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Abstract
Previous work shows that gene associations and net-
work properties common between pairs of diseases
can provide molecular evidence of comorbidity, but
relationships among diseases may extend to larger
groups. Formal concept analysis allows the study of
multiple diseases based on a concept lattice whose
structure indicates gene set commonality. We use the
concept lattice for gene associations to evaluate the
complexity of the relationships among diseases, and
to identify concepts whose gene sets are candidates
for further functional analysis. For this, we define
a heuristic on the lattice structure that allows the
identification of concepts whose gene sets indicate
strong relationships among the included diseases,
which are distinguished from other diseases in the
family. Applying this approach to a family of renal
diseases we demonstrate that this approach finds gene
sets that may be promising for studying common (and
differing) mechanism among a family of comorbid or
phenotypically related diseases.

Introduction
Understanding similarity relationships among dis-

eases is an important problem in translational bioin-
formatics. Such similarities can be used in refin-
ing disease classification (e.g., molecular nosology),
identifying common etiology of comorbidities in ge-
netic studies, and drawing analogies between related
diseases for the purposes of identifying common
treatments. While much work has been done to
identify molecular similarity to confirm statistical
comorbidity1,2,3,4, our motivation here is identifying
common mechanisms among related or comorbid
diseases. This work follows that of Bhavnani et al.5

who used network analysis to explore commonalities
among renal diseases based on a gene expression data
set. We instead use analysis that considers relational
structures among the diseases and genes defined by
this data, and as a result identifies relationships among
groups of diseases rather than the pairwise relation-
ships possible with network analysis.

Our approach is based on Formal Concept Analysis
(FCA)6, in which we identify formal concepts (also
known as, biclusters7 or bicliques8) from the gene-
disease associations. These formal concepts indicate
relationships hidden in the data among diseases that
have the same set of associated genes, and genes that

are associated with the same set of diseases. Order-
ing by a subconcept order, we get a mathematical
structure called a lattice that has useful properties
in reasoning about concepts and, for our purposes,
dependence/independence among sets of diseases.

FCA has three advantages over the network anal-
ysis used by most of the prior work. First, it allows
representation of relationships (concepts) among sev-
eral diseases, which can be subtle and difficult to
see in bipartite graphs without heuristics. Second,
it results in an algebraic structure that allows us
to consider relationships among concepts that are
difficult to identify in graphs. And, third, by adding
additional gene annotations we can refine concepts
to help identify functional gene relationships within
disease groups.

It is important to note that, for our purposes,
FCA is only useful in analysis of incidence relations
(e.g., relating two types of data), which here is gene
with disease, but includes relations such as SNP or
structural variant with disease, gene with pathway,
and gene with document. Previous work (e.g., Sam et
al.9) has shown that common mechanism defined
by graphs in the form of protein-protein interaction
(PPI) or gene co-expression networks is important
in defining similarity between diseases. And, while
FCA can be used in analysis of such binary relations
(relating one type of data), when applied to these
networks it would identify shared neighbors of pro-
teins or genes. The resulting concepts would focus
on network hubs, rather than identifying the broader
neighborhood needed to identify commonality across
disease mechanism. This inability to include graph
relationships in a general way poses a problem for us,
but we show that we can extend the gene associations
by graph neighbors to handle this case.

Our approach is a relatively straightforward appli-
cation of FCA. We construct formal concepts that
correspond to intersections of the disease-associated
gene sets, and consider the lattice of those concepts.
The structure of the lattice indicates the extent to
which the gene sets overlap — the strength of disease
similarity. We apply a heuristic to find substructures
that indicate transition points in disease similarity,
pinpointing concepts for further consideration. In the
same renal data set as used by Bhavnani et al., we find
10 concepts representing different disease families,
the two strongest of which help identify both known
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and unexpected relationships among the diseases.
In the following, we first survey the background

literature on disease similarity and bioinformatics
applications of FCA. We neglect the use of biclusters
in bioinformatics data mining, as these approaches
generally ignore the algebraic properties and lattice
structure we use. In the methods, we introduce the
needed aspects of FCA, and the tools and data sets
used in the renal disease example. Our results include
a sketch of a derivation of criteria describing common
mechanism between a pair of diseases in terms of
a graph representing molecular mechanism and gene
sets that allows us to represent the relationship in
terms of an incidence relation, the derivation of the
heuristic to identify related disease families, and a
demonstration of the approach on the renal disease
data set.

