanisms underlying their functions in antiviral responses.
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INTRODUCTION

In recent years, extensive studies have explored the innate defense mechanisms and cellular proteins
involved in immunity against the infection of pathogens (Ishikawa and Barber, 2008; Unterholzner
et al., 2010; Maarouf et al., 2018). Host innate immune response is triggered through the recognition
of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs)
(Alexopoulou et al., 2001; Yoneyama et al., 2004; Kato et al., 2006). The innate immune responses
include induction of type I and type III interferons (IFNs) and subsequent expression of interferon-
stimulating genes (ISGs) (Pulit-Penaloza et al., 2012; Wei et al., 2014). These ISGs encode
specific proteins with distinct antiviral functions such as inhibitions of viral entry, viral gene
transcription, viral protein synthesis, and viral particle assembly and release (Smith et al., 2014;
Kane et al., 2016; Rabbani et al., 2016).

It is well-known that ISGs are critical for innate immunity against infection caused by human
immunodeficiency virus (HIV-1), influenza A virus (IAV), West Nile virus (WNV), dengue virus
(DENV), etc (Brass et al., 2009; Schoggins and Rice, 2011). Considerable efforts have been made
to investigate the antiviral response of the ISG proteins in viral infection and replication, and to
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determine the underlying mechanisms. Of them, Interferon-
inducible transmembrane proteins (IFITMs) are intensely
induced during viral infection and play a crucial role in virus
restriction. Recently, IFITMs have been identified as key ISGs
that interfere with viral endosomal membrane fusion and the
infectivity of nascent virions (Brass et al., 2009; Huang et al., 2011;
Lu et al., 2011). In this review, we summarized the biological
characteristics of IFITM genes, the antiviral properties of IFITM
proteins, and their antiviral mechanisms.

THE IFITM PROTEIN FAMILY

IFITM Genes
In 1984, IFITM genes were first identified in interferon-treated
TG98 neuroblastoma cells via cDNA screening with their
transcripts named as 9-27, 1-8D, and 1-8U, also known as
IFITM1, IFITM2, and IFITM3, respectively (Friedman et al.,
1984). To date, IFITM1, IFITM2, IFITM3, IFITM5, and IFITM10
have been found in humans and their gene loci are located on
chromosome 11. IFITM1, 2, 3, and 5 are clustered in a 26 kb
region of the short arm, and IFITM10 is located 1.4 Mb apart.
IFITM4P is a pseudogene in human. The mouse IFITM family
consists of seven members, of which IFITM1, IFITM2, IFITM3,
IFITM5, IFITM6, and IFITM10 are located on chromosome 7,
while IFITM7 on chromosome 16. IFITM6 is located close to
IFITM1, 2, 3, and 5 in mice but absent in humans (Sallman
Almen et al., 2012). Homologous IFITM genes are also present in
other species, including birds. Chicken IFITM genes are located
on chromosome 5 (Siegrist et al., 2011; Hickford et al., 2012;
Smith et al., 2013; Figure 1A).

Subcellular Localization and Topology of
IFITM Proteins
Several IFITM proteins are ubiquitously expressed in human
primary tissues and cell lines. IFITM1 mostly concentrates on
the lipid raft in the plasma membrane and early endosomes and
interacts with some membrane proteins such as CD19 and CD81
(Smith et al., 2006; Weston et al., 2014). IFITM2 and IFITM3
are mainly in the intracellular compartments and colocalize with
Rab7, CD63, lysosomal-associated membrane protein 1 (LAMP1)
(Yount et al., 2012), and IFITM5 is primarily expressed in
osteoblasts (Moffatt et al., 2008; Kasaai et al., 2013). IFITMs
contain five domains, which consist of N-terminal domain
(NTD), intramembrane domain (IMD), a conserved intracellular
loop (CIL), transmembrane domain (TMD), and C-terminal
domain (CTD) (Chen et al., 2017). The IMD and CIL comprise
the CD225 domain, which is conserved in more than 300 proteins
of the CD225/pfam 04505 family (John et al., 2013).

