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Using insurance data to quantify the
multidimensional impacts of warming
temperatures on yield risk
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Previous research predicts significant negative yield impacts from warming temperatures, but

estimating the effects on yield risk and disentangling the relative causes of these losses

remains challenging. Here we present new evidence on these issues by leveraging a unique

publicly available dataset consisting of roughly 30,000 county-by-year observations on

insurance-based measures of yield risk from 1989–2014 for U.S. corn and soybeans. Our

results suggest that yield risk will increase in response to warmer temperatures, with a 1 °C

increase associated with yield risk increases of approximately 32% and 11% for corn and

soybeans, respectively. Using cause of loss information, we also find that additional losses

under warming temperatures primarily result from additional reported occurrences of

drought, with reported losses due to heat stress playing a smaller role. An implication of our

findings is that the cost of purchasing crop insurance will increase for producers as a result of

warming temperatures.
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Effective adaptation of crop production to climate change has
widespread implications for global food security given
projected increases in world population1–5. It is well

established that crop yields exhibit sensitivity to climate change
through the effects of temperature, precipitation, and atmo-
spheric CO2 concentration6–15. Warmer temperatures are often
associated with large, negative effects on crop yields at regional
and global scales through both direct (e.g., heat stress) and
indirect (e.g., soil moisture deficit) mechanisms16; however, it is
often difficult to disentangle these effects from one another using
large-scale observation-based datasets10,17–24. This is problematic
because the ability of production agriculture to reduce climate
change impacts depends crucially on this disentanglement for
both technological innovation (e.g., targeted breeding efforts) and
on-farm decision-making (e.g., crop choice, cultivar selection, and
planting dates)25–32.

Most previous work linking climate to crop yields has focused
on changes to average or expected yields, which is useful infor-
mation for future food security concerns as supply chains and
consumers can begin to readjust expectations. However, there still
exists the possibility of shortfalls below these new expected yields,
and these shortfalls are often associated with large price spikes
and social unrest33–40. Furthermore, large unexpected shocks to
farm revenue can reduce on-farm production investments and
even bankrupt farmers, thereby causing disruptions in food
supply41,42. In addition, knowledge on the propensity for below
average food production and revenue outcomes has implications
for the large and rapidly expanding global crop insurance sector,
where large indemnity payments can lead to high costs of oper-
ating public crop insurance programs43–47. In recognition of this,
recent climate change studies have begun focusing on the varia-
bility of farm production10,43,48–51.

In this paper, we utilize a novel and large-scale dataset that
provides insights into three major dimensions of warming tem-
perature effects: the propensity of both yield and revenue out-
comes below expected levels, the disentanglement of heat-stress
versus drought-stress on these outcomes, and the pricing of crop
insurance. To conduct the empirical analysis, we rely on a rela-
tively untapped data source on crop insurance indemnity pay-
ments: the Cause of Loss (COL) database52, which is publicly
available and maintained by the Risk Management Agency
(RMA). We focus on U.S. corn and soybean production using
annual data from 1989 to 2014 containing 30,261 (29,014) total
observations over 1733 (1632) counties for corn (soybeans). To
the best of our knowledge, very few studies have used the COL
data53–55, despite its ability to provide insights into both the
magnitude of losses and their causes.

Results
COL data and the loss–cost ratio (LCR). The COL data provide
separate measures of yield and revenue losses below expected levels
(paid indemnities). In addition, the COL data are disaggregated by
type of cause, which is determined by a claims adjuster upon
determination of payment; in total, we observe 44 reported causes.
A particularly useful aspect of the COL data is that it distinguishes
between moisture-related (e.g., drought and excess moisture) and
purely temperature-related causes (e.g., heat stress) (Fig. 1). We
merge the COL database with the Summary of Business (SOB)
database56, a separate RMA database that contains county-level
aggregate liabilities by crop. The merged data is then used to
generate county-level aggregate and cause-specific variables equal
to the ratio of losses to liabilities, or the LCR: LCRit ¼
ðPjLosses

