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Abstract APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall

mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in

cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in

normal cells and that expression is activated by its mutational disruption in a reporter construct or

the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T

antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments

demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6

and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of

these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate

that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or

mutational disruption of this regulatory network triggers overexpression in breast cancer and

provides fuel for tumor evolution.

Introduction
Cancer is a collection of diseases characterized by a complex array of mutations ranging from gross

chromosomal abnormalities to single-base substitution (SBS) mutations. Over the last decade, analy-

ses of thousands of tumor genome sequences have confirmed this complexity and also, importantly,

revealed common patterns or signatures indicative of the sources of DNA damage that led to these

observed mutations (most recent pan-cancer analysis by Alexandrov et al., 2020; reviewed by

Helleday et al., 2014; Roberts and Gordenin, 2014; Swanton et al., 2015; Venkatesan et al.,

2018). One of the most prominent SBS mutation signatures to emerge is attributable to members of

Roelofs et al. eLife 2020;9:e61287. DOI: https://doi.org/10.7554/eLife.61287 1 of 27

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.61287
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the APOBEC family of single-stranded (ss)DNA cytosine deaminases (Alexandrov et al., 2013;

Burns et al., 2013a; Burns et al., 2013b; Nik-Zainal et al., 2012; Roberts et al., 2013). Breast,

lung, head/neck, cervical, and bladder cancers often have strong APOBEC signatures and subsets of

other cancer types have weaker APOBEC contributions. The APOBEC mutation signature consists of

C-to-T transitions and C-to-G transversions occurring at cytosine nucleobases in 5’-TCW motifs

(W = A or T; SBS2 and SBS13), respectively (Alexandrov et al., 2020; Alexandrov et al., 2013; Nik-

Zainal et al., 2016).

The human APOBEC family has nine active family members: APOBEC1, AID, and APOBEC3A/B/

C/D/F/G/H (reviewed by Green and Weitzman, 2019; Harris and Dudley, 2015; Ito et al., 2020;

Olson et al., 2018; Silvas and Schiffer, 2019; Simon et al., 2015; Siriwardena et al., 2016).

Although several APOBEC3s have been implicated in cancer mutagenesis including APOBEC3A

(A3A) and APOBEC3H (A3H) (Chan et al., 2015; Nik-Zainal et al., 2014; Starrett et al., 2016;

Taylor et al., 2013), a particularly strong case can be made for APOBEC3B (A3B). First, A3B is over-

expressed in a large fraction of tumors (Burns et al., 2013a; Burns et al., 2013b; Ng et al., 2019;

Roberts et al., 2013). Second, A3B is the only deaminase family member localizing to the nuclear

compartment (Bogerd et al., 2006; Burns et al., 2013a; Lackey et al., 2012; Lackey et al., 2013;

Pak et al., 2011; Salamango et al., 2018; Stenglein et al., 2008). Third, A3B overexpression trig-

gers strong DNA damage responses and overt cytotoxicity (Burns et al., 2013a; Nikkilä et al.,

2017; Serebrenik et al., 2019; Taylor et al., 2013; Yamazaki et al., 2020). Fourth, A3B expression

correlates positively with APOBEC signature mutation loads in breast cancer (Burns et al., 2013a),

and its overexpression associates with branched evolution in breast and lung cancer (de Bruin et al.,

2014; Lee et al., 2019; Roper et al., 2019). Fifth, A3B expression is induced by human papillomavi-

rus (HPV) and polyomavirus (PyV) infections, which relates to the fact that cervical, head/neck, and

bladder cancers have high proportions of APOBEC signature mutations (Gillison et al., 2019;

Henderson et al., 2014; Starrett et al., 2019; Verhalen et al., 2016; Vieira et al., 2014). Last, A3B

overexpression associates with poor clinical outcomes including drug resistance and metastasis

(Glaser et al., 2018; Law et al., 2016; Serebrenik et al., 2020; Sieuwerts et al., 2017;

Sieuwerts et al., 2014; Walker et al., 2015; Xu et al., 2015; Yamazaki et al., 2019; Yan et al.,

2016). However, in a different subset of cancer types, A3B has been shown to exert genotoxic stress

that sensitizes tumor cells to DNA damaging chemotherapies (Glaser et al., 2018;

Serebrenik et al., 2020).