Background

Previous work that identifies molecular relation-
ships among diseases from gene-disease associations
primarily falls into two classes. The first, uses net-
work analysis to identify relationships among dis-
eases based on a gene-disease incidence relation
derived from experimental data5 and biomedical
databases1,2,3,4,10,11. These approaches form a bipartite
graph that can be analyzed for shared genes, but
can also be projected to a disease (or gene) graph
where two diseases are connected by an edge if they
share at least one associated gene. This is the same
construction used to build concept graphs such as in
Molecular Concept Maps12 or ConceptGen13.

The second group approaches the problem by map-
ping genes into common subnetworks of a global
network of gene products, such as protein-protein in-
teractions3. These strategies both increase confidence
in the biological significance of having overlapping
genes between diseases, but also help identify cases
where associated genes do not overlap but do impact
apparent common mechanism4.

A key point that crosses the second group, encom-
passing the first, is that similarity of diseases can
be defined in networks in terms of both overlapping
gene sets, and connections between non-overlapping
genes. This is the definition of the similarity mea-
sure in PhenoGO9, and also some of the papers on
comorbidity3,4. This point is important enough that
we reconsider its mathematical basis below. However,
note that, membership in subnetworks can easily be
used to define an incidence relation.

Other approaches do not quite fit into these strate-
gies. For instance, Suthram et al.14 first finds modules
in a PPI network and then scores them by gene ex-
pression to determine relationships. Also, molecular
nosology does not require understanding mechanism,
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Fig. 1. Example context with five objects and three
attributes illustrated as a bipartite graph.

and instead can be approached through similarity of
molecular profiles as is done by Hu and Agarwal15.

FCA is a relatively well-established field, and
there have been several examples of its use for
biological problems primarily for analysis of gene
expression. These approaches either discretize the
gene expression values to the framework we use16, or
build generalized structures that allow recognition of
patterns in expression values17,18. Other applications
include classification of proteins by gene ontology
and domain annotation19, identifying classifications
of genes to recognize breast cancer biomarkers20,
extending lists of genes in regulatory networks with
related genes21, and capturing temporal dependencies
within regulatory networks22.

As noted earlier, the formal concept corresponds
to bicliques and biclusters defined in data mining
strategies applied to bioinformatics. In particular, the
subconcept relationship between concepts is also used
in some data mining strategies (e.g., BLOSOM23, and
compositional data mining7).

Methods
Formal Concept Analysis: We use formalisms origi-
nally defined by Wille6. Our presentation is based on
chapter 3 of the text by Davey and Priestly24, who
use the original notation based on the German words
for “concept”, “object” and “attribute”.

For each analysis, we assume a formal context
K = (G,M, I) where G is a set of objects, M is
a set of attributes, and I ⊆ G ×M is the incidence
relations where (g,m) ∈ I if object g has attribute m.
Unless otherwise indicated, G is our reference set of
genes. The set M will be a set of diseases. Note that
the incidence relation can be visualized as a bipartite
graph as in Fig. 1.

For sets A ⊆ G and B ⊆ M , we define the
operators

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I} ,
B′ = { g ∈ G | ∀m ∈ B, (g,m) ∈ I} .

whose composition yields a closure operator (e.g.,
A′′′ = A′). A concept then is defined as a pair (A,B)
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Fig. 2. Bicliques illustrating non-trivial concepts for
context in Fig. 1.
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Fig. 3. Unipartite “disease”-projection for context in
Fig. 1. Edge weights indicate the number of common
objects.

of sets A ⊆ G and B ⊆ M such that A′ = B and
B′ = A. It is important to note that the sets A and B
in concept (A,B) are not arbitrary sets. Instead, the
set A, the extent, is determined by B, the intent, and
vice versa.

