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INTRODUCTION 
 

Aging is an inevitable biological process with 

concomitant changes on the cellular level, including 

mitochondrial dysfunction, genomic instability, epi-

genetic alterations, protein aggregation, telomere 

attrition,  and  cellular  senescence  [1].  The  underlying  

 

mechanisms for the observed changes are yet to be fully 

identified, however, several aging hypotheses are based 

on an increase in oxidative stress [2–4] and concomitant 

accumulation of oxidized and nitrated proteins [5–7], 

oxidized lipids, and DNA damage [8]. One contributor 

to the increase in oxidative stress is supposed to be the 

age-dependent decline of the nuclear factor (erythroid-
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ABSTRACT 
 

A decline of immune responses and dynamic modulation of the redox status are observed during aging and are 
influenced by trace elements such as copper, iodine, iron, manganese, selenium, and zinc. So far, analytical 
studies have focused mainly on single trace elements. Therefore, we aimed to characterize age-specific profiles 
of several trace elements simultaneously in serum and organs of adult and old mice. This allows for correlating 
multiple trace element levels and to identify potential patterns of age-dependent alterations. In serum, copper 
and iodine concentrations were increased and zinc concentration was decreased in old as compared to adult 
mice. In parallel, decreased copper and elevated iron concentrations were observed in liver. The age-related 
reduction of hepatic copper levels was associated with reduced expression of copper transporters, whereas the 
increased hepatic iron concentrations correlated positively with proinflammatory mediators and Nrf2-induced 
ferritin H levels. Interestingly, the age-dependent inverse regulation of copper and iron was unique for the liver 
and not observed in any other organ. The physiological importance of alterations in the iron/copper ratio for 
liver function and the aging process needs to be addressed in further studies. 
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derived 2)-like 2 (Nrf2) responsiveness [9–11]. Nrf2 

controls the transcription of antioxidant, cytoprotective, 

and detoxification genes, including NAD(P)H:quinone 

oxidoreductase (NQO1), several glutathione S-

transferase isoforms (GST, isoforms a1, a2, a3, a5, m1, 

m2, m3, p1) [12], as well as genes involved in 

glutathione (GSH) synthesis [13]. Furthermore, genes 

related to trace element (TE) metabolism such as ferritin 

H (FTH) are regulated via Nrf2 [14, 15]. Besides 

oxidative stress, functional impairment of the immune 

response and a systemic chronic low-grade inflam-

mation, referred to as “inflammaging”, are hallmarks of 

the aging process [16–20]. Low-grade inflammation is 

characterized by enhanced constitutive circulation of 

inflammatory mediators such as cytokines, e.g., 

interleukin 6 (IL6), tumor necrosis factor-alpha (TNFα), 

and acute-phase proteins [21, 22], in the absence of 

clinically defined infections. 

 

During the aging process, essential TEs are important 

as they modulate both oxidative stress and immune 

response by their indispensable functions, e.g., in 

enzymatic reactions and signaling pathways. Elderly 

subjects are prone to inadequate TE intake [23, 24], 

which results in lower serum concentrations of e.g., 

selenium (Se) [25] and zinc (Zn) [26]. This is 

particularly worrisome for Se because its supply is 

already suboptimal in the general European population 

[27]. A low Se status is associated with an increased 

risk of infections, cancer, other age-related diseases, 

and mortality [28]. Similarly, the immune response is 

impaired by a low Zn status, especially under 

conditions of chronic inflammation [29]. However, 

other TEs such as copper (Cu) are increased in the 

elderly [30]. So far, most studies investigated single 

TEs only. In our hypothesis, interactions of TEs might 

contribute to their age-related changes, thereby 

generating age-specific TE patterns. The competition of 

Cu and Zn for intestinal absorption and metallothionein 

(MT) binding is an instructive example [31]. Because 

of this interaction, it is assumed that the Cu/Zn ratio is 

a more conclusive parameter than a separate analysis of 

both elements [26]. 

 

We aim to systematically extend this concept by 

considering six essential and health-relevant TEs in 

parallel, namely Cu, iodine (I), iron (Fe), manganese 

(Mn), Se, and Zn. To this end, age-related TE profiles 

are determined in serum and several organs of adult 

versus old C57BL/6Jrj mice and correlated with 

parameters of aging, e.g., nitrated proteins, epigenetic 

modifications, inflammatory mediators, and Nrf2 target 

genes. This will provide the basis for further studies 

concerning the underlying mechanisms of age-related 

shifts in TE profiles and the relevance of these changes 

for age-related characteristics and diseases. 

RESULTS 
 

To determine the TE status, ad libitum chow-fed 

animals of both sexes were sacrificed at the age of 24 

(adult) or 109 to 114 weeks (old). Male mice showed no 

age-dependent differences in body weight (Sup-

plementary Table 1). In contrast, the body weight of 

female mice was significantly increased in old mice. 

Generally, females had a significantly lower body 

weight as compared to males (Supplementary Table 1). 

Relative organ weights were largely unaffected by age, 

with the exception of relative heart and kidney weights, 

which significantly increased with age (Supplementary 

Table 1). The vast majority of old mice developed 

dysfunctions. In particular, a high incidence of 

splenomegaly and tumors primarily affecting mesentery 

and intestine was detected. 

 

Age- and sex-dependent changes of TE 

concentrations in serum 

 

In serum, concentrations of Cu, I, Fe, Mn, Se, and Zn as 

well as functional biomarkers for Fe, Se, and Zn were 

determined (Figure 1, Supplementary Table 2). No 

significant differences between male and female mice or 

both age groups were detected for Mn and I (Figure 1A, 

1B). However, serum concentrations of I showed an age-

dependent increase when considering all mice irrespective 

of their sex (Supplementary Table 2). Serum Cu levels 

were significantly increased in old female mice, both in 

comparison to young females and old male mice (Figure 

1C). Fe and ferritin serum levels were not altered in the 

mouse cohort (Figure 1D, 1E), while transferrin was 

significantly increased in aged females in comparison to 

aged male mice (Figure 1F). The average Se 

concentration (Figure 1G) as well as the levels of the 

selenoprotein-based functional biomarkers GPX activity 

(Figure 1H) and selenoprotein P (Selenop) (Figure 1I) 

were unaffected by age or sex. Serum Zn concentrations 

were decreased in old male and adult female mice, 

compared to adult males (Figure 1K). However, free Zn, 

often used as an alternative status marker, stayed the same 

(Figure 1L). Spearman’s correlation analysis (Sup-

plementary Table 3) revealed strong positive correlations 

between Cu and I (rS=0.701, p=0.001) as well as Zn and 

Se serum concentrations (rS=0.509, p=0.031). Relative 

Selenop protein levels were negatively correlated with 

serum I concentrations (rS= 0.662, p=0.005). 
 

TE profiles in murine organs 
 

TE concentrations in the liver did not show any significant 

difference between groups (Figure 2). Mn, Zn, and Se 

concentrations, as well as hepatic GPX activity, were 

entirely stable in all groups (Figure 2A–2D). Only Fe and 

Cu concentrations showed a trend toward upregulation 
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of Fe and downregulation of Cu in old mice (Figure 2E, 

2F), which was significant when considering all mice 

irrespective of sex (Supplementary Table 2). Thus, 

aging affects Cu levels in opposite directions in serum 

and liver (Figure 3). 

Besides serum and liver, the distribution of Cu, Fe, Mn, 

Se, and Zn was further assessed in duodenum, heart, 

muscle, lung, kidney, bladder, cortex, and cerebellum. 

Across these organs, we observed profoundly different 

distribution patterns for the analyzed TEs (Figure 3,
 

 

 
 
 

Figure 1. Age- and sex-related changes of serum TE profiles and biomarkers. Concentrations of Mn (A), I (B), Cu (C), Fe (D), Se (G), 

and Zn (K) were analyzed in the serum of adult (24 weeks) and old (109-114 weeks) male and female C57BL/6Jrj mice (n = 4-5) receiving chow 
diet. Serum concentrations were determined using ICP-MS/MS (A-D, G, K). Further biomarkers were detected by ELISA (E, F) and fluorescent 
probes (L) to assess the Fe marker ferritin (E) and transferrin (F) as well as free Zn (L), respectively. The Se status was further validated by GPX 
activity (H) and relative Selenop levels (I), based on NADPH-consuming glutathione reductase coupled assay and Dot blot analysis, 
respectively. Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni’s test with * p < 0.05, *** p < 0.001 vs. 
adult and # p < 0.05, ## p < 0.01 vs. male. 
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Supplementary Table 2). Overall, Se and Zn levels in 

organs were relatively stable across the age groups. If 

Zn concentrations were altered, they were down-

regulated in old mice. In most organs of old mice, Mn 

was also consistently downregulated. In contrast, Fe 

was upregulated showing the highest fold change in 

bladder. Cu was decreased in liver, heart, and kidney of 

old mice but increased in all other organs, with 

exception of the bladder (Figure 3A). Sex-related 

differences were observed for Fe with higher levels in 

females (Figure 3B). 

 

Putative interactions of TEs based on correlation 

analyses 

 

TE interactions between and within the organs were 

evaluated based on analysis of Spearman’s correlation 

coefficients (Supplementary Tables 3, 4; Supplementary 

Figure 1). Most often, Cu serum concentrations 

correlated positively with Fe concentrations in organs, 

e.g., in the liver. In contrast, serum Cu levels correlated 

negatively with Mn levels in diverse organs. Negative 

correlations were also observed for serum Zn and Fe 

concentrations in organs. Within the same organ, Cu 

concentrations correlated with Fe, Mn, and Se in a 

positive manner in most cases. Also, Se and Zn 

concentrations correlated positively in multiple organs, 

e.g., liver or kidney. While Se and Mn levels showed 

positive correlations in heart and kidney, a negative 

correlation was obtained in the cerebellum.  