j
itÞðLiabilitiesitÞ�1; where Lossesjit is the dollar value of

realized indemnity payments in county i in year t due to cause j and
Liabilitiesit is the maximum dollar value of indemnity payments in

county i in year t. A key advantage of using the LCR variable
instead of mean yields (as used in Schlenker and Roberts6, among
others) is that it constitutes a measure of yield risk. While previous
studies find that mean yields are predicted to decrease as a result of
warming, these studies do not capture whether production will
become more or less risky under warming. Indeed, the empirical
finding on the negative impact of warming on mean yields in the
literature does not necessitate that warming also increases downside
yield risk around the new mean yields; these directional impacts
need to be measured separately. Moreover, an appealing feature of
the county-level LCR or crop insurance loss measures is that they
capture downside risks of individual farms, whereas the county-
level average yield data may not vary in response to idiosyncratic
losses by farmers within a county. As a result, analyses that rely on
yield data only will tend to underestimate the impact of warming on
yield sensitivity. For a simulation-based demonstration of this, see
Supplementary Discussion and Supplementary Table 6.

The county–year LCR data are matched to growing-season
aggregates of precipitation and temperature exposure following
the panel approach of Schlenker and Roberts6. Multivariate
regression analysis is used to estimate the relationship between
LCRs and weather covariates while controlling for county-level
time-invariant confounders (county fixed effects), year fixed
effects, and state-specific time trends. The LCRs, temperature,
and precipitation vary substantially across both counties and
years (Supplementary Fig. 1). Following previous studies, we
focus on U.S. dryland counties, i.e., counties to the east of the
100th degree meridian. Some of these counties may rely partially
on irrigation, but most corn grown in this region is rain-fed.
Within this region, time-averaged LCRs demonstrate significant
cross-sectional variation (Fig. 2).

Corn
Area plan crops only
Cold wet weather
Decline in price
Drought
Excess precip.
Failure in irrig. supply
Flood
Freeze
Frost
Hail
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Aflatoxin
Other
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Freeze
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Other

Fig. 1 Indemnity payment shares by cause of loss, 1989–2014. Each
portion of the pie chart represents the average share of indemnity
payments in each crop due to a particular cause.
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We focus on five types of LCRs. The first type we consider is
the total or aggregate LCR, which includes losses across all causes.
The remaining four types are cause specific: heat, cold, drought,
and excess moisture (The cold losses are the sum of cold wet
weather, freeze, and frost losses). Drought exhibits the highest
LCR of the four, is associated with approximately 50% of total
losses, and is double the next largest cause (excess moisture), on
average (Table 1). The average LCRs for heat and cold are similar
in magnitude and roughly an order of magnitude lower than
drought. It is important to recognize, however, that the
determination of what causes a particular loss is based on the
interpretations of adjusters and producers, which may not always
align exactly with the true cause of losses. Nonetheless, the
perceptions of adjusters and producers are just as important for
understanding the ramifications of climate change, as they likely
reflect how farmers adjust their behavior in response to warmer
temperatures.

Annual variation between high temperatures and total LCRs at
the aggregate level (across counties) exhibit positive correlation
(Supplementary Fig. 2). Losses attributed to temperature
extremes, excessive heat and cold, have varied over time but
with opposite trends: heat losses are becoming more common
while cold losses are becoming less so (Supplementary Fig. 3).

Moisture-related losses, drought and excess moisture, appear to
be more stable with no clear trends emerging over time
(Supplementary Fig. 4). Degree days over 29 °C are positively
correlated with the total, heat, and drought LCRs, which is
consistent with high temperatures having both direct and indirect
effects on yields (Table 1). Based on within-state variation, we
also observe positive correlations between total, heat, and drought
LCRs and degree days above 29 °C (Supplementary Fig. 5).
Precipitation is less correlated with LCRs (Table 1) in total and
for all causes except excess moisture; however, simple correlations
likely understate the relationship given its nonlinear effect on
yields.