Interferon-inducible transmembrane proteins topology is key
to understand how IFITM proteins can suppress virus infection
by regulating membrane curvatures. There are three ideas for
the topology of the IFITM proteins: first, both NTD and CTD
localize extracellularly (Weidner et al., 2010); second, both NTD
and CTD of IFTIM3 are located in the cytoplasm, rather than
spanning out of the cellular membrane (Yount et al., 2012); the
third and most recent model of IFITM3 explains that the NTD is

present intracellularly and the CTD is spanning out of the cellular
membrane (Bailey et al., 2013; Figure 1B). IFITMs topology
varies among types of cells and stages of viral infection (Huang
et al., 2011; Bailey et al., 2013). To date, IFITMs topology is not
fully understood, and therefore needs further investigation.

Biological Processes Involving IFITM
Proteins
Interferon-inducible transmembrane proteins participate in
various biological processes, such as immune response, germ
cell homing and maturation, and bone mineralization. The
IFITM family of vertebrates can be divided into three parts in
phylogeny: immunity-related IFITM (IR-IFITM), IFITM5, and
IFITM10 sub-families (Zhang et al., 2012). The IFITMs in clade I
(IFITM1/2/3/6/7) are associated with innate immunity, and their
expression can be induced by IFNs. IFITM5 and 10 undergo
functional and adaptive evolution rather than positive selection
(Moffatt et al., 2008; Hanagata et al., 2011; Bailey et al., 2014).
In addition, oncostatin M and IL-6 can also induce the IFITM3
expression via JAK-STAT signaling pathway (Bailey et al., 2012),
suggesting that expression of IFITM3 is not only dependent on
IFNs but also modulated through various cellular factors.

Recent studies proved that IFITM proteins are associated with
the transduction efficiency of lentiviral vector. Human and pig
IFITM proteins partially limited the transduction of VSV-GFIV
and GP64-FIV, thereby limiting the transfer of genes based on
lentiviral vectors to airway epithelial cells (Hornick et al., 2016). It
was observed that H37Rv-mCherry signal was weaker in IFITM3-
overexpressing cell lines compared to cells transduced with empty
lentiviral vector and IFITM1 and IFITM2 overexpression vector.
Moreover, IFITM3 overexpression can significantly inhibit the
growth of Mycobacterium tuberculosis in monocytes (Ranjbar
et al., 2015), indicating its clinical potential for treatment of the
disease caused by Mycobacterium tuberculosis.

ANTIVIRAL ROLES OF IFITM PROTEINS
AND THEIR UNDERLYING MECHANISMS

Interferon-inducible transmembrane proteins have been
characterized as critical cellular factors involved in immune
response to a broad range of viruses (Table 1), including IAV
(Feeley et al., 2011), HIV-1 (Lu et al., 2011), WNV, DENV
(Jiang et al., 2010), vesicular stomatitis virus (VSV) (Weidner
et al., 2010), SARS Coronavirus (SARS-CoV), and Marburg
virus (MARV) (Huang et al., 2011). Palmitoylation of cysteine
is required for the antiviral function of IFITMs (Yount et al.,
2010). IFN-inducible IFITM proteins contain conserved cysteine
residues which join the CIL and the putative membrane-
interacting domains. Substituting cysteines with alanines reduces
the clustering on the membrane and impairs the antiviral
activity of IFITM3 (John et al., 2013). Non-ubiquitinated and
S-palmitoylated IFITM3 is intracellular in nature and manifests
potent antiviral activities (Yount et al., 2012).

At present, no clear consensus has been reached on the
integrated antiviral mechanism of IFITMs, although a majority
of researchers believe that IFITM proteins target viruses by
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FIGURE 1 | (A) Arrangement of IFITM genes cluster and genes topology. The arrangement of IFITM gene clusters in human, chicken, and mouse. Arrows indicate
the direction of transcription. Exons are represented as color and introns are in gray. (B) Three topological models for IFITM proteins have been proposed. The first
model represents the IFITM proteins as transmembrane molecules that have both the NTD and CTD extracellular with a CIL facing the cytoplasm. The second model
represents IFITM proteins as intramembrane molecules where neither IM1 nor IM2 crosses the membrane and the NTD, CTD, and CIL all positioned intracellularly.
Third, the most predominant models have an intracellular NTD and extracellular CTD.

preventing the virus-cell fusion. However, previous studies have
uncovered that IFITMs restrict virus replication by regulating the
viral protein expression and reducing the infectivity of nascent
viruses (Compton et al., 2014; Tartour et al., 2014, 2017).