 

Hepatic expression of genes related to uptake and 

distribution of TEs 

 

In order to identify putative mechanisms for the 

observed TE distribution patterns, mRNA expression 

analyses for various transport and binding proteins 

involved in the cellular transfer and storage of Cu, I, Fe, 

Mn, and Zn were performed in duodenum and liver 

(Supplementary Figure 2; Figure 4). In the duodenum, 

expression levels of the Cu exporter ATPase copper 

transporting alpha (ATP7A) were downregulated in old 

females in comparison to adult females (Supplementary 

Figure 2M). In contrast, the Cu- and Zn-binding 

proteins metallothionein 1 (MT1) and MT2 (Sup-

plementary Figure 2K, 2L) were upregulated with 

increasing age in males, whereas females tended toward 

the opposite effect.  

 

Hepatic proton-coupled divalent metal ion transporter 

(DMT1), involved in the uptake of divalent metals such 

as Cu, Fe, Mn, and Zn tended to be reduced in old as

 

 
 

Figure 2. TE profile analysis in the liver of mice. Liver tissue of adult (24 weeks) and old (109-114 weeks) male and female C57BL/6Jrj 

mice (n = 4-5) receiving chow diet were analyzed for their concentrations of Mn (A), Zn (B), Se (C), Fe (E), and Cu (F) using ICP-MS/MS. 
Furthermore, Se-sensitive GPX activity was assessed by NADPH-consuming assay (D). Statistical testing based on Two-Way ANOVA and post 
hoc analysis using Bonferroni’s test revealed no significant differences for age and sex.  
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compared to adult mice, with lower expression levels 

in female mice (Figure 4A). Similar changes as for 

DMT1 were observed for the heme transporter solute 

carrier family 48 member 1 (Slc48a, Figure 4B) and 

transferrin receptor (Tfrc, Figure 4C). The latter 

showed a trend for lower expression levels with age. 

The expression levels of the Fe exporter ferroportin 

(Fpn, Figure 4D) and solute carrier family 39, 

member 8 (Zip8, Figure 4E), responsible for the 

influx of Zn, Mn, and Fe [32], were unaffected. 

Zip14, which is involved in the hepatic uptake of Zn, 

Mn, and Fe, showed a trend for higher expression 

levels in females, which was independent of age 

(Figure 4F). Solute carrier family 30, member 1 

(ZnT1), responsible for Zn export, tended to be 

upregulated in old male mice in comparison to adult 

males (Figure 4G), whereas ZnT10 was unaffected 

(Figure 4H). The Cu transporter solute carrier family 

31, member 1 (Ctr1) showed a trend for down-

regulation in old mice (Figure 4I). Hepatic MT2 

expression tended toward an age-dependent increase 

in both males and females (Figure 4K). For the 

hepatic Cu-transporting ATPase, ATPase copper 

transporting beta (ATP7B), a trend for higher 

expression in females was observed (Figure 4L). The 

sodium iodide symporter NIS did neither change with 

age nor sex (Figure 4M). 

Whereas the expression levels of these TE-related genes 

did not strongly correlate with TE concentrations in 

serum, liver, or duodenum, highly significant correla-

tions between the individual transporters were identified 

(Supplementary Figure 3). Especially TE-related genes 

associated with Cu, Zn, and Fe uptake or export were 

strongly correlated. 

 

Age-dependent effects on mediators of inflammation, 

DNA methylation, nitrated proteins, and Nrf2 target 

genes 

 

Inflammatory mediators, DNA methylation, as well as 

protein modifications were determined to characterize 

age-related changes in the mouse cohort and to correlate 

these to the TE profiles. In serum, TNFα levels were 

significantly increased in old female mice as compared 

to adult females as well as to old males (Figure 5A). A 

comparable increase in old female mice was observed 

for the hepatic mRNA expression levels of TNFα 

(Figure 5B), IL1β (Figure 5C), and IL6 (Figure 5D). 

TNFα levels in serum were strongly correlated with 

serum Cu levels (Supplementary Table 3), while all 

hepatic proinflammatory cytokines were correlated with 

Fe concentrations in liver (Supplementary Table 4, 

Supplementary Figure 1).  

 

 
 

Figure 3. TE changes in various organs in relation to age and sex. TEs in various organs of adult (24 weeks) and old (109-114 weeks) 
male and female C57BL/6Jrj mice receiving a chow diet ad libitum were analyzed by ICP-MS/MS. The heat map indicates changes of TE 
content in murine organs of old mice compared to adult animals (A; n=9-10) or of female mice in comparison to male animals (B; n=9-10) 
given in % (100 % represents no change). Each row represents one organ, whereas each column represents one element. Statistical testing 
based on Two-Way ANOVA and post hoc analysis using Bonferroni’s test with * p < 0.05, whereas grey * indicates p < 0.1. 
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Global DNA methylation (mdC/dC) in the liver was 

neither affected by age nor sex (Figure 5E), whereas 

DNA hydroxymethylation (hmdC/dC) was significantly 

enhanced in old male mice (Figure 5F). Hepatic levels 

of tyrosine nitrated proteins (3-NT) were also increased 

in old male mice compared to adult males. Levels were 

generally lower in females than in males (Figure 5G). 

DNA hydroxymethylation correlated with 3-NT-

 

 
 

Figure 4. Expression analysis of various TE-related genes in liver. Relative expression levels of TE-related genes in the liver of adult 

(24 weeks) and old (109-114 weeks) male and female mice (n = 4-5) fed with a chow diet ad libitum. Expression levels were normalized by a 
composite factor based on the house-keeping genes Hprt and Rpl13a. Finally, variances are expressed as fold change compared to adult 
males (mean adult males = 1). Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni’s test with * p < 0.05. 
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Figure 5. Proinflammatory cytokines and DNA and protein modifications in relation to age and sex. Serum (A) and liver extracts 

(B–G) of adult (24 weeks) and old (109-114 weeks) male and female mice (n = 4-5) fed with a chow diet ad libitum were subjected to enzyme-
linked immunosorbent assay (A), qRT-PCR analysis (B–D), tandem mass spectrometry (E, F), and immunoblotting (G). This way, 
proinflammatory cytokines (A–D), global DNA methylation (mdC/dC; E), and hydroxymethylation (hmdC/dC; F), as well as 3-nitrotyrosine (3-
NT, G) protein modifications were determined. Hepatic transcription levels (B–D) were normalized by a composite factor based on the house-
keeping genes Hprt and Rpl13a, whereas 3-NT-modified proteins were normalized to GAPDH (G). Except for (E) and (F), where data is given in 
%, data is presented as fold change compared to male adults (A–D, G). Statistical testing based on Two-Way ANOVA and post hoc analysis 
using Bonferroni’s test with * p < 0.05, ** p < 0.01 vs. adult and # p < 0.05, ### p < 0.001 vs. male. 
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modified proteins but not with the hepatic concentration 

of any of the TEs (Supplementary Table 4, Supple-

mentary Figure 1). 

 

Hepatic Nrf2 target genes were analyzed, including 

NQO1 activity, FTH expression, and total GST activity 

(Figure 6). Especially in male mice, NQO1 activity 

tended to increase with age and showed higher overall 

values in females (Figure 6A). The same age-dependent 

increase was observed in heart, lung, and kidney of 

male mice (Supplementary Figure 4). FTH levels 

revealed a similar pattern as NQO1 activity with higher 

levels in females and an age-dependent increase (Figure 

6B). Both hepatic NQO1 activity and FTH expression 

correlated positively with the expression of 

inflammatory mediators and with Fe concentrations in 

the liver (Supplementary Table 4, Supplementary 

Figure 1). Interestingly, hepatic GST activity behaved 

in an opposite manner being decreased with age (Figure 

6C) and increased in male mice. However, these effects 

on GST levels were not detected in other organs (Sup-

plementary Figure 4). 

 

DISCUSSION 
 

The old mouse cohort studied herein displayed typical 

characteristics described for old organisms. This 

includes an increase in relative heart weight 

(Supplementary Table 1), typical for a hypertrophic, 

aging heart [33–35], and an increase in kidney weight 

(Supplementary Table 1), which was previously 

observed in old rodents [36]. Biomarkers of aging 

include 3-NT modified proteins [37, 38], which were 

increased with age in livers of male mice (Figure 5G). 

In addition, we observed higher global levels of the 

oxidation product 5-hmdC in the liver of old mice 

(Figure 5F), which is in line with previously published 

results [39]. On the contrary, global DNA methylation 

seems to be less predictive for age [40–45], which was 

confirmed in this study for liver (Figure 5E).  