Estimated weather impacts using multivariate regression. The
multivariate regression model permits a broader understanding of
the relationships between weather and losses. We first regress
total LCRs at the county–year level against a piecewise linear
function of temperature exposure and a quadratic function of
cumulative precipitation. To control for unobserved sources of
variation in the LCR, we included county fixed effects, year fixed
effects, and state-specific time trends. County fixed effects control
for unobserved factors, such as soil quality. The year fixed effects
and state-specific trends control for time-varying unobserved
factors, such as changes in the federal crop insurance program, as
well as changes in behavior (e.g., enrollment, coverage level,
contract choice). Goodness-of-fit and temperature cutoff results
are reported in Supplementary Table 1. Further details on the
regression model can be found in the “Methods” section.

The marginal effects of the weather variables exhibit highly
nonlinear relationships between temperatures and precipitation
with losses (the marginal effects of temperature and precipitation
are reported in Fig. 3 and Supplementary Figs. 6 and 7). In the top
row of Fig. 3, the slopes of the piecewise linear function
correspond to the estimated temperature coefficients from
Eq. (1). These graphs depict the impact of one additional day
at each temperature on the overall LCR. For example, one
additional day at 27 °C instead of a day below 10 °C within the
fixed growing season reduces the LCR by a bit under 0.01 or one
percentage point (or, put differently, by one cent per dollar of
liability). Conversely, one additional day at 35 °C raises the LCR
by just over 0.01. In corn, warmer temperatures begin to raise the
LCR at about 30 °C and these effects intensify up to 40 °C. Similar
estimated impacts are depicted for soybeans. We also note that
the estimated temperature impacts are very similar to the
estimated impacts in Schlenker and Roberts6: they find sharp
decreases in yields beginning at 29 °C for corn and at 30 °C for
soybeans. We also observe that additional exposure to so-called
beneficial heat—temperatures below the first threshold—reduce
the LCRs and at an increasing rate. Concerning precipitation, the
estimated impacts reflect a concave relationship between crop
yields and precipitation: at lower precipitation levels, additional
rainfall reduces the LCR, but at higher levels of precipitation, it
raises the LCR (Supplementary Fig. 7).

The middle and lower panels of Fig. 3 highlight the role of
temperature on heat and drought losses. In corn, warmer
temperatures are associated with increased heat stress indemnities
beginning at 30 °C, with the effects intensifying at 38 °C. Drought
losses begin to increase significantly at 29 °C. In soybeans, heat
and drought losses follow similar patterns, albeit at slightly higher
thresholds: heat losses begin to increase at 33 °C and drought
losses begin to increase at 30 °C. The estimated precipitation
impacts follow different patterns (Supplementary Fig. 7). For both
corn and soybeans, at lower levels of precipitation, additional
rainfall reduces the losses associated with drought; however, at
extreme levels those effects diminish to zero and even become

[0.183, 1.000]
[0.121, 0.183]
[0.079, 0.121]
[0.050, 0.079]
[0.000, 0.050]
No data

Corn

[0.171, 1.000]
[0.105, 0.171]
[0.071, 0.105]
[0.041, 0.071]
[0.007, 0.041]
No data
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Fig. 2 Spatial distribution of county-level aggregate loss–cost ratios
(LCR), 1989–2014 averages (N= 30,261 for corn and N= 29,014 for
soybeans). The darker colors represent higher average LCRs.
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positive in soybeans. Moreover, a 10% increase in precipitation
from its mean reduces the drought LCR in both corn and
soybeans by 0.008 and 0.012, respectively. Precipitation has no
statistically significant effect on heat losses in soybeans or in corn.