IFITM Proteins Restrict Viral Entry Into
Target Cells
Increasing evidence has shown that IFITMs may restrict viral
entry by inhibiting fusion with plasma membrane and endosomal
or lysosomal membranes (Brass et al., 2009; Bailey et al., 2014;
Tartour et al., 2017). Recently, a vital endocytic signal (20-
YEML-23) that can guide the endocytosis of IFITM3 has been
identified (Jia et al., 2014). IFITM proteins are involved in
the enzymatic activity of cathepsin L (Huang et al., 2011),
which is essential for the fusion of some enveloped viruses
with endosomes of host cells (Zhou et al., 2016). Therefore,

manipulating IFITM proteins can impact the entry of some
enveloped viruses. Furthermore, IFITM proteins modify the
pH of endosomes or lysosomes by accumulating non-specific
proteases, thereby altering the lipid concentration of vesicle
membrane or the activity of V-type proton ATPase (Wee et al.,
2012). Low endosomal pH changes the conformation of viral
envelope proteins, such as hemagglutinin (HA) (Sieczkarski and
Whittaker, 2005), leading to the hemifusion of viral membrane
with endosomal membrane. At the optimum pH, IFITM2, and
IFITM3 can mediate the inhibition of IAV by influencing the
pattern and duration of virus co-localization with IFITM proteins
(Gerlach et al., 2017). IFITM3 restricts the entry of enveloped
viruses by preventing the hemifusion of viral particles with either
plasma or endosomal membranes (Li et al., 2013). Moreover,
some non-enveloped viruses, such as reovirus, can be restricted
by IFITM3 through regulation of late endosome functions during
cell entry (Anafu et al., 2013).
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TABLE 1 | List of RNA and DNA viruses restricted by IFITM proteins.

Family Viruses Envelop pH dependency References

RNA viruses

Orthomyxoviridae Influenza A and B viruses Yes ∗∗ Brass et al., 2009; Smith et al., 2013

Flaviviridae West Nile virus, Dengue virus, Hepatitis C virus, Avian tembusu
virus, Zika virus

Yes ∗, ∗∗, ∗∗, ∗∗, ∗∗ Brass et al., 2009; Everitt et al., 2012

Rhabdoviridae Vesicular stomatitis virus, Rabies virus, Lagos Bat virus Yes ∗, ∗∗, ∗∗ Weidner et al., 2010; Smith et al., 2013

Bunyaviridae La Crosse virus, Hantaan virus, Andes Virus, Rift valley fever Yes ∗∗ Mudhasani et al., 2013

Filoviridae Ebola virus, Marburg virus Yes ∗ Huang et al., 2011

Alphaviridae Sindbis and Semliki Forest Virus Yes ∗ Weston et al., 2016

Coronaviridae SARS Corona virus Yes ∗∗ Huang et al., 2011

Retroviridae HIV-1, Jaagsiekte sheep retrovirus (JSRV) Yes No, ∗∗ Brass et al., 2009; Li et al., 2013

Reoviruses Reovirus No ∗∗ Anafu et al., 2013

DNA viruses

Asfarviridae African swine fever virus Yes ∗∗ Munoz-Moreno et al., 2016

Poxviridae Vaccinia virus Yes ∗∗ Li et al., 2018

Iridoviridae Rana grylio virus Yes ∗∗ Zhu et al., 2013

∗Fusion at pH > 6, ∗∗Fusion at pH < 6.