Fig. 2 uses bicliques to illustrate the formal con-
cepts for a simple context represented as a bipartite
graph. There are five non-trivial concepts for this
example, two involving one attribute, two involving
two attributes, and one involving three. This contrasts
with the projection to a simple graph of attributes used
in network analysis, which yields only three pairwise
relationships (Fig. 3). Two of these relationships
correspond to the concepts involving two attributes,
and the other to the concept involving three attributes.
Clearly, the projection loses information about the
relationships in the data that are captured by definition
in the formal concepts.

A concept (A1, B1) is said to be a subconcept
of the concept (A2, B2) whenever A1 ⊆ A2 (or,
equivalently, B1 ⊇ B2), which defines an order

g2 g5 
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m3 

Fig. 4. Concept lattice for context in Fig. 1.

Disease Up Down
Systemic lupus erythematosus (SLE) 325 114
Focal & segmental glomerulosclerosis (FSGS) 277 147
Membranous glomerulonephritis (MGN) 128 103
IgA Nephropathy (IgAN) 16 119
Diabetic Nephropathy (DN) 50 21
Thin membrane disease (TMD) 24 8
Minimal change disease (MCD) 1 2

Table 1. Diseases and number of associated up- and
down-regulated genes.

written (A1, B2) ≤ (A2, B2). The concept c1 covers
a concept c2, written c1 ≺ c2, if there is no con-
cept c3 such that c1 ≤ c3 ≤ c2. The order with
the set of concepts for the context K determines a
structure called the concept lattice for K. Lattices are
drawn as Hasse diagrams, in which two nodes are
connected by an edge if the higher concept covers the
lower concept. Fig. 4 illustrates the reduced lattice
for the concepts of the example context in Fig. 1.
The reduced representation labels a concept c by
an object gi if c = ({gi}′′, {gi}′) and similarly for
attributes. All concepts above an object label (below
an attribute label) include that object (attribute). The
largest concept relative to the order is called the top,
and the smallest the bottom of the lattice.

Tools: We compute the concept lattices using the FCA
demo program included in the Colibri-Java library
(code.google.com/p/colibri-java/) to produce dot for-
mat output (www.graphviz.org), which we then edit
in OmniGraffle (www.omnigroup.com).

Datasets: The data we analyze is the same as used
by Bhavnani et al.5, which includes 747 genes deter-
mined to be either significantly up- or down-regulated
in biopsy tissue from subjects one of seven chronic
renal diseases relative to tissue from living donors
(see Table 1). Three of these diseases (DN, MCD, and
TMD) have small numbers of subjects, and also a rel-
atively smaller number of associated genes. We also
use the Michigan Molecular Interactions (MiMI)25

database to find genes whose protein products interact
with those of the renal disease genes.

44



Results

In the following, we outline the use of FCA to
reason about similarity among a set of diseases. We
start by addressing what it means for two diseases to
be similar by having shared molecular mechanism,
and discuss how we can approach this with FCA.
Then we consider the renal disease data set from
Bhavnani et al., first looking at the concept lattice to
assess similarity, and, second, focusing on a sublattice
indicated by the structure of the lattice to consider
suitability for further analysis.
Network Dependence: As discussed above, the def-
inition of similarity that has been used2,3,4,9 is that
either the set of genes overlap or there is some
structural connection in a network (e.g., a shared
edge in a PPI network, or co-occurrence in a cell-
signaling feedback loop). Here we give a sketch of
why this is a reasonable definition assuming that we
can define a global graph showing how gene products
interact in cellular systems. We let Γ = (G,E) be
this (simple) graph where G is the set of all genes,
and an edge indicates that gene products interact,
or are closely involved in a biochemical event. In
this setting, two diseases will share mechanism if
the involved genes, sets A1, A2 ⊆ G, determine
subgraphs Γ(A1),Γ(A2) that are non-independent.
(We assume these subgraphs are connected.)

Our problem is analogous to deciding whether
two vector spaces V1, V2 are independent, which is
precisely when dim(V1 + V2) = dimV1 + dimV2
where the dimension of a vector space V is the
number of vectors in a basis of V . The analogue
of a vector space for graphs is a graphic matroid 26

of a graph, where a basis is a spanning tree of the
graph. And, the analogue of vector space dimension
is the matroid rank ρ, which is the number of edges
in a spanning tree of the graph. For the (connected)
subgraph Γ(A) determined by the gene set A ⊆ G,
the rank is |A| − 1.