 

Most of the observed age-dependent differences in 

serum TE profiles (Figure 1) are in line with published 

values for single TEs, but now provide an overall 

picture. The data allow for correlating multiple TE 

concentrations and to identify potential patterns of age-

dependent alterations. Most pronounced, Cu 

concentrations in serum increased with age, especially 

in female mice (Figure 1C), as has been reported before 

in rodents and in humans [46–50]. Serum Zn levels 

behaved the opposite (Figure 1K), which is in line with 

the literature for several species [29, 50–54]. However, 

free Zn, which is discussed to be a more reliable 

biomarker for bioavailable Zn [55], was not affected by 

age (Figure 1L). Additionally, several human studies 

reported a significant increase of I and Fe and a 

reduction of Se concentrations in the serum of elderly 

subjects [50, 52, 56]. In the present study, a tendency 

toward increased serum I levels was observed (Figure 

1B). However, a more reliable biomarker is urinary 

iodine concentration at least in human cohorts [57, 58]. 

As urine samples were not available for our mice, we 

additionally analyzed the I content of the thyroid which 

was rather heterogenous in old mice but tended to 

increase with age (Supplementary Figure 5A). In 

addition, a significant reduction of the enzymatic 

activity of the I-releasing deiodinase I (Dio1) was 

observed (Supplementary Figure 5B). This indicates 

age-related changes of iodine storage and handling, that 

would need further clarification in future studies. 

Concerning Fe, the only biomarker that was upregulated 

in old female mice was serum transferrin (Figure 1F), 

while serum ferritin was unaffected (Figure 1E). Serum 

transferrin was shown to correlate with hepatic Fe levels 

but not with serum Fe [59], which was also the case in 

this study. Neither serum Se levels, nor the functional

 

 
 

Figure 6. Activity and expression levels of Nrf2 target genes. The enzyme activities of the Nrf2 targets NQO1 (A) and total GST (C) 

were determined by activity assays, whereas the relative protein levels of FTH (B) normalized to the house-keeping gene GAPDH were 
analyzed by Western blot in liver tissue of adult (24 weeks) and old (109-114 weeks) male and female mice (n = 4-5). Statistical testing based 
on Two-Way ANOVA and post hoc analysis using Bonferroni’s test with ** p < 0.01 vs. adult and # p < 0.05, ### p < 0.001 vs. male. 
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biomarkers GPX activity or Selenop levels were 

affected by age (Figure 1G–1I). A previous study using 

telomerase RNA component knockout mice reported 

marginally increased Se and Selenop levels with age in 

the plasma of male but not female mice [60]. 

 

In the liver, which was the organ with the highest TE 

concentrations in this study (Supplementary Table 2; 

[61]), we observed a trend toward higher Fe levels in old 

than in adult mice (Figure 2E) together with reduced 

hepatic Cu levels (Figure 2F). This has been previously 

described for individual TEs during aging [23, 62–64], but 

has not been shown to be linked to each other. Strikingly, 

this relationship was unique for the liver. In most other 

organs, significant positive correlations between Fe and 

Cu were observed (Supplementary Figure 1). To 

understand the underlying mechanisms of age-dependent 

changes in hepatic TE concentrations, expression levels of 

transport and binding proteins were analyzed. DMT1, a 

transporter shared by Cu and Fe [65], was downregulated 

in old mice (Figure 4A), which provides an explanation 

for lower hepatic Cu levels in old mice. Besides DMT1, 

Cu ions are mainly transported by Ctr1, which was 

downregulated with age as well (Figure 4I). ATP7B 

expression also tended to be downregulated in old mice 

(Figure 4L), thus enhanced Cu export from liver does 

most probably not contribute to lower hepatic Cu levels. 

Other studies have, however, not detected any age-related 

change in net Cu absorption [66]. Serum Fe is mainly 

bound to transferrin and taken up by a Tfrc-mediated 

mechanism, but Tfrc expression was unaffected by age 

(Figure 4C). The same was the case for the Fe exporter 

Fpn (Figure 4D). Based on these observations, age-related 

restrictions of hepatic Cu levels were associated with 

lower expression levels of transporters, while the increase 

in hepatic Fe concentrations appears to depend on other 

mechanisms.  

 

TEs contribute to immune function in many different 

ways [67–70]. Vice versa, a low-grade chronic 

inflammation frequently observed in the elderly might 

contribute to the observed age-specific shifts in TE 

profiles [51]. Indeed, Zn concentrations in serum 

decline during acute inflammatory disorders or 

infections [71–76], as well as in aged animals, as shown 

herein (Figure 1K) or for elderly humans [50]. These 

effects are supposed to be mainly mediated by IL1 and 

IL6 [77–79]. Furthermore, we detected an age-

dependent increase in Cu serum concentrations (Figure 

1C, Supplementary Table 2), which also takes place 

under inflammatory conditions [72, 74, 75]. Also, Fe is 

a negative acute-phase reactant [80–82], which is 

modulated by enhanced secretion of hepcidin [83] and 

stimulated by cytokines such as IL6. Hepcidin interacts 

with Fpn, limiting the Fe release from cells into the 

bloodstream [84]. Fe concentrations were indeed 

increased in several organs of old mice, including the 

liver (Supplementary Table 2), and hepatic Fe 

concentrations correlated with inflammatory mediator 

expression in the liver. Thus, low-grade inflammation 

appears to be the main mechanism for age-related Fe 

accumulation in the liver.  
 

The age-related overproduction of pro-inflammatory 

cytokines not only causes a low-grade inflammation, 

but also shifts the cellular redox state, thereby 

contributing to constitutive activation of the Nrf2 

system. Effectively, this higher constitutive Nrf2 

activity is the reason for reduced Nrf2 responsiveness in 

old organisms [85–87]. As TE-related proteins like Fpn, 

hepcidin, or ferritin [88, 89] are regulated via Nrf2, this 

provides another potential mechanism for age-related 

modifications of the TE patterns, especially for 

alterations of the Fe status. A significant age-dependent 

increase in NQO1 activity was observed in all organs 

analyzed (Figure 6A, Supplementary Figure 4). In 

addition, higher amounts of FTH were detected in liver 

tissue of old mice (Figure 6B) and correlated strongly 

with hepatic Fe concentrations. Overall, the Nrf2-

induced increase of FTH protein expression may 

provide an explanation for higher hepatic Fe levels 

(Figure 6B). Accordingly, inflammatory processes 

and/or increased Nrf2 activity may constitute the 

driving forces for the age-specific alterations in TE 

concentrations observed in serum and liver.  
 

In summary, aging is associated with profound 

differences in TE concentrations in serum and different 

organs. The parallel analysis of six TEs highlights 

particular alterations in serum TE profiles of old versus 

adult mice, with decreased Zn and increased Cu and I 

concentrations. The reciprocal alterations in serum Cu 

and Zn concentrations were, however, not observed in 

the analyzed organs. A second organ-specific effect was 

detected in liver, where we observed an age-dependent 

inverse regulation of Cu and Fe concentrations. While 

these changes in the Fe/Cu ratio may be directly related 

to systemic low-grade inflammation, their physiological 

importance for liver function and the aging process 

needs to be addressed in further studies. 

 

MATERIALS AND METHODS 
 

Animal experiment 
 

Male and female C57BL/6Jrj mice were housed on a 

12:12 h light:dark schedule with food and tap water ad 

libitum. We utilized a commercially available chow diet 

(V1534, Ssniff, Soest, Germany) with Fe, Zn, Mn, Cu, 

I, and Se content of 215, 97, 82, 8.8, 1.8, and 0.3 mg/kg 

diet, respectively. It needs to be considered that the TE 

amounts in the diet exceeded the nutritional TE 
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requirements for mice [90]. While Se and Cu were 

marginally increased (2-fold and 1.5-fold above the 

requirement, respectively), the other four TEs had levels 

12-fold for I, 10-fold for Zn, 8-fold for Mn, and 6-fold 

for Fe above the respective requirements. Tap water 

contained about 0.03, 0.35, 0.66 mg/L Fe, Zn, and Cu, 

respectively. Mn and Se content of drinking water was 

about 0.75 and 0.03 μg/L, respectively. 

 

At the age of either 24 weeks (adult) or 109-114 weeks 

(old), mice were anesthetized with isoflurane (Cp-

pharma, Burgdorf, Germany), and blood was collected 

by cardiac puncture. Serum was obtained after full 

coagulation at room temperature (RT) and 

centrifugation for 10 min (2,000 x g, 4°C). Organs were 

surgically dissected and immediately frozen. All animal 

procedures were approved and conducted following 

national guidelines of the Ministry of Environment, 

Health and Consumer Protection of the federal state of 

Brandenburg (Germany, 2347-44-2017) and institu-

tional guidelines of the German Institute of Human 

Nutrition Potsdam-Rehbruecke. 

 

ICP-MS/MS analysis of trace elements in serum, 

organs, and feed 

 

TEs in the serum were determined as described previously 

[91, 92]. In brief, 50 μL of murine serum were diluted 1:10 

with a dilution mix (5 % (v/v) butanol (99 %, Alfa Aesar, 

Karlsruhe, Germany), 0.05 % (w/v) Na-EDTA (Titriplex® 

III, pro analysis, Merck, Darmstadt, Germany), 0.05 % 

(v/v) Triton™ X-100 (Sigma-Aldrich/Merck, Taufkirchen, 

Germany) and 0.25 % (v/v) ammonium hydroxide (puriss. 

p.a. plus, 25 % in water, Fluka, Buchs, Germany)) as well 

as internal standards (final concentrations: 1 μg rhodium 

(Rh)/L and 30 μg 77Se/L). Cu, I, Fe, Mn, Se (IDA), and Zn 

concentrations were determined in the diluted sample 

using ICP-MS/MS (8800 ICP-QQQ-MS, Agilent 

Technologies, Waldbronn, Germany). 