In addition, it has been revealed that IFITMs overexpression
changes the physical properties of cellular membranes and
inhibits the fusion of pore formation, but the functional
explanations vary on these mechanisms. One theory is that
IFITM3 interacts with vesicle-membrane-protein-associated
protein A (VAPA) and disrupts its interaction with the oxysterol-
binding protein (OSBP) that controls the cholesterol content
of endosomal membranes. Through this mechanism, IFITM3
enriches cholesterol in the membranes of cellular compartments
containing lysobisphosphatidic acid (LBPA) and CD63, resulting
in reduced fluidity and increased rigidity of the membrane and
thus decreasing viral fusion (Amini-Bavil-Olyaee et al., 2013).
However, Desai et al. (2014) have found that other methods
leading to cholesterol accumulation in late endosomes cannot
inhibit viral fusion unless IFITM3 is overexpressed, suggesting
that the mechanism by which IFITM3 inhibits viral fusion may
not depend on the increase of cholesterol in late endosomes.

IFITM Proteins Can Restrict Viral
Assembly and Reduce Infectivity of
Nascent Virions
Interferon-inducible transmembrane proteins potentially affect
the fusion with intralumenal vesicles within multivesicular
bodies/late endosomes and redirect viruses to a non-productive
pathway. Overexpression of IFITM proteins enlarges the acidified
compartments, suggesting that these proteins interfere with
endosomal trafficking or fusion of vesicles carrying viral
components (Feeley et al., 2011). However, down-regulation of
IFITM proteins have no effect on acidified compartments size or
restriction efficiency, regardless of increased IAV replication in
cells (Brass et al., 2009; Huang et al., 2011).

A recent research has shown that the IFITM2 and IFITM3
may reduce the infectivity of viruses in two ways: regulating
virus-endosome fusion rates and accelerating the trafficking of
virus-endosome to lysosomes (Spence et al., 2019). Moreover,
by constructing a functional IFITM3 tagged with fluorescent

proteins, it has been observed that IAV can undergo hemifusion
in the IFITM3-positive endosomes but fail to release viral
components. Meanwhile, IFITM3 blocks viral fusion by
accumulating in the endosomes containing IAV (Suddala
et al., 2019). These findings suggest that IFITM proteins may
limit viral infection by promoting transportation of viral
particles into lysosomes.

Interferon-inducible transmembrane proteins can also reduce
the infectivity of newly produced viruses along with the
endosomal vesicle restriction (Tartour et al., 2014, 2017). For
example, IFITM proteins colocalize with envelope glycoprotein
(Env) and group-specific antigen (Gag) proteins of developing
HIV-1 virions and subsequently become a part of nascent viral
particles, thereby inhibiting the entry of nascent virions into
new host cells (Compton et al., 2014; Tartour et al., 2014; Yu
et al., 2015). However, not all viruses can be restricted by IFITM
proteins. For instance, the infectivity of Rift Valley fever virus
(RVFV), Mopeia virus (MOPV), and Adeno-associated virus
(AAV) is not affected by IFITM proteins (Tartour et al., 2017).

IFITM Proteins Can Inhibit Viral Protein
Synthesis
Recently, a novel mechanism by which IFITM proteins restrict
viral infection has been identified. It shows that IFITM suppresses
HIV-1 protein synthesis by excluding viral mRNA transcripts
from polysomes, which can be rescued through expression of
the viral accessory protein Nef. The observation indicates that
IFITM-mediated HIV-1 restriction takes place at the translational
level (Lee et al., 2018).

THE SPECTRUM OF IFITM-RESTRICTED
VIRUSES

Interferon-inducible transmembrane proteins suppress virus
pathogenesis through three strategies: restricting viral entry into
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target cells (Brass et al., 2009); incorporating of IFITMs into
virions during viral assembly and thus reducing viral infectivity
(Tartour et al., 2017); inhibiting viral protein synthesis (Lee et al.,
2018). It is well known that IFITM proteins can restrict RNA
viruses. Recently, increasing evidence demonstrates that IFITMs
can also restrict some DNA viruses (Munoz-Moreno et al., 2016;
Li et al., 2018). However, IFITM proteins might not affect the
pathogenesis of most DNA and non-enveloped viruses, although
it was shown that IFITMs restricted non-enveloped reoviruses
(Anafu et al., 2013). The antiviral activity of IFITMs depends on
various factors, including viral titer, host cell type, and expression
level of IFITM proteins.