So, our problem is actually determining whether
ρ (Γ(A1 ∪A2)) = ρ (Γ(A1)) + ρ (Γ(A2)). Since the
righthand side is |A1| + |A2| − 2, this happens only
when Γ(A1 ∪ A2) is spanned by a forest of two
disconnected spanning trees (Fig. 5(a)). Otherwise, if
there was a single spanning tree, the matroid rank
would be either one larger (Fig. 5(b)), or at least
one smaller (Fig. 5(c)). Therefore, non-independence
occurs when the subgraph Γ(A1∪A2) has a connected
spanning tree. This can occur because the gene sets
are not disjoint A1 ∩A2 6= ∅, and/or there is at least
one edge (g1, g2) ∈ E where g1 ∈ A1 and g2 ∈ A2.
This is precisely the condition used in the earlier
papers.

For us, this means that we cannot use formal
concepts directly on the gene-disease associations and

(a)

(b)

(c)

A1

A1

A2

A2

A1 A2

Fig. 5. Illustration of cases for subgraph Γ(A1∪A2)
of graph Γ induced by gene sets A1 and A2: (a) in-
dependence (ρ = 19), (b) dependent with connecting
edge (ρ = 20), (c) dependent with overlapping genes
(ρ = 18). Darker edges indicate spanning trees.

be sure that we have a complete picture of similarity,
because we only deal with intersections of the sets
of associated genes. We can handle this by extending
each gene set Ai, i = 1, 2 by the genes N (Ai)∩Aj ,
i 6= j = 1, 2, corresponding to the overlap of the
other gene set with neighbors of the gene products
in some network representing molecular interactions.
So, in defining our context for FCA, we can extend
the annotated genes for each disease in this way. In
our analysis of the renal disease example, we extend
the annotated genes by neighbors in the MiMI PPI
database25.
Disease Dependence: Having reduced the problem
of deciding similarity to inspecting intersections of
gene sets associated with diseases, we can stay com-
pletely within the concept lattice to find relationships
among them. In particular, we want to find families
of diseases that are maximal in the sense that if
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m1 m3
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Fig. 6. Concept lattice for diseases {m1,m2,m3}
where m1 and m2 share most genes, and m3 shares
some with each and few to none with both. Node
height indicates cardinality of extent.

we add another disease, the set of shared genes is
relatively smaller. As an example, suppose we have
three diseases m1,m2,m3 where m1 and m2 share a
large proportion of their associated genes, m3 shares
relatively few with each of m1 and m2, and nearly
none or none with both (Fig. 6). In this scenario,
the gene set cardinalities drop significantly when
subconcepts involving m1 and m2 are formed by
adding m3. In this sense, m3 delineates the sub-
lattice of super-concepts of the concept with intent
{m1,m2}.

In general, if we want to identify these maximal
families, we need to find the concepts that have
subconcepts with dramatically smaller extent. This
can be done by traversing the concept lattice from
the coatoms (concepts covered by top), and visiting
subconcepts with maximal extent looking for signif-
icant drops in the size of the extent. The following
heuristic uses the ratio of extent size from subconcept
to superconcept to identify these transitions, testing
against a threshold θ.

1: let C ← ∅
2: let P ← coatoms
3: while P 6= ∅ do
4: select p ∈ P
5: let c← arg max(A,B)≺p |A|
6: if extent(c)/extent(p) ≤ θ then
7: let C ← C ∪ {p}
8: end if
9: let P ← P ∪ {c}

10: end while
When complete, the set C contains the concepts
representing the strongest families in the lattice. By
visiting only the largest subconcepts, the heuristic
generally avoids enumerating the full lattice. We can

Concept Genes Similarity
FSGS-MGN-SLE 255 0.38
FSGS-IgAN-MGN-SLE 133 0.19
DN-FSGS-IgAN-MGN-SLE 35 0.048
FSGS-TMD 21 0.039
FSGS-MGN-SLE-TMD 11 0.016
IgAN-MCD-SLE 4 0.007
FSGS-IgAN-MGN-SLE-TMD 4 0.006
DN-IgAN-MCD-SLE 2 0.003
DN-FSGS-IgAN-MGN-SLE-TMD 2 0.003
FSGS-IgAN-MCD-MGN-SLE 2 0.0002

Table 2. Renal disease families identified by heuristic
with θ = 1/2.

further bound the time required by adding a condition
on the minimum extent to step 9.