 

20-50 mg of snap-frozen organs (unless the total weight 

of the organ was lower than 50 mg, in which case organs 

were digested as a whole) or feed were homogenized 

using mortar and pestle under liquid nitrogen or at RT, 

respectively, and were weighed into PTFE microwave 

vessels. HNO3 (65 %, Suprapure®, Merck) and H2O2 

(30 %, Sigma-Aldrich/Merck) were used for digestion. 

Additionally, Rh (diluted from 10 mg/L single element 

stock solution, Carl Roth, Karlsruhe, Germany) and 77Se 

(diluted from a 10.000 mg/L stock solution, prepared in 

house from isotopically enriched 77Se (97.20 ± 0.20 % 
77Se; 0.10 % 74Se; 0.40 ± 0.10 % 76Se; 2.40 ± 0.10 % 78Se; 

0.10 % 80Se; 0.10 % 82Se as certified by Trace Sciences 

International, Ontario, Canada), purchased from Eurisotop 

SAS (Saarbrücken, Germany) were added as internal 

standard and isotope dilution standard, respectively. The 

samples were digested in a MARS 6 microwave digestion 

system (CEM, Kamp-Lintfort, Germany) by heating to 

200°C over 10 min and holding this temperature for 

20 min. Post digestion, the samples were diluted with 

ultrapure water to give final concentrations of 2.93 % 

HNO3, 10 μg/L 77Se, and 1 μg/L Rh. This solution was 

subjected to ICP-MS/MS analysis with the following 

parameters: 1550 W plasma Rf power, Ni-cones, 

MicroMist nebulizer at 1.2 L Ar/min and Scott-type spray 

chamber). The following mass to charge ratios and gas 

modes were used (Q1→Q2): He-mode: Mn (55→55), Fe 

(56→56), Cu (63→63), Zn (66→66), Rh (103→103); 

O2-mode: Se (77→93), Se (80→96), Rh (103→103). 

Elements in He-mode were determined via external 

calibration using calibration solutions made from 1000 

mg/L single element standard solutions (Carl Roth) with 

internal standard correction using Rh. Se was determined 

via IDA, as described previously [93]. Results were 

checked using certified reference materials ERM-BB 422 

(fish muscle) or ERM-BB 186 (pig kidney), and the 

analysis was repeated if reference material recovery 

deviated by more than 10 % from the certified value. To 

preserve animal material for the analysis of other markers, 

the variability of three independent digestions was 

checked for liver tissue in another animal experiment and 

found to be below 5 %. Therefore, in subsequent 

experiments, each organ was analyzed as a single 

replicate, unless extreme outliers as compared to animals 

from the same experimental group were identified, in 

which case the analysis was repeated. 

 

Analysis of free zinc in serum 

 

Free zinc was determined by the low molecular weight 

fluorescent probe Zynpyr-1, as reported before [94]. For 

the application on murine serum samples, the assay was 

modified as follows: The incubation times for F, Fmin, 

and Fmax were set to 60, 30, and 60 min, respectively. 

For the induction of Fmin and Fmax, 15 μL EDTA 

solution (800 μM) or ZnSO4 solution (25 mM) per well 

were added, resulting in final concentrations of 100 μM 

EDTA and 2.8 mM ZnSO4, respectively. 

 

ELISA for ferritin and transferrin 

 

The concentrations of ferritin and transferrin were 

determined using an ELISA kit (ALPCO, Salem, USA) 

according to the manufacturer's instructions. Briefly, 

serum was diluted either 1:20 or 1:200,000 for ferritin 

and transferrin analysis, respectively. A volume of 

100 μL (standard, control, or sample) was added to the 

wells. After incubation for 60 and 30 min at RT, wells 

were washed, and 100 μL of horseradish peroxidase-

anti-ferritin or -anti-transferrin conjugate was added, 

respectively. Following a further incubation at RT, 

100 μL of chromogenic substrate solution was added. 
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After 10 min, the enzymatic reaction was stopped by 

adding 100 μL stop solution. The optical density was 

determined at 450 nm using an Infinite 200 Pro 

microplate reader (Tecan, Männedorf, Switzerland). 

Average absorbance was determined and concentrations 

calculated based on standard curves. 

 

TNFα analysis in serum 

 

TNFα protein in serum was quantified by ProQuantum 

Mouse TNFα Immunoassay Kit (Invitrogen, 

ThermoFisher Scientific, Waltham, MA, USA). Briefly, 

serum was diluted 1:3 and subjected to an equal volume 

of the antibody-conjugated mixture on the assay plate. 

The antibodies within this mixture bind to two separate 

isotopes on the TNFα antigen, which brings two 

conjugated oligonucleotides into close proximity. A 

DNA ligase connects the ends of the two conjugated 

oligonucleotides, creating a PCR template. Copies of 

the template can be amplified by PCR, following 

manufacturer's instructions. Based on fluorescent dyes, 

indicating amplicon, standard curves and TNFα serum 

levels were calculated. 

 

Selenop analysis by Dot blot 

 

Selenop was detected by Dot blot. Therefore 5 μL of 

murine serum (1:20 diluted in distilled water) were 

transferred to an AmershamTM Protran nitrocellulose 

membrane (Sigma-Aldrich/Merck) in a Dot blot apparatus 

(Bio-Rad Laboratories, Munich, Germany) following 

washing steps with TBS buffer (0.14 M NaCl, 2.7 mM 

KCl, 25 mM Tris, pH 7.3). Ponceau S staining (0.1 % 

(w/v) Ponceau S, 0.5 % (w/v) glacial acetic acid in water) 

was performed prior to blocking (1 h) and antibody 

incubation (4°C overnight, followed by 1 h RT) with 5 % 

(w/v) milk powder in TBST (0.1 % (v/v Tween 20, 1x 

TBS) and rabbit anti-Selenop/rabbit anti-mouse IgG-617 

antibody (1:400; [95]). After removal of the excess 

antibody with TBST, goat anti-rabbit horseradish 

peroxidase-coupled antibody (Dako, Agilent; 1:2000) was 

incubated for 1 h at RT. Indirect quantification was 

performed with HyperfilmTM ECL (GE Healthcare 

Amersham, ThermoFisher Scientific) and an enhanced 

chemiluminescence (ECL)-based Prime Western blotting 

detection system (GE Healthcare, Sigma-Aldrich/Merck), 

incubated for 30 min. Scanned blots were quantified with 

Image J software (Wayne Rasband, National Institutes of 

Health, Bethesda, MD, USA). 

 

Enzyme activities 

 

Frozen organ samples were homogenized with Tris buffer 

(100 mM Tris, 300 mM KCl, pH 7.6 with 0.1 % Triton X-

100 (Serva, Heidelberg, Germany)). After the removal of 

cellular debris by centrifugation (15 min, 14,000 x g, 

4°C), protein concentrations were determined by Bradford 

analysis (Bio-Rad Laboratories). Measurement of GPX 

[96], NQO1 [97], and GST [98] activities have been 

reported before. Briefly, GPX activity was determined in 

a NADPH-consuming glutathione reductase coupled 

assay, whereas NQO1 activity was detected by a 

menadione-mediated reduction of 3-(4, 5-dimethylthiazol-

2-yl)-2, 5-diphenyltetrazolium bromide (MTT). GST 

activity was carried out using 1-chloro-2,4-dinitrobenzene 

(CDNB) as a substrate in the presence of reduced 

glutathione. All measurements were conducted in 

triplicates on a 96-well plate using a microplate reader 

(Synergy2, BioTek, Bad Friedrichshall, Germany). 

 

Analyses of the thyroid 

 

Thyroid lobes were dissected from the trachea, frozen in 

liquid nitrogen and stored at -80°C till further use. Frozen 

thyroids were dropped in 10 mM Tris and immediately 

homogenized by rotating micropestile. Part of the 

homogenate was used for protein measurement using 

Bradford reagent (Bio-Rad Laboratories), I determination, 

and Dio1 activity assays. For the determination of thyroid I 

content, equal amounts of thyroid protein (10 μg) were 

mixed with ammonium persulfate (0.6 M; Sigma-

Aldrich/Merck) to a total volume of 50 μL and 

subsequently heated up to 95°C for 1 h. After cooling, the 

resulting digest was further diluted (1:20) and 50 μL were 

transferred to a microtiter plate. Measurement of I was 

done by the Sandell-Kolhoff reaction in microtiter plate 

format, as described earlier [99]. I content was calculated 

to mg I per g protein. 

 

The Dio1 activity was determined by a non-radioactive 

method, based on iodide-determination via Sandell-

Kolthoff reaction, as described earlier [100]. In brief, 

25 μg of thyroid protein homogenate was incubated for 

2 h at 37°C and under constant shaking in the presence of 

reverse triiodothyronine (rT3; 10 μM) and 1,4-

Dithiothreitol (DTT; 40 mM) in monopotassium 

phosphate (KPO4) buffer (100 mM KPO4, 1 mM EDTA, 

pH 6.8). Subsequently, released iodide was separated by 

ion-exchanger columns (DOWEX-50WX2, Serva) and 

quantified via Sandell-Kolthoff reaction. Background 

signal, derived from a subset of 6-n-propyl-2-thio-uracil 

(PTU)-inhibited reactions, was subtracted. Absolute 

activity was calculated from an external I standard curve, 

using a commercial ion chromatography standard 

(TraceCERT, Sigma-Aldrich/Merck). 
 