RNA Virus
Orthomyxoviridae
The antiviral activity of IFITMs (IFITM1, IFITM2, and IFITM3)
against IAV is observed in a RNA interference screen for
host factors (Brass et al., 2009; Chen et al., 2018). Depleting
these IFITM proteins by small RNA interference enhances the
replication of IAV, while overexpression of them reduces the
virus replication. The restriction by IFITM proteins occurs
at the early replication of IAV, and IFITM3 has a more
pronounced effect than IFITM1 and IFITM2. In vivo, the absence
of IFITM3 results in uncontrolled replication of H1N1 and
H3N2 influenza A virus in the lungs and high morbidity of the
infected animals (Bailey et al., 2012). VAPA and OSBP mediate
intracellular cholesterol homeostasis to regulate virus release
into the cytosol. The interaction between VAPA and OSBP can
be disrupted by IFITM3, resulting in cholesterol accumulation
in the late endosome and thereby suppression of the entry
of IAV (Amini-Bavil-Olyaee et al., 2013). Amphotericin B can
rescue IFITM3-induced IAV restriction by binding to sterol
and causing membrane-spanning pore formation and ion egress
(Lin et al., 2013). Another study indicates that IFITM3 may
restrict IAV through blocking the formation of fusion pores
at the post-hemifusion stage rather than accumulating excess
cholesterol in the late endosome (Desai et al., 2014). Mice
lacking IFITM3 alone are more susceptible to IAV and exhibit
higher mortality and viral burden, and their phenotypes are
similar to those lacking entire IFITM locus (Bailey et al., 2012).
In humans, single nucleotide polymorphisms (SNPs) within
the coding region of the IFITM3 gene can alter the antiviral
response to IAV infection, such as SNP rs12252-C. SNP rs12252-
C bears T/C substitution mutation to alter a splice acceptor
site, which encodes a truncated form of IFITM3 lacking its
N-terminal 21 amino acids and thereby leads to a compromised
anti-IAV activity of IFITM3. Individuals with SNP rs12252-C/C
homozygotes show more severe symptoms and higher mortality
than heterozygotes following IAV infection (Wang Z. et al.,
2014; Yang et al., 2015). Additionally, eukaryotic translation
initiation factor 4B (eIF4B), which can be down-regulated by
IAV NS1, is capable of modulating the expression of IFITM3
(Wang S. et al., 2014).

Flaviviridae
Several viruses of the Flaviviridae family, including DENV,
yellow fever virus (YFV), WNV, Zika virus (ZIKV), and

hepatitis C virus (HCV), have aroused global health concern.
Numerous studies have demonstrated that IFITM proteins
have the ability to restrain flavivirus infection (Brass et al.,
2009; John et al., 2013; Savidis et al., 2016; Chen et al.,
2017). IFITM1, IFITM2, and IFITM3 have been proved to
restrict DENV, YFV, WNV, and Omsk hemorrhagic fever virus
(OHFV) by blocking virus entry (Brass et al., 2009; Jiang et al.,
2010). Knockout of IFITM3 in mice increased mortality of
the animals upon subcutaneous infection with WNV (Gorman
et al., 2016). The replication of ZIKV can be inhibited by
both IFITM1 and IFTM3, but IFITM3 exerts a more effective
inhibition than IFITM1, which occurs at the early stage after
viral fusion prior to its early RNA transcription (Savidis et al.,
2016). Moreover, overexpression of IFITM3 is able to prevent
cytopathicity mediated by ZIKV, such as cell death (Monel
et al., 2017). IFITM1 has also been found to disrupt the
entry of HCV through interaction with viral coreceptors, CD81
and occludin, and inhibit the viral replication (Raychoudhuri
et al., 2011; Bhanja Chowdhury et al., 2012; Wilkins et al.,
2013). A recent study has shown that IFITM2 and IFITM3
can also limit the replication of HCV at the late stage of viral
entry (Narayana et al., 2015).