To quantify the similarity among the discovered
families of diseases, we use the Jaccard coefficient
defined as

∣∣⋂
A∈F A

∣∣ / ∣∣⋃A∈F A
∣∣ for each family F .

We can also substitute the union of superconcept
extents into the denominator as an alternative measure
of the relationship strength.
Similarity of Renal Diseases: We now consider the re-
nal disease data set from Bhavnani et al., starting with
the context of all 747 genes extended by PPI neigh-
bors as objects, the seven diseases as attributes, and
the incidence relation determined by whether the gene
is significantly up- or down-regulated in the disease.
Applying the heuristic (with θ = 1/2) to this lattice
finds ten concepts (listed in Table 2 and highlighted in
Fig. 7) representing the most strongly related disease
families primarily involving DN, FSGS, IgAN, MGN
and SLE. The apparent relationships revealed by the
lattice correspond to what we would expect based on
the fact that these diseases share essential clinical
and pathophysiological features (degree of tubulo-
interstitial damage secondary to glomerular filtration
barrier failure driven proteinuria). However, as noted
by Bhavnani et al., both MCD and TMD have small
subject counts, and as a result have few significant
regulatory associations. So, we cannot be sure that
this is not the cause of their being relatively indepen-
dent in the lattice.
Focusing on a Sublattice: The second largest concept,
FSGS-IgAN-MGN-SLE, is interesting because the
extent is 85% of the union of the extents of its super-
concepts, meaning the associated genes are relatively
well preserved in the intersection. This concept has
133 genes in its extent, while the largest extent of its
subconcepts (the one with DN) has only 35 genes.
Note that the sublattice above this concept represents
the same data set that Bhavnani et al. focus on in their
final analysis, as they drop DN, MCD and TMD for
gene set size issues. In our case, the extended gene set
for DN has 140 genes, and so could have a stronger
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MCD IgAN SLE MGNFSGS DN TMD

Fig. 7. Concept lattice for seven renal diseases with PPI extended gene sets. Extents are hidden, but node height
indicates relative cardinality of the extent. Concepts found by the heuristic are highlighted, with the sublattice for
IgAN-FSGS-MGN-SLE in yellow and including the sublattice for FSGS-MGN-SLE in orange.

overlap with these four diseases than it does. The role
that DN plays in delineating this sublattice may be
worth evaluating, but we will primarily study the role
of IgAN.

There are a couple of things to observe about
how IgAN fits within the selected sublattice. The
first observation is that the concepts involving IgAN
in the selected sublattice all have roughly the same
number of genes. This suggests that the genes initially
identified with IgAN are also common to the three
other diseases, since the size of the extents only
change slightly for concepts intersecting IgAN with
these diseases. And, the second observation, is that
MGN, FSGS and SLE have a large sets of genes
in common, but this set is not common with IgAN.
In this way, IgAN helps identify the concept FSGS-
MGN-SLE by the heuristic criteria — the concepts
that include IgAN at the same level and the immediate
subconcept all have more than 100 genes fewer.
These observations suggest two questions: (1) what
characterizes the commonality between IgAN and the
other three diseases, and (2) what characterizes the
genes common among FSGS, MGN and SLE, but not
associated with IgAN? For these questions, we use
more traditional set enrichments to help understand
the constructed gene sets.

Interpreting Gene Sets: Performing enrichment anal-
ysis using Genomatix GePS (www.genomatix.de) on
the 133 genes common among FSGS, IgAN, MGN
and SLE, we see that genes are enriched for the terms
extracellular matrix, regulation of biological process,
glomerulonephritis and mesangial and epithelial cells,
fibroblasts (Tables 3-5, left column). These annota-
tions nicely summarize the key biological processes
and cell lineages known to be activated in progres-
sive kidney disease irrespective of underlying disease
categories; in other words, features shared by all of
these diseases.