RNA isolation, reverse transcription, and 

quantitative real-time PCR 
 

Total RNA was isolated using Trizol Reagent 

(Invitrogen, ThermoFisher Scientific) following the 

instructions of the manufacturer. After eliminating the 
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genomic DNA using PerfeCTa DNase I (Quanta 

BioSciences, Beverly, MA, USA), 5 μg RNA were 

used for reverse transcription reaction in a final 

volume of 20 μL (qScript cDNA synthesis, Quanta 

BioSciences), generating complementary DNA 

(cDNA). cDNA was amplified using 1x PerfeCTa 

SYBR Green Supermix (Quanta BioSciences) and 

250 nM primer (sequences are listed in Table 1) in a 

total volume of 10 μL. Real-time PCR was performed 

in triplicate using a CFX Connect Real-time System 

(Bio-Rad Laboratories) under the following 

conditions: 3 min at 95°C, followed by 41 cycles of 

15 s at 95°C, 20 s at 60°C, and 30 s at 72°C. For 

quantification of mRNA levels, standard curves were 

taken into account to correct for differences in PCR 

efficiencies. Finally, expression levels were 

normalized to a composite factor based on the house-

keeping genes Hprt and Rpl13a.  

 

Western blot analysis 

 

Liver tissue was homogenized in lysis buffer (10 mM 

Tris-HCl pH 7.5, 0.9 % NP-40, 0.1 % SDS, 1 mM 

Pefablock, protease inhibitors) using a Tissue Lyser 

(Qiagen, 2x2 min, 30 Hz). Homogenates were cleared 

by centrifugation (15 min, 14,000 x g). Protein 

determination was performed by Lowry assay (DC™ 

Protein Assay, Bio-Rad Laboratories) and samples 

were diluted 1:3 with 4x Laemmli sample buffer 

(0.25 M Tris pH 6.8, 8 % SDS, 40 % Glycerol, 0.03 % 

bromophenol blue), followed by denaturation for 

5 min at 95°C. Proteins were loaded and separated on 

15 % polyacrylamide gels and transferred to a 

0.45 μm nitrocellulose membrane (Amersham™ 

Protran®, Sigma-Aldrich/Merck) via a semi-dry 

blotting system (Bio-Rad Laboratories). Membranes 

were blocked in blocking buffer (LI-COR Bioscience, 

Lincoln, NE, USA; #927-40000) diluted 1:2 in PBS 

for 1 h at RT. Primary antibodies were diluted in 

blocking solution with 0.1 % Tween 20 (Merck) and 

incubated overnight at 4°C. Mouse anti-3-NT 

(Abcam, ab110282, 1:1,000), rabbit anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 

Abcam, ab37168, 1:10,000), mouse anti-FTH 

(Abcam, ab77127, 1:1,000) were used as primary 

antibodies for immunoblot detection. Secondary 

antibodies conjugated to IRDye® 800CW (LI-COR 

Bioscience; #926-32212, 1:15,000) and 680LT (LI-

COR Bioscience; #926-68021, 1:15,000) were diluted 

in blocking solution with 0.1 % Tween 20 and 

incubated for 1 h at RT. Membranes were scanned 

using the Odyssey® CLx Imaging System (LI-COR 

Bioscience) and quantified with Image Studio™ (LI-

COR Bioscience; v. 4.0.21). Protein levels were 

normalized to house-keeping gene GAPDH. 

 

DNA hydroxymethylation 

 

DNA was extracted from 30 mg liver tissue via 

phenol/chloroform extraction. Briefly, this included 

lysis with cetyltrimethylammonium bromide (CTAB) 

buffer (pH 8.0; PanReac AppliChem GmbH, Darmstadt, 

Germany) using a bead ruptor 12 (Omni international 

Inc, Kennesaw, USA), treatment with RNase A 

(Promega, Madison, USA) and Proteinase K 

(Biolabproducts GmbH, Bebensee, Germany), 

extraction of DNA with phenol/chloroform/isoamyl 

alcohol (25:24:1 v/v; Carl Roth) and chloroform/ 

isoamyl alcohol (24:1; Carl Roth), and precipitation 

with ice-cold isopropanol (99.5 %, Sigma-

Aldrich/Merck) overnight. Finally, DNA was dissolved 

in 100 μL of diethyl dicarbonate (DEPC) treated water 

(Carl Roth). DNA content was measured with a 

NanoDropTM One (Thermo Fischer Scientific) and 

purity of samples was identified with the wavelength 

ratio A260/280 = 1.8–2. Aliquots of 12 μg DNA were 

stored at -80°C until enzymatic hydrolysis. 

Hydrolyzation and LC-MS/MS measurements were 

carried out as described in detail before [101]. Briefly, 

DNA was hydrolyzed using micrococcal nuclease from 

Staphylococcus aureus, bovine spleen phospho-

diesterase (both Sigma-Aldrich/Merck) (incubation: 1 h, 

37°C) and subsequently alkaline phosphatase (Sigma-

Aldrich/Merck) (incubation: 1.5 h, 37°C). Internal 

standards [15N2,
13C]-dC, mdC-D3, hmdC-D3 (Toronto 

Research Chemicals, Toronto, Canada) were added 

before start of hydrolysis. For the measurement of mdC 

and dC, samples were diluted 1:20. For measurement of 

hmdC, samples were evaporated to dryness, proteins 

were removed by treatment with methanol overnight at -

20°C and after removal of methanol, samples were 

finally taken up in a smaller volume (final dilution 1:6). 

HPLC-MS/MS measurements were carried out with an 

Agilent 1260 Infinity (Agilent Technologies) coupled to 

a tandem mass spectrometer (MS/MS, Agilent 6495A, 

Agilent Technologies). The separation was achieved 

using an Atlantic T3 column (2.1 x 150 mm, particle 

size 5 μm; Waters GmbH, Eschborn, Germany). 

Electrospray ionization was operated in positive mode. 

 

Statistics analyses 

 

Data are given as mean. Statistical calculation was 

performed in Origin Pro (OriginLab, Northampton, 

MA, USA) using a Two-Way analysis of variance 

(ANOVA) with Bonferroni´s post-test. Comparisons 

between two groups were tested for normal distribution 

(Kolmogorov-Smirnov and Shapiro-Wilk test) and 

variances (Levene test) and subjected to either two-

tailed unpaired Student´s t-test or Kruskal-Wallis 

ANOVA. The correlation coefficient was calculated 
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Table 1. Oligonucleotide sequences (5’→3’). 

Gene RefSeq-ID Sequence 

ATP7A, ATPase Copper Transporting Alpha NM_001109757.2 
GTCTCTGGGATGACCTGTGCT 

TCTTACTTCTGCCTTGCCAGCC 

ATP7B, ATPase Copper Transporting Beta NM_007511.2 
CAGATGTCAAAGGCTCCCATTCAG 

CCAATGACGATCCACACCACC 

Cp, ceruloplasmin NM_001276248.1 
GTACTACTCTGGCGTTGACCC 

TTGTCTACATCTTTCTGTCTCCCA 

Ctr1, solute carrier family 31, member 1 NM_175090.4 
ACCATGCCACCTCACCACCA 

GCTCCAGCCATTTCTCCAGGT 

DMT1, solute carrier family 11 (proton-coupled divalent 

metal ion transporters), member 2 
NM_001146161.1 

CTCAGCCATCGCCATCAATCTC 

TTCCGCAAGCCATATTTGTCCA 

Fpn, ferroportin, solute carrier family 40 (iron-regulated 

transporter), member 1 
NM_016917.2 

CTGGTGGTTCAGAATGTGTCCGT 

AGCAGACAGTAAGGACCCATCCA 

Hprt1, hypoxanthine guanine phosphoribosyl transferase 

1 
NM_013556.2 

GCAGTCCCAGCGTCGTG 

GGCCTCCCATCTCCTTCAT 

IL1, interleukin 1 beta NM_008361.3 
TTGAAGAAGAGCCCATCCTCTGTG 

TTGTTCATCTCGGAGCCTGTAGTG 

IL6, interleukin 6 NM_031168.1 
TCTCTGCAAGAGACTTCCATCCA 

GTCTGTTGGGAGTGGTATCCTCTG 

Mt1, metallothionein 1 NM_013602.3 
CTCCTGCAAGAAGAGCTGCTG 

GCACAGCACGTGCACTTGTC 

Mt2, metallothionein 2 NM_008630.2 
TCCTGTGCCTCCGATGGATC 

TTGCAGATGCAGCCCTGGGA 

NIS, solute carrier family 5 (sodium iodide symporter), 

member 5 
NM_053248.2 

CTAGAACTGCGCTTCAGCCGA 

ACCCGGTCACTTGGTTCAGGA 

Rpl13a, ribosomal protein L13a NM_009438.5 
GTTCGGCTGAAGCCTACCAG 

TTCCGTAACCTCAAGATCTGCT 

Selenop, selenoprotein P NM_001042613.1 
CTCATCTATGACAGATGTGGCCGT 

AAGACTCGTGAGATTGCAGTTTCC 

Slc48a1, solute carrier family 48 (heme transporter), 

member 1 
NM_026353.4 

ATTGGCCATCACCCAGCATCAG 

CTGATGTCCGCAAAGTCAGCC 

Tfrc, transferrin receptor NM_011638.4 
GGCTGAAACGGAGGAGACAGA 

CTGGCTCAGCTGCTTGATGGT 

TNF, tumor necrosis factor alpha NM_013693 
CCACGTCGTAGCAAACCACC 

TACAACCCATCGGCTGGCAC 

Zip 4, solute carrier family 39, member 4 NM_028064 
CTCTGCAGCTGGCACCAA 

CACCAAGTCTGAACGAGAGCTTT 

Zip 8, solute carrier family 39, member 8 NM _026228 
CTAACGGACACATCCACTTCGA 

CCTTCAGACAGGTACATGAGCTT  

Zip 14, solute carrier family 39, member 14 NM_144808 
GAGCCAACTGATAATCCATTGCT 

GTCAACGGCCACATTTTCAA 

ZnT1, solute carrier family 30, member 1 (Slc30a1) NM_009579 
CACGACTTACCCATTGCTCAAG 

CTTTCACCAAGTGTTTGATATCGATT 

ZnT10, solute carrier family 30, member 10 (Slc30a10) NM_001033286 
ACTGGCAGTGCTACATTGACCC 

CAGCTGGCTCATCAGCTCTTC 

 

according to Spearman (referred to as rS). p < 0.05 was 

considered statistically significant. 
 