The importance of A3B in cancer mutagenesis has stimulated interest in understanding the mech-

anisms by which this DNA mutator becomes overexpressed in tumors. A variety of stimuli have been

shown to trigger transcriptional upregulation of endogenous A3B including small molecules, DNA

damaging agents, and viral infections. Phorbol myristic acid (PMA) and lymphotoxin-b induce A3B

by activating the protein kinase C (PKC) and non-canonical (nc)NF-kB signal transduction pathways

(Leonard et al., 2015; Lucifora et al., 2014). Canonical NF-kB activation also leads to A3B upregu-

lation (Maruyama et al., 2016) suggesting a mechanistic linkage between inflammatory responses

and cancer mutagenesis. Various DNA damaging agents also stimulate A3B expression including

hydroxyurea, gemcitabine, aphidicolin, and camptothecin (Kanu et al., 2016; Yamazaki et al.,

2020). Interestingly, as alluded above, HPV infection induces A3B expression by mechanisms requir-

ing the viral E6 and E7 oncoproteins (Mori et al., 2015; Mori et al., 2017; Starrett et al., 2019;

Verhalen et al., 2016; Vieira et al., 2014; Warren et al., 2015; Westrich et al., 2018). E6 appears

to induce A3B in part by recruiting the transcription factor TEAD4 to promoter sequences

(Mori et al., 2015; Mori et al., 2017). JC and BK PyV upregulate A3B transcription by a mechanism

requiring the LxCxE motif of the viral large T antigen (TAg; Starrett et al., 2019; Verhalen et al.,

2016). HPV E7 also has a LxCxE motif suggesting a shared mechanism in which these viral oncopro-

teins may activate A3B transcription by antagonizing the canonical retinoblastoma tumor suppressor

protein RB1 and the related pocket proteins RB-like 1 (RBL1) and RBL2 (reviewed by An et al.,

2012; Bellacchio and Paggi, 2013; DeCaprio, 2014; DeCaprio and Garcea, 2013; Rashid et al.,

2015). Viral inactivation of RB1 and RBL1/2 alters interactions with cellular E2F transcription factors

and contributes to an accelerated cell cycle with dampened checkpoints. The RB/E2F axis is also fre-

quently disrupted in non-viral cancers such as breast cancer, HPV-negative head/neck cancer, and

lung cancer (Cancer Genome Atlas Network, 2012; Ertel et al., 2010; Nik-Zainal et al., 2016;

Cancer Genome Atlas Network, 2015).
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Central to the human RB/E2F axis are eight distinct E2F transcription factors (reviewed by

Cao et al., 2010; Fischer and Müller, 2017; Sadasivam and DeCaprio, 2013). E2F1, E2F2, and

E2F3 bind target promoters and recruit additional activating proteins to stimulate the expression of

cell cycle genes during G1/S. RB1 binds the transactivation domain of these E2Fs and thereby pre-

vents the recruitment of transcription activating factors. E2F4 and E2F5 form complexes with RBL1

or RBL2 and further associate with the MuvB complex, which includes LIN9, LIN37, LIN52, LIN54,

and RBBP4. This bipartite assembly, known as the DREAM complex, represses transcription during

the G0 and early G1 phases of the cell cycle (Litovchick et al., 2011; Litovchick et al., 2007;

Pilkinton et al., 2007). Endogenous Cyclin/CDK complexes, as well as HPV E7 and PyV TAg through

LxCxE motifs, dissociate RBL1 and RBL2 from E2F4 and E2F5 and thereby activate transcription

(reviewed by An et al., 2012; Bellacchio and Paggi, 2013; DeCaprio, 2014; DeCaprio and Garcea,

2013; Rashid et al., 2015). E2F6, E2F7, and E2F8 exert their repressive function independent of

RB1, RBL1, and RBL2 (Christensen et al., 2005; de Bruin et al., 2003; Trimarchi et al., 1998). E2F6

functions in the Polycomb Repressive Complex (PRC)1.6 complex to repress gene expression during

G1-S (Qin et al., 2012; Scelfo et al., 2019; Stielow et al., 2018). The PRC1.6 complex consists of

MGA, L3MBTL2, PCGF6, WDR5, E2F6, and TFDP1 (among other proteins), and directly binds DNA

through MGA, L3MBTL2, and E2F6 (Stielow et al., 2018). Finally, E2F7 and E2F8 repress genes

through the S-phase and prevent gene reactivation during the next cell cycle (Cuitiño et al., 2019).