On the other hand, the gene set of 120 genes
specific to the FSGS-MGN-SLE concept (formed by
subtracting out the gene set for the FSGS-IgAN-
MGN-SLE concept) show a significant enrichment for
MHC I and II molecules, along with terms inflam-
mation, immune response, antigen presentation and
processing (Tables 3-5, right column). This indicates
a significant presence of infiltrating cells in the renal
tissue (presumably from the macrophage lineage).
This is a well known concept for SLE, but had
not been described for MGN and FSGS in the past.
Interestingly, IgAN appears to be, according to the
lattice structure, not as prominently affected by these
interstitial inflammatory process. This is an interest-
ing finding, as both SLE and IgAN are diseases char-
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FSGS-IgAN-MGN-SLE (FSGS-MGN-SLE)-specific
GO Molecular Function
GO-Term P-value GO-Term P-value
protein binding 4.94E-14 protein binding 8.10E-12
transcription factor activity 4.94E-09 protein dimerization activity 6.21E-07
transcription regulator activity 5.13E-08 enzyme inhibitor activity 1.16E-06
binding 4.31E-07 transcription repressor activity 3.20E-06
transcription repressor activity 3.78E-06 MHC class II receptor activity 1.04E-05
double-stranded DNA binding 1.78E-05 receptor binding 1.05E-05
protein dimerization activity 2.07E-05 platelet-derived growth factor binding 1.62E-05
sequence-specific DNA binding 8.33E-05 collagen binding 1.87E-05
extracellular matrix binding 1.08E-04 transcription factor activity 2.78E-05
transcription factor binding 1.14E-04 growth factor binding 5.12E-05

GO Cellular Component
GO-Term P-value GO-Term P-value
extracellular region part 5.31E-11 extracellular region part 3.16E-16
extracellular space 3.15E-10 extracellular space 1.14E-15
extracellular region 7.20E-07 MHC protein complex 6.24E-14
extracellular matrix 4.95E-06 extracellular region 1.66E-12
stored secretory granule 1.34E-05 MHC class II protein complex 3.96E-10
platelet alpha granule 4.68E-05 extracellular matrix 9.26E-10
platelet alpha granule lumen 1.41E-04 proteinaceous extracellular matrix 7.49E-07
cytoplasmic membrane-bounded vesicle lumen 1.58E-04 stored secretory granule 3.60E-06
vesicle lumen 1.96E-04 lysosomal membrane 6.35E-06
proteinaceous extracellular matrix 6.55E-04 platelet alpha granule 9.65E-06

Table 3. Enriched GO molecular function and cellular component categories for FSGS-IgAN-MGN-SLE and
FSGS-MGN-SLE-specific gene sets.

acterized by a primary glomerular immune process,
but SLE can show aggressive interstitial infiltrates,
which would explain the specific enrichment profiles
observed above. Ongoing studies by our group are
currently characterizing the specific expression pro-
files generated by intrarenal macrophages in human
and mice in SLE.

Adding Regulation: One of the nice aspects of FCA
is that it allows us to add attributes to our analysis
within the same framework. Since we have the di-
rection of regulation for the renal disease associated
genes, we can find the concept lattice using attributes
indicating this direction: MGNup, and MGNdown.
We already know from Bhavnani et al.5 that the
regulatory direction partitions the genes: if a gene is
up in one disease, it is up in all diseases. Though, in
their case, it took some work to find this fact, it is
immediate in the concept lattice, which is partitioned
into disjoint lattices based on concepts where genes
are up-regulated and genes that are down-regulated.
It is easy to see that, if we combine this regulatory
context with the context where incidence is either up-
or down-regulation, then the concept lattice would
remain partitioned by regulation. However, since we
have added PPI network neighbors to gene sets for the
diseases, it is not necessarily the case that these added

genes should have consistent regulation with their
neighbors. So, concepts in the lattice for the combined
context may have both up and down regulated genes,
which would mean that PPI edges crossed regulatory
classes. But, at least for the FSGS-IgAN-MGN and
FSGS-IgAN-MGN-SLE concepts, the PPI edges pre-
serve regulation: only connecting up-regulated genes
to up-regulated genes.