Abbreviations 
 

ARE/EpRE: antioxidant/electrophilic response 

elements; ATP7A: ATPase copper transporting alpha; 

ATP7B: ATPase copper transporting beta; cDNA: 

complementary DNA; CTAB: cetyltrimethylammonium 

bromide; CDNB: 1-chloro-2,4-dinitrobenzene; Cp: 

ceruloplasmin; Ctr1: solute carrier family 31: member 

1; Cu: copper; DEPC: diethyl dicarbonate; Dio1: 

deiodinase 1; DMT1: solute carrier family 11 (proton-

coupled divalent metal ion transporters), member 2; 
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DTNB: 5,5’-dithiobis(2-nitrobenzoic acid); DTT: 1,4-

Dithiothreitol; ECL: enhanced chemiluminescence; 

EDTA: ethylenediaminetetraacetic acid; ELISA: 

enzyme-linked immunosorbent assay; Fe: iron; Fpn: 

ferroportin, solute carrier family 40 (iron-regulated 

transporter), member 1; FTH: ferritin H; GAPDH: 

glyceraldehyde-3-phosphate dehydrogenase; GPX: 

glutathione peroxidase; GSH: glutathione; GST: 

glutathione S-transferase; hmdC/dC: global DNA 

hydroxymethylation; HPLC: high-performance liquid 

chromatography; Hprt1: hypoxanthine-guanine 

phosphoribosyltransferase 1; I: iodine; ICP-MS/MS: 

inductively coupled plasma tandem mass spectrometry; 

IL1β: interleukin 1 beta; IL6: interleukin 6; KEAP1: 

Kelch-like ECH-associated protein 1; KPO4: mono-

potassium phosphate; LC: liquid chromatography; 

mdC/dC: global DNA methylation; Mn: manganese; 

MS/MS: tandem mass spectrometer; MT: metallo-

thionein; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2: 5-

diphenyltetrazolium bromide; NADPH: nicotinamide 

adenine dinucleotide phosphate (NADP) bonded with a 

hydrogen; NIS: solute carrier family 5 (sodium iodide 

symporter), member 5; NQO1: NAD(P)H:quinone 

oxidoreductase; Nrf2: nuclear factor (erythroid-derived 

2)-like 2; PBS: phosphate-buffered saline; PTU: 6-n-

propyl-2-thio-uracil; qRT-PCR: quantitative reverse 

transcription polymerase chain reaction; Rh: rhodium; 

Rpl13a: ribosomal protein L13a; rS: Spearman´s 

correlation coefficient; RT: room temperature; rT3: 

reverse triiodothyronine; SDS: sodium dodecyl sulfate; 

Se: selenium; Selenop: selenoprotein P; Slc48a1: solute 

carrier family 48 (heme transporter), member 1; TE(s): 

trace element(s); TET: ten-eleven-translocation; Tfrc: 

transferrin receptor; TNFα: tumor necrosis factor-alpha; 

Zip4: solute carrier family 39, member 4; Zip8: solute 

carrier family 39, member 8; Zip14: solute carrier 

family 39, member 14; Zn: zinc; ZnT1, solute carrier 

family 30, member 1 (Slc30a1); ZnT10: solute carrier 

family 30, member 10 (Slc30a10); 3-NT: 3-

nitrotyrosine. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Pairwise correlation coefficients among studied markers based on Spearman´s correlation. TE 
concentrations determined by ICP-MS/MS and various TE-related markers of 4-5 adult (24 weeks) and old (109-114 weeks) mice of both 
sexes fed with a chow diet were correlated in a pairwise manner according to Spearman. Correlation coefficients varying between -1 and 1 
are indicated by colored changes. Thereby, blue and red indicate significant negative and positive correlations, respectively, while grey 
indicates no significant correlation (p > 0.05). 
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Supplementary Figure 2. Expression analysis of various TE-related genes in the duodenum. Relative expression levels of TE-

related genes in the duodenum of 4-5 adult (24 weeks) and old (109-114 weeks) mice of both sexes fed with a chow diet ad libitum. 
Expression levels were normalized to a composite factor based on the house-keeping genes Hprt and Rpl13a, finally variances are expressed 
as fold change compared to male adults. Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni´s test with * p < 
0.05, *** p < 0.001 vs. adult and # p < 0.05, ### p < 0.001 vs. male. 
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Supplementary Figure 3. Pairwise correlation coefficients among TE-related genes in duodenum and liver based on 
Spearman´s correlation. Relative expression levels of transporters or binding proteins for the TEs Cu, Fe, Mn, or Zn in the duodenum and 

liver of 4-5 adult (24 weeks) and old (109-114 weeks) mice of both sexes fed with a chow diet ad libitum were assessed by qRT-PCR. 
Expression levels were normalized to a composite factor based on the house-keeping genes Hprt and Rpl13a and correlated according to 
Spearman. Correlation coefficients vary between -1 and 1, indicated by colored changes. Thereby, blue and red indicate significant negative 
and positive correlations, respectively, while grey indicates no significant correlations (p > 0.05). 
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Supplementary Figure 4. Enzyme activities in various organs. The enzyme activity of Nrf2 targets NQO1 (A, C, E, G) and GST (B, D, F, 

H) were determined by activity assay. Samples were either organ samples of duodenum (A, B), heart (C, D), lung (E, F), or kidney (G, H) of 4-5 
adult (24 weeks) and old (109-114 weeks) mice of both sexes. Statistical testing based on Two-Way ANOVA and post hoc analysis using 
Bonferroni´s test with ** p < 0.01 vs. adult and # p < 0.05 vs. male. 
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Supplementary Figure 5. I content and deiodinase activity of the thyroid. Thyroidal I content (A) and I-releasing enzyme activity of 
Dio1 (B) were determined by Sandell-Kolthoff-based I measurement in ammonium persulfate-digested organ and non-radioactive activity 
assay, respectively. Samples were thyroids of 4-5 adult (24 weeks) and old (109-114 weeks) mice of both sexes. I content is calculated to mg I 
per g protein. Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni´s test with * p < 0.05 vs. adult. 
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Supplementary Tables 
 

 

Supplementary Table 1. Mouse data.  

general features adult ♂ adult ♀ elderly ♂ elderly ♀ age sex 
age X 

sex 
body weight [g] 31.9 ± 1.8 25.7 ± 1.3 31.7 ± 1.4 29.9 ± 1.6 * *** ** 
relative liver weight 
[mg/g BW] 

42.9 ± 14.4 48.6 ± 5.6 41.8 ± 5.2 53.6 ± 6.9 n.s. 0.052 n.s. 

relative spleen weight 
[mg/g BW] 

2.4 ± 0.2 3.6 ± 0.5 2.5 ± 0.7 8.8 ± 7.0 n.s. * n.s. 

relative heart weight 
[mg/g BW] 

4.5 ± 0.3 4.4 ± 0.2 5.1 ± 1.1 6.0 ± 0.6 ** n.s. n.s. 

relative kidney weight 
[mg/g BW] 

11.7 ± 0.3 11.4 ± 0.6 13.1 ± 2.8 16.4 ± 2.1 ** 0.078 * 

relative cortex weight 
[mg/g BW] 

9.5 ± 0.7 11.9 ± 0.9 10.0 ± 0.6 10.3 ± 2.6 n.s. 0.069 n.s. 

relative cerebellum 
weight 
[mg/g BW] 

3.0 ± 1.5 5.0 ± 0.3 4.2 ± 0.3 5.8 ± 3.3 n.s. 0.061 n.s. 

relative length of small 
intestine [cm/g BW] 

1.07 ± 0.10 1.27 ± 0.10 1.14 ± 0.06 1.05 ± 0.03 0.074 0.070 ** 

relative length of colon 
[cm/g BW] 

0.26 ± 0.02 0.30 ± 0.02 0.25 ± 0.02 0.29 ± 0.02 n.s. ** n.s. 

Data represent mean ± standard deviation for various clinical parameters of 4-5 adult (24 weeks) and old (109-114 weeks) 
mice of both sexes fed with chow diet. Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni´s 
test with * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. non-significant, p > 0.1. Trends with p < 0.1 were indicated. BW = body 
weight. 
 

 

Supplementary Table 2. TE concentrations in various organs of C57BL/6Jrj mice.  

organ TE unit adult ♂ adult ♀ elderly ♂ elderly ♀ age sex age X sex 

serum Cu [mg/L] 0.46 ± 0.07 0.44 ± 0.02 0.55 ± 0.03 0.99 ± 0.26 *** ** ** 

 I [μg/L] 97.09 ± 18.63 87.53 ± 17.01 107.27 ± 26.72 130.47 ± 26.47 * n.s. n.s. 