Our previous studies showed that A3B expression is low in normal tissues (Burns et al., 2013a;

Refsland et al., 2010) and inducible upon PyV TAg expression (Starrett et al., 2019;

Verhalen et al., 2016). A3B induction by TAg may occur through the RB/E2F axis, as alluded above,

or through a different LxCxE-dependent mechanism. The feasibility of such an alternative mechanism

is supported by evidence that LxCxE is a common motif for protein-protein interactions and that

HPV E7 uses this motif to bind >100 cellular proteins in addition to RB1, RBL1, and RBL2

(White et al., 2012). Here a series of molecular, biochemical, proteomic, and genomic approaches

are used to distinguish between these molecular mechanisms. The combined results demonstrate

the functionality of a single E2F binding site in the A3B promoter and reveal overlapping roles for

both E2F4-based DREAM and E2F6-based PRC1.6 complexes in repressing A3B transcription in

non-tumorigenic cells. Loss of this A3B repression mechanism in tumor cells is likely to promote can-

cer mutagenesis.

Results

The A3B promoter contains a repressive transcriptional element
To study the mechanism of A3B transcriptional regulation, a 950 bp region spanning the A3B tran-

scription start site (TSS) was cloned upstream of a firefly luciferase reporter (i.e. �900 to +50 relative

to the +1 of the A3B TSS; Figure 1A). In MCF10A normal-like breast epithelial cells and MCF7

breast cancer cells, which both express low levels of A3B (Burns et al., 2013a), this construct sup-

ported modest levels of transcription activity above those of a promoter-less vector (compare black

bars of pGL3-basic versus pA3B-luciferase in Figure 1B). Interestingly, similar to upregulation of the

endogenous A3B gene in our previous studies (Starrett et al., 2019), transcription of the A3B-lucif-

erase reporter was induced strongly in cells co-expressing the BK PyV truncated T antigen (tTAg)

but not in cells co-expressing a LxCxE mutant tTAg (Figure 1B).

The JASPAR database (Fornes et al., 2020) was then used to predict transcription factor binding

sites within the �900 to +50 A3B promoter region. This analysis yielded dozens of candidate sites

including five putative E2F binding sites (labeled A-E in Figure 1A). The functionality of each E2F

binding site was assessed by constructing site-directed mutant clusters and comparing A3B-lucifer-

ase reporter activity in MCF10A and MCF7 (Figure 1B–C). Clustered base substitution mutations in

sites A, B, and C had negligible effects on basal or tTAg-induced levels of luciferase reporter expres-

sion. Clustered mutations in site D caused a two- to three-fold reduction in both basal and tTAg-

induced levels of luciferase reporter expression. However, clustered mutations in site E, located at

+21 to +28 relative to the TSS, caused a strong five-fold induction of A3B-luciferase reporter activity

that could not be further increased by tTAg co-expression. Mutations in site E were also epistatic to

those in site D, suggesting that site E may be the dominant regulatory site. The importance of site E

was confirmed by analyzing additional mutation clusters, which partly or fully spanned site E and
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resulted in complete de-repression of A3B-luciferase expression (Figure 1D–E). Mutation clusters

+12 to +20 and +22 to +30 guided additional analyses including proteomics experiments below.

Taken together, these results suggested that the +12 to +30 region of the A3B promoter including

site E is normally bound by a repressive factor and different mutations prevent repression and allow

high levels of transcription.

A3B promoter phylogenetic analyses delineate conserved CHR and E2F
sites
To gain additional insights into the possible involvement of an E2F complex in A3B transcriptional

repression, TCGA breast cancer RNA-seq data sets were used to identify 114 genes with expression

profiles positively associating with A3B (Spearman’s rho �0.5; n = 1,097 RNA-seq data sets;

Supplementary file 1). Remarkably, 87% of these genes were shown to be bound by repressive E2F

complexes suggesting a common regulatory mechanism (Litovchick et al., 2007; Müller et al.,

2014; Supplementary file 1). For instance, A3B mRNA levels across primary breast cancer associ-

ated strongly with expression levels of MELK and FOXM1 (Figure 2A), which both have well-
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Figure 1. The A3B promoter harbors a repressive cis-element in the +1 to +50 region. (A) Schematic of the 7-gene human APOBEC3 locus with the

A3B promoter magnified to depict five predicted E2F binding sites (A-E in blue) relative to the TSS at +1 (scales indicated). (B–E) Relative luciferase

activity of MCF10A or MCF7 cells expressing the indicated firefly luciferase construct (pGL3-basic, pA3B-luciferase, or mutant pA3B-luciferase), a renilla

luciferase internal control plasmid (not shown), and a tTAg plasmid (empty, wildtype, or LxCxE mutant). Mutation clusters are depicted by X’s (mutant

sequences in Supplementary file 4). Experiments report mean ± SD of n � 2 technical replicates and are representative of n = 3 biologically

independent replicates.
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described E2F-dependent repression mechanisms (Litovchick et al., 2007; Müller et al., 2017;