Discussion

Though recent work has indicated that there are
common molecular mechanisms underlying comor-
bidities between diseases, determining the molecular
mechanism driving families of comorbid or phenotyp-
ically similar diseases remains a challenging problem.
Getting to this mechanism requires first that we be
able to identify genes that are likely involved in
the commonalities and differences between diseases.
Through the work of Bhavnani et al. we see that net-
work analysis allows us to explore pairwise relation-
ships between diseases, but that there are limitations
when dealing with higher dimension relationships. We
have demonstrated that FCA identifies relationships
that cannot be seen without engaging in heuristic
reasoning in networks, and how the lattice structure
provides a picture of how strongly related the diseases
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FSGS-IgAN-MGN-SLE (FSGS-MGN-SLE)-specific
GO Biological Process
GO-Term P-value GO-Term P-value
negative regulation of biological process 3.96E-19 immune system process 2.20E-20
negative regulation of cellular process 4.05E-18 positive regulation of biological process 3.87E-20
positive regulation of biological process 3.00E-16 negative regulation of biological process 3.20E-19
regulation of biological process 5.00E-16 response to stimulus 1.43E-18
biological regulation 5.64E-16 immune response 1.88E-17
regulation of cellular process 3.82E-15 response to stress 3.09E-16
positive regulation of cellular process 3.54E-14 response to wounding 3.49E-16
developmental process 6.48E-14 negative regulation of cellular process 3.71E-16
regulation of multicellular organismal process 7.60E-14 positive regulation of cellular process 8.93E-15
apoptosis 2.38E-13 regulation of biological process 1.08E-14
response to stress 2.77E-13 biological regulation 1.45E-14
programmed cell death 3.05E-13 multi-organism process 5.09E-14
regulation of developmental process 3.30E-13 antigen processing and presentation 8.62E-14
multicellular organismal development 4.11E-13 apoptosis 4.99E-13
organ development 1.71E-12 programmed cell death 6.85E-13
system development 3.03E-12 regulation of multicellular organismal process 2.42E-12
cell death 4.65E-12 cell death 6.90E-12
death 5.13E-12 death 7.83E-12
anatomical structure development 5.52E-12 regulation of apoptosis 8.16E-12
negative regulation of biological process 3.96E-19 immune system process 2.20E-20
negative regulation of cellular process 4.05E-18 positive regulation of biological process 3.87E-20
positive regulation of biological process 3.00E-16 negative regulation of biological process 3.20E-19
regulation of biological process 5.00E-16 response to stimulus 1.43E-18
biological regulation 5.64E-16 immune response 1.88E-17
regulation of cellular process 3.82E-15 response to stress 3.09E-16
positive regulation of cellular process 3.54E-14 response to wounding 3.49E-16
developmental process 6.48E-14 negative regulation of cellular process 3.71E-16
regulation of multicellular organismal process 7.60E-14 positive regulation of cellular process 8.93E-15
apoptosis 2.38E-13 regulation of biological process 1.08E-14
response to stress 2.77E-13 biological regulation 1.45E-14
programmed cell death 3.05E-13 multi-organism process 5.09E-14
regulation of developmental process 3.30E-13 antigen processing and presentation 8.62E-14
multicellular organismal development 4.11E-13 apoptosis 4.99E-13
organ development 1.71E-12 programmed cell death 6.85E-13
system development 3.03E-12 regulation of multicellular organismal process 2.42E-12
cell death 4.65E-12 cell death 6.90E-12
death 5.13E-12 death 7.83E-12
anatomical structure development 5.52E-12 regulation of apoptosis 8.16E-12

Table 4. Enriched GO biological process categories for FSGS-IgAN-MGN-SLE and FSGS-MGN-SLE-specific
gene sets.

are. Our analysis of the renal disease data set also
shows that the concepts that we find represent un-
expected relationships among diseases that are worth
considering further. And, this is without employing
functional categories to try to narrow the sets, which
we feel is very promising.

The challenge with FCA is that many of the
formal concepts may not be useful in themselves
— only a few indicating relationships that may be
worthy of trying to develop into systems. The renal
disease data set has a relatively small lattice with 57
concepts, but a data set more representative of the

DN, MCD and TMD populations would increase the
gene associations for those diseases, and potentially
more than double the size of the lattice. Note that
we are at the limit of what is reasonable to try to
visualize as a Hasse diagram, and heuristics, like the
one we describe, are needed to focus on potentially
interesting sublattices.