Filoviridae and Coronaviridae
Interferon-inducible transmembrane proteins can also efficiently
restrict filoviruses and coronaviruses. Viruses of these two
families share a common late endocytic enzymatic system by
which lysosomal cysteine protease cathepsin L mediates the
proteolytic cleavage of fusion proteins to infect the target cells
(Chandran et al., 2005; Huang et al., 2006). IFITM1, IFITM2,
and IFITM3 are capable of restricting GP1, 2-mediated entry and
subsequently MARV and Ebolavirus (EBOV) replication, and the
entry of filoviruses is suppressed by treatment with IFN as well.
Collectively, IFITMs and IFNs can inhibit virus replication by
entry restriction (Huang et al., 2011). In comparison with IAV,
filoviruses are more sensitive to IFITM1 and murine IFITM5 and
IFITM6. SARS-CoV S protein-mediated entry is also restricted
by IFITM1, IFITM2, and IFITM3. Recently, mutations within
residues and structural motifs of IFITMs are found to modulate
the entry of coronaviruses. For instance, substitution of Y20 in
IFITM3 with either alanine or aspartic acid enhances SARS-CoV
entry, and the IFITM3 Y99A or Y99D mutants exhibits a reduced
activity against Middle East respiratory syndrome coronavirus
(MERS-CoV) entry (Zhao et al., 2018).

Retroviridae
Interferon-inducible transmembrane proteins were thought to
be unable to interfere with HIV-1 infection (Brass et al., 2009).
However, subsequent investigations have shown that IFITM2 and
IFITM3 can restrict HIV-1 entry (Lu et al., 2011; Chutiwitoonchai
et al., 2013; Compton et al., 2016; Lee et al., 2018). Moreover,
non-human primate IFITM proteins can also suppress HIV and
Simian immunodeficiency virus (SIV) (Wilkins et al., 2016). The
Env is a vital factor in promoting HIV-1 transmission (Ding
et al., 2014; Wang et al., 2017). The structure of viral particles
(e.g., capsid core) and Env affect the extent of IFITMs restriction
joint (Wrensch et al., 2017). IFITM1, IFITM2, and IFITM3
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colocalize with HIV-1 Gag and Env proteins and incorporate
into nascent virions during assembly in virus-producing cells,
which subsequently reduces the viral infectivity and inhibits
virus fusion and spread (Compton et al., 2014; Tartour et al.,
2014). Possibly, IFITM2 and IFITM3 interact with Env, impair its
processing and restrict virus infection, but the IFITMs restriction
can be overcome by Env mutants (Yu et al., 2015). HIV-1
requires engagement of its Env with primary receptor CD4 and a
chemokine receptor CCR5 or CXCR4 to enter the target cells (Wu
et al., 2017). CXCR4-tropic viruses are found more susceptible
to IFITM2 and IFITM3, whereas IFITM1 preferentially restricts
CCR5 counterpart, indicating that IFITMs differentially inhibit
HIV-1 replication contingent on its coreceptor tropism (Foster
et al., 2016). Together, these data reveal that IFITMs restrict HIV-
1 infection and replication through inhibiting viral entry and viral
gene expression.

Rhabdoviridae, Bunyaviridae, and Alphaviridae
Interferon-inducible transmembrane proteins can restrict the
infection of other enveloped viruses, including rhabdoviruses,
bunyaviruses, and alphaviruses (Alber and Staeheli, 1996;
Mudhasani et al., 2013; Xu-Yang et al., 2016). The replication of
VSV, a member of the Rhabdoviridae family, can be inhibited by
human IFITM1 (Alber and Staeheli, 1996). Furthermore, IFITM3
can inhibit VSV glycoprotein-mediated pseudovirus entry and
primary transcription of VSV genome. Both N-terminal 21
amino acid residues and C-terminal transmenbrane region of
IFITM3 are functional in its antiviral activity (Weidner et al.,
2010). Variable restriction of IFITMs on viruses has been
exhibited in the Bunyaviridae family. IFITM2 and IFITM3
impede viral membrane fusion with endosomes to restrict
RVFV infection. IFITM1, 2, and 3 all have a board-spectrum
antiviral activity against several other bunyaviruses, including
La Crosse virus (LACV), Hantaan virus (HTNV), and Andes
virus (ANDV). In contrast, none of the IFITMs restricts the
infection of Crimean-Congo hemorrhagic fever virus (CCHFV).
The efficiency of cell-cell fusion mediated by Semliki Forest
virus (SFV), an alphavirus, fusion protein E1/E2 is also markedly
reduced by IFITM1 and IFITM3 (Li et al., 2013). In addition,
IFITMs, especially IFITM3, can restrict SFV capsid release
from endosomes and fusion at the plasma membrane (Weston
et al., 2016). In vivo, IFITM3 KO mice have shown more
severe clinical outcomes with higher levels of alphaviruses
titer and increased proinflammatory cytokines in multiple
organs (Poddar et al., 2016).