 Fe [mg/L] 2.15 ± 0.74 3.12 ± 1.97 1.87 ± 0.76 2.04 ± 0.41 n.s. n.s. n.s. 

 Mn [μg/L] 3.54 ± 0.56 3.14 ± 0.47 3.30 ± 0.79 2.93 ± 0.69 n.s. n.s. n.s. 

 Se [mg/L] 0.34 ± 0.03 0.30 ± 0.02 0.33 ± 0.05 0.32 ± 0.08 n.s. n.s. n.s. 

 Zn [mg/L] 0.91 ± 0.14 0.69 ± 0.10 0.72 ± 0.07 0.68 ± 0.02 * ** * 

liver Cu [mg/kg] 4.97 ± 0.58 4.22 ± 0.58 4.24 ± 0.31 3.97 ± 0.26 * * n.s. 

 Fe [mg/kg] 89.40 ± 1.82 137.72 ± 33.52 121.75 ± 38.01 217.20 ± 91.85 * * n.s. 

 Mn [mg/kg] 0.97 ± 0.09 1.11 ± 0.25 1.32 ± 0.29 1.14 ± 0.28 n.s. n.s. n.s. 

 Se [mg/kg] 1.11 ± 0.09 1.15 ± 0.28 1.10 ± 0.11 1.12 ± 0.16 n.s. n.s. n.s. 

 Zn [mg/kg] 26.10 ± 1.86 28.68 ± 4.95 26.80 ± 2.00 27.12 ± 2.54 n.s. n.s. n.s. 

duo-

denum 
Cu [mg/kg] 1.86 ± 0.07 1.89 ± 0.10 1.91 ± 0.21 2.14 ± 0.25 0.085 n.s. n.s. 

 Fe [mg/kg] 47.21 ± 7.80 52.75 ± 15.41 49.80 ± 4.09 66.78 ± 9.00 0.098 * n.s. 

 Mn [mg/kg] 1.67 ± 0.42 1.36 ± 0.21 1.62 ± 0.31 1.64 ± 0.34 n.s. n.s. n.s. 

 Se [mg/kg] 0.46 ± 0.04 0.45 ± 0.02 0.45 ± 0.04 0.43 ± 0.03 n.s. n.s. n.s. 

 Zn [mg/kg] 20.92 ± 0.96 21.16 ± 4.24 22.28 ± 2.57 19.95 ± 1.37 n.s. n.s. n.s. 

heart Cu [mg/kg] 7.79 ± 0.94 8.86 ± 1.76 7.11 ± 0.46 7.01 ± 0.74 * n.s. n.s. 

 Fe [mg/kg] 149.96 ± 13.23 164.38 ± 51.65 137.60 ± 8.15 130.74 ± 19.36 n.s. n.s. n.s. 

 Mn [mg/kg] 0.87 ± 0.09 1.03 ± 0.21 0.83 ± 0.08 0.63 ± 0.18 ** n.s. * 

 Se [mg/kg] 0.40 ± 0.03 0.45 ± 0.10 0.37 ± 0.04 0.38 ± 0.05 n.s. n.s. n.s. 

 Zn [mg/kg] 18.08 ± 3.54 20.16 ± 5.09 20.73 ± 5.96 16.98 ± 1.72 n.s. n.s. n.s. 

muscle Cu [mg/kg] 1.07 ± 0.14 0.97 ± 0.05 1.09 ± 0.06 1.19 ± 0.12 * n.s. 0.053 

 Fe [mg/kg] 19.69 ± 1.20 16.65 ± 2.56 20.72 ± 1.19 27.55 ± 4.72 *** n.s. ** 

 Mn [mg/kg] 0.20 ± 0.03 0.18 ± 0.01 0.20 ± 0.03 0.13 ± 0.02 0.060 ** 0.060 

 Se [mg/kg] 0.22 ± 0.02 0.21 ± 0.01 0.21 ± 0.02 0.21 ± 0.02 n.s. n.s. n.s. 
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 Zn [mg/kg] 3.27 ± 1.23 3.75 ± 1.20 3.35 ± 1.34 4.70 ± 1.60 n.s. n.s. n.s. 

lung Cu [mg/kg] 2.53 ± 0.23 2.76 ± 0.22 2.82 ± 0.36 3.52 ± 1.78 n.s. n.s. n.s. 

 Fe [mg/kg] 111.58 ± 11.87 125.99 ± 29.20 133.62 ± 29.05 115.60 ± 22.28 n.s. n.s. n.s. 

 Mn [mg/kg] 0.24 ± 0.03 0.33 ± 0.12 0.32 ± 0.09 0.25 ± 0.07 n.s. n.s. * 

 Se [mg/kg] 0.46 ± 0.03 0.49 ± 0.04 0.50 ± 0.05 0.45 ± 0.05 n.s. n.s. 0.093 

 Zn [mg/kg] 17.77 ± 2.11 19.13 ± 1.86 17.02 ± 1.33 17.39 ± 2.25 n.s. n.s. n.s. 

kidney Cu [mg/kg] 4.19 ± 0.34 4.28 ± 0.23 3.54 ± 0.65 3.73 ± 0.53 * n.s. n.s. 

 Fe [mg/kg] 94.23 ± 11.19 116.32 ± 18.21 77.00 ± 10.66 102.76 ± 39.65 n.s. * n.s. 

 Mn [mg/kg] 1.45 ± 0.13 1.31 ± 0.09 1.10 ± 0.33 1.04 ± 0.23 ** n.s. n.s. 

 Se [mg/kg] 1.54 ± 0.16 1.42 ± 0.10 1.66 ± 0.48 1.36 ± 0.09 n.s. 0.080 n.s. 

 Zn [mg/kg] 19.05 ± 2.20 17.70 ± 0.97 15.10 ± 1.89 15.76 ± 1.58 ** n.s. n.s. 

bladder Cu [mg/kg] 0.89 ± 0.09 1.19 ± 0.12 0.89 ± 0.08 1.08 ± 0.17 n.s. *** n.s. 

 Fe [mg/kg] 13.80 ± 3.77 21.98 ± 2.14 25.07 ± 5.35 43.46 ± 5.26 *** *** * 

 Mn [mg/kg] 0.12 ± 0.01 0.18 ± 0.04 0.13 ± 0.02 0.12 ± 0.02 * 0.075 ** 

 Se [mg/kg] 0.33 ± 0.02 0.34 ± 0.01 0.32 ± 0.02 0.31 ± 0.06 n.s. n.s. n.s. 

 Zn [mg/kg] 31.97 ± 2.94 35.23 ± 4.43 29.45 ± 2.63 28.13 ± 5.69 * n.s. n.s. 

cortex Cu [mg/kg] 3.86 ± 0.09 3.84 ± 0.08 5.26 ± 0.39 5.16 ± 0.48 *** n.s. n.s. 

 Fe [mg/kg] 19.25 ± 0.46 19.24 ± 0.74 26.99 ± 0.81 23.02 ± 2.25 *** ** ** 

 Mn [mg/kg] 0.42 ± 0.01 0.44 ± 0.01 0.43 ± 0.02 0.41 ± 0.08 n.s. n.s. n.s. 

 Se [mg/kg] 0.18 ± 0.00 0.21 ± 0.01 0.20 ± 0.01 0.22 ± 0.01 ** *** n.s. 

 Zn [mg/kg] 16.22 ± 0.29 16.15 ± 0.17 16.37 ± 0.29 15.63 ± 1.63 n.s. n.s. n.s. 

cere-

bellum 
Cu [mg/kg] 5.16 ± 0.27 4.88 ± 0.30 7.20 ± 0.80 6.06 ± 1.08 *** * n.s. 

 Fe [mg/kg] 21.69 ± 1.87 21.30 ± 1.94 24.64 ± 1.01 23.91 ± 2.52 ** n.s. n.s. 

 Mn [mg/kg] 0.56 ± 0.05 0.59 ± 0.02 0.52 ± 0.03 0.49 ± 0.06 ** n.s. n.s. 

 Se [mg/kg] 0.21 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 ** ** n.s. 

 Zn [mg/kg] 13.84 ± 0.98 14.02 ± 2.05 13.26 ± 0.42 14.70 ± 1.44 n.s. n.s. n.s. 