In both crops, warmer growing seasons are associated with a
reduction in both cold and excess moisture losses but these
impacts are estimated with less precision (Supplementary Fig. 6).
The reduction in cold losses is consistent with expectations, but
the reduction in excess precipitation losses is less obvious and
perhaps suggests an evaporative effect of warm temperatures.
Indeed, if excessive rainfall is accompanied by high temperatures,
this may reduce damages both by more quickly alleviating excess
moisture conditions and by reducing the chances of damages
arising from successive precipitation events in a short time span.
The impacts of precipitation also generally conform with
expectations with a 10% increase in precipitation from its mean
increasing the excess moisture LCR in both corn and soybeans by
about 0.008 and 0.006, respectively (Supplementary Fig. 7).
Precipitation has no statistically significant effects on cold-related
losses. The estimated impacts for soybeans largely demonstrate
the same impacts as in corn.

Impact of uniform 1 °C warming on the overall LCR. Overall,
the foregoing suggests that higher temperatures induce more heat
and drought losses but reduce excess moisture- and cold-related
losses. The net impacts of higher temperatures, however, cannot
be easily ascertained, as contrasted with the impact of changes in
precipitation, for example (reported in Supplementary Fig. 7).
Therefore, we simulate a warming climate by increasing the daily
minimum and maximum temperatures by 1 °C using the esti-
mated coefficients from our five regression models (total LCR and
the four cause-specific LCRs).

A uniform 1 °C warming for corn is associated with a wide
range of heterogeneous impacts on the total LCR across counties
ranging from −0.044 to 0.28 for corn and from −0.039 to 0.24 for
soybeans (Fig. 4 and Supplementary Table 1). Generally, southern
counties are adversely impacted by warmer temperatures,
whereas northern counties are positively affected by warmer
temperatures. For corn, the average impact across counties is
0.038 (p value= 0.023), which is approximately a 30% increase
compared to the historical average of 0.12. Warming impacts on
soybeans exhibit a similar pattern of results, although smaller in

magnitude and statistically insignificant (an average increase of
0.011 with a p value of 0.23 compared to a historical average of
0.11).

Robustness of warming impacts. To assess the robustness of the
results, we estimate the models and warming impacts with dif-
ferent specifications regarding quantifying temperature variables
(Supplementary Table 2) and the LCR computed from different
subsets of insurance products (Supplementary Table 3). The
warming impacts remain robust across these two alternative
models. We also consider additional control variables (Supple-
mentary Table 4) such as variables that describe crop insurance
participation patterns or additional weather variables (e.g., vapor
pressure deficit) and test whether adding these variables improves
out-of-sample predictions. The results suggest that these alter-
natives do not improve model performance, and we find that the
results were robust to a range of other checks. Further details on
the robustness of the results can be found in Supplementary
Discussion.

Previous studies highlight the importance of considering
adaptation in estimating warming impacts1,36. In our context,
in addition to adaptation in crop production, the changes in
insured liabilities as responses to changes in yield history and
changes in the Federal Crop Insurance Program (FCIP) also need
to be considered. Thus we conduct an additional set of robustness
checks with respect to the consideration of potential adaptation
using an approach suggested by Hsiang36. We compute warming
impacts based on four alternative empirical models: a long-
difference model, a cross-section model, and models with 5- and
10-year moving averages of the model variables (Supplementary
Table 5). As noted in Hsiang36, estimated impacts based on
approaches that exploit climatic variations over longer temporal
frequencies implicitly allow for changes in beliefs or adaptation
by individuals (in this case, farmers and the FCIP). Across all
specifications, the impacts range from +17% (MA10) to +32%
(BaseLine) for corn and from +11% (MA10) to +37% (LongDiff)
for soybeans. We interpret this as strong evidence that, even with
considering possible adaptations in crop production and insured
liabilities, warmer temperatures tend to increase production risk
and premium rates. See Supplementary Discussion for further
details and discussion.

Table 1 Summary statistics for LCR, temperature, and precipitation variables, 1989–2014.