Reoviridae
Reovirus is the only non-enveloped virus whose infection and
replication can be restricted by IFITM3 (Anafu et al., 2013).
IFITM3 restricts the reovirus infection by regulating Rab7-
containing late endosome functions via delaying virus entry
and escape as well as the proteolysis of viral outer capsids. In
consistence with this observation, IFITM3 expression does not
alter the entry of reovirus into the infectious subvirion particles
(ISVPs), so endosomal acidification is not required. Together,
these results indicate that IFITM3 targets reoviruses at the level
of endosomal penetration.

DNA Viruses
Although IFITM proteins are known to restrict a board
spectrum of RNA viruses, little is known about their antiviral
effects on DNA viruses. PoIFITM1, the fish IFITM1 isolated
from flounder Paralichthys olivaceus, blocks Rana grylio virus
(RGV) replication at the viral entry stage (Zhu et al., 2013).
However, the overexpression of IFITM1, IFITM2, and IFITM3
is unable to inhibit the infection of human papillomavirus
(HPV), human cytomegalovirus (HCMV), and adenovirus type
5 (Ad5) although type I IFNs can efficiently reduce HPV
infection. Conversely, IFITM1 and IFITM3 overexpression
even enhances HPV infection (Warren et al., 2014). IFITM1
also enhances the infectivity of Kaposi’s sarcoma-associated
herpesvirus (KSHV), Epstein-Barr virus (EBV), and herpes
simplex virus type 2 (HSV-2) (Hussein and Akula, 2017).
Recently, IFITM proteins are reported to impact the infectivity
of African swine fever virus (ASFV) and the endocytosis-
mediated entry of ASFV. Possibly, IFITM2 and IFITM3
inhibit the ASFV entry by altering the membrane fusion and
cholesterol endosomal efflux (Munoz-Moreno et al., 2016).
Moreover, overexpression of IFITM3 protein significantly
restricts vaccinia virus (VACV) replication by limiting virus
binding and interfering viral entry in a low pH-dependent
fusion (Li et al., 2018).

CONCLUSION

Over the past three decades, IFITMs have been considered
as intrinsic cellular factors that restrict a broad range of
viruses. IFITM proteins restrict viruses at three distinct stages
of the viral life cycle: blocking viral entry by trapping virions
in endosomal vesicles; inhibiting viral gene expression and
viral protein synthesis; incorporating into virions during viral
assembly and subsequently reducing the infectivity of viruses.
However, the precise mechanism underlying their functions
remains to be further determined. More investigative works are
still required to define the antiviral properties of IFITMs and how
viruses escape from IFITM restriction. With respect to treatment,
IFNs are commonly used medication for various diseases,
such as chronic myelogenous leukemia (CML) (Preudhomme
et al., 2010), HIV-associated Kaposi sarcoma (KS) (Gill et al.,
1999), and HCV infection (Waziry et al., 2017), and their
efficacy against viral diseases is achieved by the expression
of ISGs including IFITMs. Unfortunately, IFN therapy can
cause constitutional, neuropsychiatric, hepatic, and hematologic
complications (Jonasch and Haluska, 2001). Recent studies
have demonstrated that gp130, a transmembrane receptor, is
also involved in regulation of IFITM expression (Bailey et al.,
2012), suggesting that the gp130 agonist could be used in
the treatment of viral diseases by inducing IFITMs and might
avert the side effects of IFNs via bypassing IFN-regulated
signaling. Moreover, due to the effect of IFITMs on lentiviral
vector transduction as described earlier, it may provide a
novel idea for gene transduction as well as disease treatment.
However, further studies are still needed to better understand
their application.
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