For future questions of determining mechanism,
whether using FCA for further functional analysis
of the identified concepts is useful is not clear. Be-
cause the concepts of a context extended by adding
functional attributes are based on intersections of
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FSGS-IgAN-MGN-SLE (FSGS-MGN-SLE)-specific
Genomatix Disease Association
Disease P-value Disease P-value
Glomerulonephritis 9.97E-15 Glomerulonephritis 1.13E-14
Nephritis 3.87E-11 Glomerulonephritis, Membranous 3.91E-11
Growth Retardation 9.32E-11 Arterial Injury 5.77E-11
Arterial Injury 1.83E-10 Pancreatic Neoplasms 4.69E-10
Glomerulonephritis, Membranous 7.46E-09 Melanoma 7.17E-10
Hypoxia 8.21E-09 Carcinoma, Hepatocellular 2.04E-09
Carcinoma, Hepatocellular 1.72E-08 Nephritis 3.27E-09
Hyperoxia 8.31E-08 Osteosarcoma 6.86E-09
Osteosarcoma 8.79E-08 Pre Eclampsia 7.36E-09
Prostate Carcinoma 1.48E-07 Prostate Neoplasm 9.78E-09
Glioblastoma 1.59E-07 Growth Retardation 1.04E-08
Leiomyoma 1.60E-07 Neointima 1.86E-08
Neointima 1.73E-07 Fibrosis 2.35E-08
Liver Cirrhosis 1.83E-07 Plasma Cell Myeloma 3.76E-08
Fibrosarcoma 1.87E-07 Liver Cirrhosis 5.44E-08
Fibrosis 2.12E-07 Lupus Erythematosus, Systemic 7.53E-08
Hypertrophy 3.57E-07 Disease Susceptibility 7.57E-08
Vascular Diseases 4.13E-07 Leiomyoma 1.05E-07
Blood Loss 5.30E-07 Neoplasm Metastasis 1.43E-07

Genomatix Tissue Association
Tissue P-value Tissue P-value
Glomerulonephritis 9.97E-15 Glomerulonephritis 1.13E-14
Nephritis 3.87E-11 Glomerulonephritis, Membranous 3.91E-11
Growth Retardation 9.32E-11 Arterial Injury 5.77E-11
Arterial Injury 1.83E-10 Pancreatic Neoplasms 4.69E-10
Glomerulonephritis, Membranous 7.46E-09 Melanoma 7.17E-10
Hypoxia 8.21E-09 Carcinoma, Hepatocellular 2.04E-09
Carcinoma, Hepatocellular 1.72E-08 Nephritis 3.27E-09
Hyperoxia 8.31E-08 Osteosarcoma 6.86E-09
Osteosarcoma 8.79E-08 Pre Eclampsia 7.36E-09
Prostate Carcinoma 1.48E-07 Prostate Neoplasm 9.78E-09
Glioblastoma 1.59E-07 Growth Retardation 1.04E-08
Leiomyoma 1.60E-07 Neointima 1.86E-08
Neointima 1.73E-07 Fibrosis 2.35E-08
Liver Cirrhosis 1.83E-07 Plasma Cell Myeloma 3.76E-08
Fibrosarcoma 1.87E-07 Liver Cirrhosis 5.44E-08
Fibrosis 2.12E-07 Lupus Erythematosus, Systemic 7.53E-08
Hypertrophy 3.57E-07 Disease Susceptibility 7.57E-08
Vascular Diseases 4.13E-07 Leiomyoma 1.05E-07
Blood Loss 5.30E-07 Neoplasm Metastasis 1.43E-07

Table 5. Enriched disease and tissue categories for FSGS-IgAN-MGN-SLE and FSGS-MGN-SLE-specific gene
sets.

gene sets, this construction finds within gene-disease
concepts those subconcepts with similar function.
This approach is only useful while we are interested
in classes of genes that somehow work together, and
an alternate approach will be necessary when we are
ready to consider complementary mechanistic roles.
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