Cause Average Correlation coefficients

Total LCR Drought Excess moisture Heat Cold related Degree days 29 °C Precipitation (mm)

Corn
Total LCR 0.119 1.000 0.799 0.379 0.378 0.280 0.367 −0.148
Drought 0.0619 1.000 −0.0988 0.309 −0.0361 0.436 −0.277
Excess moisture 0.0298 1.000 −0.0490 0.115 −0.0626 0.215
Heat 0.00564 1.000 −0.0200 0.244 −0.0949
Cold related 0.00653 1.000 −0.0948 −0.0517
Degree days 29 °C 56.526 1.000 −0.186
Precipitation (mm) 612.656 1.000

Soybeans
Total LCR 0.107 1.000 0.782 0.442 0.292 0.207 0.408 −0.114
Drought 0.0562 1.000 −0.0833 0.187 −0.0290 0.467 −0.271
Excess moisture 0.0291 1.000 −0.0262 0.0498 0.00530 0.243
Heat 0.00437 1.000 −0.0176 0.314 −0.109
Cold related 0.00396 1.000 −0.0966 −0.0447
Degree days 29 °C 54.866 1.000 −0.113
Precipitation (mm) 616.811 1.000

Notes: Values are based on N= 1733 counties for corn and N= 1632 counties for soybeans. Cold-related losses are the sum of freeze, frost, and cold wet weather losses.
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Cause-specific LCR warming impacts. The aggregate LCR
increases associated with warming mask considerable differences
among the individual causes. On a percent basis, losses associated
with drought and heat are projected to increase by 92 and 105%,
respectively, for corn and by 59 and 105%, respectively, for soy-
beans (p value < 0.01). Conversely, losses associated with excess
moisture and cold are projected to decrease by 43 and 256%,
respectively, for corn and by 59 and 234%, respectively, for soy-
beans (p value less than 0.05). However, in absolute terms the
combined drought and heat increases are significantly larger than
the combined excess moisture and cold decreases, thereby leading
to a net increase in overall losses. As with the aggregate LCR, we
find evidence of widespread spatial heterogeneity of the cause-
specific losses associated with warming (Fig. 5).

Discussion
This research leverages approximately 30,000 observations across
>1600 counties from 1989 to 2014 for both corn and soybeans to
show that moderate warming of 1 °C is associated with increased
production risk and increased occurrence of both drought and
heat losses. Production risk has important implications for on-
farm decision-making and food supply. At the farm level, pro-
ducers make annual decisions on input expenditures (e.g., seed,
fertilizer) based on the distribution of potential outcomes (e.g.,
yield, revenue) they face. When those outcomes are riskier, pro-
ducers may devote fewer inputs overall into the production
process or increase their use of risk-reducing inputs in the same
way that investors shy away from risky stocks57,58. In addition,
extreme heat and drought occurrences tend to be spatially
widespread, thereby correlating production shocks across farms.

Thus, in the aggregate, we expect warming to both decrease food
supply on average and increase intraseasonal variability.

A major strength of these data is the attribution of losses to >40
different causes. Here we focus on heat, cold, drought, and excess
moisture to demonstrate the nuanced effects of warming tem-
peratures, which not only increase losses associated with drought
and heat but also decrease losses associated with cold and excess
moisture. This is perhaps unsurprising, but our approach also
quantifies the relative changes for each cause, which can directly
inform adaptation needs at both the local and aggregate levels.
We also find that the increase in production losses for drought
are much larger than those for heat and that the combined heat/
drought increases are larger than the combined excess moisture/
cold decreases on average across all counties in the sample.
However, there is substantial spatial heterogeneity of these effects.
Adaptation will therefore not look the same everywhere,
even within the U.S. corn belt, a large globally influential pro-
duction region that is often considered homogeneous in its pro-
duction practices. Thus there will not be a uniform silver bullet
solution for policy supporting climate change adaptation through
technology innovation but rather a wide range of new technol-
ogies tailored to localized needs.