Müller et al., 2014; Verlinden et al., 2005). A subset of these coordinately expressed genes also

has a predicted consensus (or near-consensus) cell cycle gene homology region (CHR) element adja-

cent to the predicted E2F binding site (Figure 2B and Supplementary file 1). When juxtaposed,

these two elements cooperatively facilitate the binding of repressive E2F complexes and suppress

gene expression (Müller et al., 2012; Müller et al., 2017; Müller et al., 2014) and reviewed by

Fischer and Müller, 2017; Sadasivam and DeCaprio, 2013. Interestingly, in the A3B promoter,

both the predicted CHR (+9 to +14) and E2F (+21 to +28) elements occur within the +12 to +30

region defined above in mutagenesis experiments (Figure 1D–E).
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Figure 2. A3B repression requires both CHR and E2F cis-elements. (A) Heatmap depicting high-to-low A3B expression levels in TCGA breast cancer
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firefly luciferase construct (pA3B-luciferase or mutant pA3B-luciferase), a renilla luciferase internal control plasmid (not shown), and a tTAg plasmid

(empty, wildtype, or LxCxE mutant). Panel (E) reports data for E2F mutants and (F) for CHR mutants. Experiments report mean ± SD of n � 2 technical

replicates and are representative of n = 3 biologically independent replicates.
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The global profile of A3B mRNA expression in primary breast cancer is distinct from related A3

genes except for A3A (Figure 2A). This is explained by differences at potentially critical nucleobase

positions in both the CHR and E2F sites in the individual A3 gene promoters including the most

closely related A3C promoter region (Figure 2C and see below). The A3A promoter shares no obvi-

ous homology and the associated expression profiles cannot be explained mechanistically at this

time. Sequence comparisons with other primates demonstrate that this region of the A3B promoter,

including juxtaposed CHR and E2F elements, is conserved in hominids and Old World monkeys

(Figure 2D). Thus, adjacent CHR and E2F sites in the A3B promoter are unique amongst A3 genes,

specific to humans and other higher primates, and likely linked to the aforementioned expression

patterns.

To interrogate the functionality of the E2F and CHR elements, the A3B-luciferase reporter was

subjected to additional rounds of site-directed mutagenesis and analysis in MCF10A. Altering the

nucleobase immediately 5’ of the predicted E2F binding site (+20 A-to-T) had no effect, and chang-

ing the first nucleobase of the predicted E2F binding site (+21 G-to-C) caused slight reporter activa-

tion but did not affect tTAg inducibility (Figure 2E). In contrast, single nucleobase changes in the

core of the predicted E2F binding site (+22 C-to-G or +23 G-to-C) caused full de-repression of the

A3B-luciferase reporter that could not be further increased by tTAg (Figure 2E). Single and combi-

natorial base substitution mutations in the CHR element also resulted in partial or full de-repression

of the A3B-luciferase reporter (Figure 2F). For instance, mutation of +10 TC-to-CT or +9 TT-to-AA

caused partial reporter de-repression, which could still be further enhanced by tTAg. In contrast,

mutating the two adenine nucleobases at the 3’ end of the CHR element (+13 AA-to-TT) resulted in

full reporter de-repression which could not be increased by tTAg. These fine-mapping results

showed that both the putative E2F binding site and the adjacent CHR element are essential for

repressing A3B transcription.

Targeted mutagenesis demonstrates a repressive role for the +21 to
+28 E2F element in regulating endogenous A3B transcription
independent of activation by the PKC/ncNF-kB pathway
The abovementioned work indicated recruitment of a repressive complex to a putative E2F binding

site in the A3B-luciferase reporter, which was necessarily episomal and may not be subject to the

same regulatory mechanisms as the chromosomal A3B gene. To directly ask whether the endoge-

nous +21 to +28 E2F site is involved in A3B repression, CRISPR/Cas9 technology was used to disrupt

this region in diploid MCF10A cells. Four independent targeted clones showed elevated A3B protein

levels in comparison to control lacZ clones, consistent with a repressive function for the putative E2F

binding site (Figure 3—figure supplement 1A). DNA sequencing revealed allelic differences

between the four clones, which could explain at least part of the variability observed in A3B eleva-

tion (Figure 3—figure supplement 1B).