Values are shown as mean ± standard deviation of TE concentrations in various organs of 4-5 adult (24 weeks) and old (109-
114 weeks) mice of both sexes receiving chow diet. Multielement analysis for Cu, I (only serum), Fe, Mn, Se, and Zn rely on 
ICP-MS/MS measurements. Statistical testing based on Two-Way ANOVA and post hoc analysis using Bonferroni´s test with * 
p < 0.05, ** p < 0.01, *** p < 0.001, n.s. non-significant. Trends with p < 0.1 were indicated. 
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Supplementary Table 3. Correlations among serum marker of C57BL/6Jrj mice.  

serum parameters Mn I Cu Fe ferritin transferrin Se GPX* Selenop Zn free Zn TNFα 

Mn 
rS 

 

-0.199 -0.271 0.331 -0.013 -0.146 -0.115 0.143 0.115 0.245 0.354 -0.003 

p-value 0.428 0.276 0.179 0.958 0.565 0.651 0.570 0.672 0.328 0.150 0.990 

I 
rS -0.199 

 

0.701 0.315 0.302 0.368 0.077 -0.288 -0.662 -0.360 -0.018 0.430 

p-value 0.428 0.001 0.203 0.223 0.132 0.760 0.247 0.005 0.142 0.945 0.075 

Cu 
rS -0.271 0.701 

 

-0.207 0.020 0.276 0.222 -0.439 -0.453 -0.240 -0.276 0.692 

p-value 0.276 0.001 0.409 0.938 0.268 0.376 0.069 0.078 0.336 0.268 0.001 

Fe 
rS 0.331 0.315 -0.207 

 

0.410 0.069 -0.152 -0.079 -0.003 -0.220 0.112 -0.011 

p-value 0.179 0.203 0.409 0.091 0.785 0.548 0.754 0.991 0.381 0.657 0.964 

ferritin 
rS -0.013 0.302 0.020 0.41 

 

0.067 0.036 -0.379 -0.324 0.034 0.236 0.152 

p-value 0.958 0.223 0.938 0.091 0.791 0.887 0.121 0.222 0.893 0.345 0.548 

transferrin 
rS -0.146 0.368 0.276 0.069 0.067 

 

-0.201 -0.032 -0.406 -0.129 0.137 0.286 

p-value 0.565 0.132 0.268 0.785 0.791 0.423 0.900 0.119 0.610 0.587 0.250 

Se 
rS -0.115 0.077 0.222 -0.152 0.036 -0.201 

 

-0.042 -0.368 0.509 -0.067 0.075 

p-value 0.651 0.760 0.376 0.548 0.887 0.423 0.868 0.161 0.031 0.791 0.766 

GPX* 
rS 0.143 -0.288 -0.439 -0.079 -0.379 -0.032 -0.042 

 

0.268 0.123 0.428 -0.317 

p-value 0.570 0.247 0.069 0.754 0.121 0.900 0.868 0.316 0.627 0.076 0.200 

Selenop 
rS 0.115 -0.662 -0.453 -0.003 -0.324 -0.406 -0.368 0.268 

 

-0.179 0.082 -0.071 

p-value 0.672 0.005 0.078 0.991 0.222 0.119 0.161 0.316 0.506 0.762 0.795 

Zn 
rS 0.245 -0.360 -0.240 -0.220 0.034 -0.129 0.509 0.123 -0.179 

 

0.375 -0.209 

p-value 0.328 0.142 0.336 0.381 0.893 0.610 0.031 0.627 0.506 0.126 0.404 

free Zn 
rS 0.354 -0.018 -0.276 0.112 0.236 0.137 -0.067 0.428 0.082 0.375 

 

-0.082 

p-value 0.150 0.945 0.268 0.657 0.345 0.587 0.791 0.076 0.762 0.126 0.748 

TNFα 
rS -0.003 0.430 0.692 -0.011 0.152 0.286 0.075 -0.317 -0.071 -0.209 -0.082 

 p-value 0.990 0.075 0.001 0.964 0.548 0.250 0.766 0.200 0.795 0.404 0.748 

Explorative Spearman’s correlation coefficient (rS) analysis was performed for all parameters analyzed in sera of 19 C57BL/6Jrj 
mice. Investigated parameters included levels of trace elements other markers, as well as enzyme activity (indicated with *). 
Significance is reflected by p-values. Correlations with high correlation coefficient (rS>0.5) and significant p-value are 
indicated in bold. 
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Supplementary Table 4. Correlations among liver markers of C57BL/6Jrj mice.  

liver parameter Mn Fe Cu Zn Se GPX* 
TNFα

# 
IL1β# IL6# 

mdC/ 

dC 

hmdC/ 

dC 

3-NT-modified 

protein 
NQO1* GST* FTH 

Mn 
rS 

 

0.445 -0.089 0.371 0.304 -0.357 0.322 0.362 0.393 0.086 0.087 0.226 0.424 -0.296 0.291 

p-value 0.056 0.717 0.118 0.205 0.133 0.179 0.127 0.096 0.725 0.724 0.384 0.071 0.219 0.241 

Fe 
rS 0.445 

 

-0.389 0.363 0.113 -0.079 0.576 0.544 0.541 0.224 -0.037 -0.337 0.710 -0.741 0.811 

p-value 0.056 0.100 0.127 0.644 0.748 0.010 0.016 0.017 0.356 0.881 0.185 0.001 2.839x10-4 4.447x10-5 

Cu 
rS -0.089 -0.389 

 

0.254 0.426 -0.279 -0.444 -0.384 -0.321 -0.383 -0.321 -0.137 -0.452 0.429 -0.612 

p-value 0.717 0.100 0.293 0.069 0.247 0.057 0.105 0.180 0.105 0.180 0.599 0.052 0.067 0.007 

Zn 
rS 0.371 0.363 0.254 

 

0.677 0.176 0.034 0.200 0.293 -0.071 -0.284 -0.360 0.080 -0.414 0.145 

p-value 0.118 0.127 0.293 0.001 0.470 0.889 0.411 0.223 0.772 0.238 0.156 0.745 0.078 0.567 

Se 
rS 0.304 0.113 0.426 0.677 

 

-0.067 -0.132 -0.025 0.156 -0.246 -0.097 -0.187 -0.279 -0.197 -0.034 

p-value 0.205 0.644 0.069 0.001 0.786 0.591 0.920 0.523 0.310 0.694 0.473 0.247 0.419 0.893 

GPX* 
rS -0.357 -0.079 -0.279 0.176 -0.067 

 

-0.167 -0.039 -0.023 0.090 -0.204 -0.466 -0.054 -0.033 0.090 

p-value 0.133 0.748 0.247 0.470 0.786 0.495 0.875 0.926 0.716 0.403 0.060 0.825 0.892 0.723 

TNFα# 

rS 0.322 0.576 -0.444 0.034 -0.132 -0.167 

 

0.747 0.726 0.371 0.326 -0.091 0.582 -0.663 0.752 

p-value 0.179 0.010 0.057 0.889 0.591 0.495 
2.353x

10-4 
4.292x10-4 0.118 0.173 0.729 0.009 0.002 3.160x10-4 

IL1β# 

rS 0.362 0.544 -0.384 0.200 -0.025 -0.039 0.747 

 

0.902 0.134 0.423 -0.076 0.614 -0.691 0.701 

p-value 0.127 0.016 0.105 0.411 0.920 0.875 
2.353x

10-4 
1.342x10-7 0.584 0.071 0.772 0.005 0.001 0.001 

IL6# 

rS 0.393 0.541 -0.321 0.293 0.156 -0.023 0.726 0.902 

 

0.004 0.514 -0.176 0.646 -0.744 0.744 

p-value 0.096 0.017 0.180 0.223 0.523 0.926 
4.292x

10-4 

1.342x

10-7 
0.986 0.024 0.498 0.003 2.611x10-4 3.992x10-4 

mdC/dC 
rS 0.086 0.224 -0.383 -0.071 -0.246 0.090 0.371 0.134 0.004 

 

-0.140 -0.113 0.181 -0.033 0.223 

p-value 0.725 0.356 0.105 0.772 0.310 0.716 0.118 0.584 0.986 0.566 0.666 0.459 0.892 0.374 

hmdC/dC 
rS 0.087 -0.037 -0.321 -0.284 -0.097 -0.204 0.326 0.423 0.514 -0.140 

 

0.527 0.137 -0.181 0.183 

p-value 0.724 0.881 0.180 0.238 0.694 0.403 0.173 0.071 0.024 0.566 0.030 0.576 0.459 0.468 

3-NT-

modified 

protein 

rS 0.226 -0.337 -0.137 -0.360 -0.187 -0.466 -0.091 -0.076 -0.176 -0.113 0.527 

 

-0.309 0.395 -0.426 

p-value 0.384 0.185 0.599 0.156 0.473 0.060 0.729 0.772 0.498 0.666 0.030 0.228 0.117 0.088 

NQO1* 
rS 0.424 0.710 -0.452 0.080 -0.279 -0.054 0.582 0.614 0.646 0.181 0.137 -0.309 

 

-0.633 0.759 

p-value 0.071 0.001 0.052 0.745 0.247 0.825 0.009 0.005 0.003 0.459 0.576 0.228 0.004 2.636x10-4 

GST* 

rS -0.296 -0.741 0.429 -0.414 -0.197 -0.033 -0.663 -0.691 -0.744 -0.033 -0.181 0.395 -0.633 

 

-0.851 

p-value 0.219 
2.839x1

0-4 
0.067 0.078 0.419 0.892 0.002 0.001 2.611x10-4 0.892 0.459 0.117 0.004 7.422x10-6 

FTH 

rS 0.291 0.811 -0.612 0.145 -0.034 0.090 0.752 0.701 0.744 0.223 0.183 -0.426 0.759 -0.851 

 p-value 0.241 
4.447x1

0-5 
0.007 0.567 0.893 0.723 

3.160x

10-4 
0.001 3.992x10-4 0.374 0.468 0.088 2.636x10-4 7.422x10-6 

Explorative Spearman’s correlation coefficient (rS) analysis was performed for all analyzed parameters in liver of 19 
C57BL/6Jrj mice. Investigated parameters included levels of trace elements, functional or aging marker, next to enzyme 
activity and relative expression levels (indicated with * and #, respectively). Significance is reflected by p-values. Correlations 
with high correlation coefficient (rS>0.5) and significant p-value are indicated in bold. 