Separate from potential policies focusing on adaptation, our
findings suggest that warming temperatures, by increasing pro-
duction risk, can have large effects on the program costs of
existing government-supported risk management policies for
agriculture. The U.S. FCIP has become the cornerstone of public
support for U.S. agricultural producers, with over $110 billion in
liabilities in 2018 (RMA 2019). It has influenced the creation and
design of similar programs globally in both developed and
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Fig. 3 Marginal effects of temperature on the heat and drought LCRs (N= 30,261 for corn and N= 29,014 for soybeans). Dashed lines represent 95%
confidence intervals and standard errors are clustered by year. For the drought LCRs and soybean heat LCR, the second cutoffs exceed 40 °C and the
marginal effects in the last temperature intervals are too large to be reported.
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developing countries, with India and China comprising the next
two largest agricultural insurance markets. These programs are
typically heavily subsidized by the government, which integrates
program effects into the general economy via taxpayer burden. It
also means that increased production risk will increase the out-of-
pocket cost of purchasing insurance for producers, which may in
turn increase the governmental outlay needed to subsidize this
purchase. In addition to the implication of higher program costs,
our cause-specific analyses can provide insights on the feasibility
and costs of new insurance product developments. To give an
example, developing new products (e.g., single peril or index
insurance products), which target specific causes that are rela-
tively more sensitive to climate change or difficult to adapt to,
may reduce the cost of operating crop insurance programs.

It is worth noting some of the limitations of our work, as well
as directions for future research. One unique feature of the COL
data is that losses are reported on a monthly basis. Thus the
analysis presented here could be modified such that monthly
losses are matched to monthly weather variables. This could
provide unique insights into the timing of intraseason warming

impacts on the different causes of yield losses. There are also a
number of assumptions concerning the empirical approach that
could be relaxed and/or modified. Some of these include:
assuming a different growing season, allowing for weather
impacts to differ at different times during the growing season, and
allowing for weather impacts to differ across space and/or time.
Farmer adaptation could potentially be incorporated by endo-
genizing the growing season or by building a more structural
model that features certain adjustments in the crop insurance
program not explicitly captured by our chosen approach. The
approach taken here also assumed unchanged precipitation and
CO2 levels in response to warming. Permitting these factors to
change could potentially provide additional insights into how
warming impacts yield losses.

Methods
Data sources. The analysis in this paper uses data from several different sources.
The crop insurance data were obtained from the SOB and COL databases, both
publicly available datasets maintained by the RMA. The SOB data contains
county–year–specific observations of total losses and liabilities by crop. The COL
data contains crop–county–year-specific observations of losses disaggregated by
each of the 44 different possible causes. We restrict our analysis to corn and
soybeans from 1989 to 2014. These are the two most widely grown and insured
crops in the United States, and 1989–2014 is the period for which we could obtain
the required information on crop insurance. Precipitation and weather data come
from the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
dataset. Similar to Schlenker and Roberts6, we compute daily degree days above
each 1 °C threshold using the sinusoidal curve method59 and then aggregate degree
days that fall within the assumed growing season of April to September.

When a claims adjuster determines that indemnities be paid, they cite a specific
cause associated with the loss. This determination is based on the weather history,
the timing of the loss, and other information supplied by the producer. There may
be instances in which the chosen cause is not the true cause or that a particular loss
was the result of multiple causes. This type of issue can be described as
measurement error in the dependent variable, which will not bias the estimated
results. Moreover, even if the assigned cause is not always correct, it is the result of
the subjective interpretations of the adjusters and producers that will guide future
producer behavior and adaptation. For example, if a producer perceives yield losses
to be more the result of drought, rather than heat stress, this will likely incentivize
different adaptation behavior (e.g., irrigation).

In any given year, there are in excess of 30 possible causes, many of which are
seldom invoked. Figure 1 presents the distribution of indemnities by cause for corn
and soybeans during the 1989–2014 period. For both crops, the largest cause of
insurance payments is drought, which accounted for about 45% of payments in
corn and 39% in soybeans. Excess precipitation also played an out-sized role,
particularly in soybeans.

Empirical framework. We use a framework similar to the empirical specification
in Schlenker and Roberts6. Specifically, let i denote a county and t denote a year.
We estimate regressions of the following form:

yit ¼ ci þ f ðτit ; βÞ þ γ1Precit þ γ2Prec
2
it þ

X

s

δ1sDs ´Timet

þ
X

s

δ2sDs ´Time2t þ ut þ εit ;
ð1Þ

where yit is the LCR, defined as LCRit ¼ ðPjLosses
j
itÞðLiabilitiesitÞ�1. Lossesjit is

the dollar value of realized indemnity payments in county i in year t due to cause j,
and Liabilitiesit is the maximum dollar value of indemnity payments in county i in
year t. The predictor variables are defined as follows: Precit denotes total pre-
cipitation, Ds is an indicator variable for state s, Timet is a time trend variable, and
ci and ut are county fixed effects and year fixed effects, respectively. The summation
terms are state-specific quadratic time trends. The function f(τit, β) relates county-
and time-specific temperatures (measured in degree days following Snyder59),
denoted by τit, to yit. Similar to Schlenker and Roberts6, our specification for f
(τit, β) is a piecewise linear function: we permit the impact of temperatures on yit to
vary over three different intervals in a piecewise linear fashion.

In a separate set of regressions, we estimate temperature and precipitation
impacts on the cause-specific LCRs. Specifically, we can write yit= ∑jyjit, where j
denotes a cause that could be cited by the claims adjuster (e.g., drought). We focus
our attention on the main weather-related causes, particularly those that relate to
temperature and moisture. These include heat, cold, drought, and excess moisture.

The piecewise linear function contains cutoff points that need to be determined
during estimation. To obtain the cutoffs, we estimate Eq. (1) with different cutoff
candidate values and then select the cutoffs that best fit the data. We place certain
restrictions on the candidate values. Specifically, we fix the first cutoff at 10 °C
and then search for two cutoffs, one between 20 °C and 35 °C and the other
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No data
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Fig. 4 Spatial distribution of a 1 °C warming impact on the county-level
average aggregate loss–cost ratio (LCR), 1989–2014 (N= 30,261 for
corn and N= 29,014 for soybeans). For the uniform 1 °C warming
scenario, the predictions are based on the estimated coefficients of the total
LCR model (assuming no precipitation changes). The darker colors
represent greater impacts on the average LCRs.
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Fig. 5 Spatial distribution of 1 °C warming impact on the county average cause-specific loss–cost ratio (LCR), 1989–2014 (N= 30,261 for corn and
N= 29,014 for soybeans). For the uniform 1 °C warming scenario, the predictions are based on the estimated coefficients of the four cause-specific LCR
models (assuming no precipitation changes). The darker colors represent greater impacts on the average LCRs.
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between 36 °C and 43 °C. Supplementary Table 1 presents the goodness-of-fit
measure for our five key dependent variables—the overall LCR and the four cause-
specific LCRs—and the corresponding two temperature cutoffs. For the overall
LCRs, the first cutoffs are 27 °C for corn and 28 °C for soybeans. The cutoffs for
heat, drought, and excess moisture losses are similar but a bit higher, and the
cutoffs for cold-related losses are lower at 24 °C and 36 °C. The warming effects are
obtained by estimating f ð �τi1; β̂Þ � f ð �τi0; β̂Þ, where �τi1 is the vector of the averages
of temperature variables under 1 °C warming scenario, �τi0 is the vector of the
average of the observed temperature variables, and β̂ is the vector of estimated
coefficients for the piecewise linear function of temperature effects. We cluster
standard errors by year for our main specification. All regression analyses were
conducted using the statistical software Stata/SE 15.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Cause of Loss and Summary of Business datasets can be obtained at https://www.
rma.usda.gov/SummaryOfBusiness/CauseOfLoss. The PRISM weather data can be
obtained at http://www.columbia.edu/ws2162/links.html and http://prism.oregonstate.
edu. Further details concerning preparation of the data are available at https://github.
com/jisangyu-agecon/LCR_Perry_et_al.git.

Code availability
All code used for this study is available at https://github.com/jisangyu-agecon/
LCR_Perry_et_al.git.
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