To confirm and extend these results, homology-directed repair (HDR) was used to introduce pre-

cise base substitution mutations into the +21 to +28 E2F site in the endogenous A3B promoter of

an MCF10A derivative engineered to be hemizygous for the entire A3B gene

(Materials and methods). Tandem base substitution mutations, C22G and G25C, were chosen to dis-

rupt the E2F site and simultaneously preserve the locus by maintaining the overall G:C content and

spatial relationships between promoter elements (Figure 3A). Seven independent clones were

obtained with the desired two base substitution mutations (Figure 3B). All seven showed robust

increases in both A3B protein and mRNA levels with differences potentially due to clonal variation

(Figure 3C–E). The mRNA levels of related A3 family members were unaffected, which further con-

firmed specificity of the targeted genomic changes (Figure 3—figure supplement 1). Immunoblots

were also performed for RAD51, an established RB/E2F-target (Dean et al., 2012; Müller et al.,

2017), to show that global E2F regulation is unperturbed (Figure 3C–D). These results demon-

strated that the endogenous E2F site at base pairs +21 to +28 of the A3B promoter contributes to

transcriptional repression in MCF10A cells.

To determine whether this cis-element is solely responsible for endogenous A3B upregulation by

tTAg or whether multiple tTAg-responsive mechanisms may combine to exert the observed pheno-

type, tTAg was expressed in two representative HDR targeted MCF10A clones and two lacZ controls

and A3B levels were analyzed by RT-qPCR and immunoblotting. Expression of tTAg resulted in two-

to three-fold higher A3B levels in lacZ control clones (Figure 3F), similar to results above with the
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Figure 3. Single-base substitutions in the endogenous predicted E2F binding site induce A3B expression independent of activation by the PKC/ncNF-k

B pathway. Complementary supporting data are in Figure 3—figure supplement 1. (A) Schematic of CRISPR/Cas9-mediated HDR of the predicted

E2F binding site in A3B hemizygous MCF10A cells. Top: CRISPR/Cas9 (scissors) introduces a DNA break (dashed line) adjacent to the predicted E2F

binding site (blue). Middle: The ssDNA oligo used for HDR has two point mutations in the predicted E2F binding site including one that disrupts the

PAM (underlined). Bottom: A3B promoter sequence of properly targeted clones. (B) Sanger DNA sequencing chromatograms of the E2F promoter

region of a representative control clone (lacZ clones, n = 5) and a representative clone with the targeted E2F point mutations (HDR clones, n = 7). (C–D)

A3B and RAD51 protein levels in control lacZ and HDR clones with tubulin as a loading control (representative immunoblots and quantification from

n = 3 experiments). A3B-overexpressing BT-474 cells were used as a positive control. P-values from unpaired t-test. (E) A3B mRNA expression levels in

control lacZ and HDR clones quantified by RT-qPCR (mean ± SD; p-value from unpaired t-test). (F) RT-qPCR (top) and immunoblot (bottom) results

showing the effects of wildtype and LxCxE mutant tTAg on the A3B gene (top) and protein (bottom) expression in two representative lacZ and HDR49

clones. Cyclin E2 was used as a positive immunoblot control for tTAg-mediated induction of an RB/E2F-repressed gene. Tubulin was used as an

immunoblot loading control. (G) Expression of A3B mRNA (top) and protein (bottom) upon PMA-treatment of the indicated lacZ control and HDR

mutant clones. The magnitude of mRNA induction is indicated for each DMSO control and PMA-treated pair. Tubulin was used as an immunoblot

loading control.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. CRISPR/Cas9 disruption of the endogenous E2F site in the A3B promoter.
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episomal reporter. In contrast, neither expression of an LxCxE mutant nor an empty mCherry control

vector induced A3B. Importantly, tTAg had no effect on A3B mRNA or protein levels in the HDR tar-

geted MCF10A clones (Figure 3F). This result was clear despite the fact that the LxCxE mutant was

expressed more strongly than wildtype tTAg (likely due to loss of an autoregulatory mechanism yet-

to-be-defined) and that some variability in endogenous A3B expression was observed from experi-

ment-to-experiment (even using the same HDR-targeted clone). Nevertheless, these results com-

bined to demonstrate that all of the observed A3B induction by tTAg is mediated by this single

endogenous E2F site.

In parallel, representative HDR-targeted clones and lacZ controls were used to ask how this

endogenous E2F site might impact A3B induction by PMA through the PKC/ncNF-kB signal trans-

duction pathway (Leonard et al., 2015). This was done by treating cells with PMA and then quantify-

ing A3B levels by RT-qPCR and immunoblotting. Interestingly, PMA caused similar induction of A3B

mRNA and protein levels from both the wildtype endogenous promoter (lacZ controls) as well as the

HDR-engineered promoter with tandem base substitution mutations C22G and G25C (Figure 3G).

Overall, simultaneous de-repression through HDR-targeted mutation of the single E2F site and acti-

vation by PMA caused a thirty-fold increase in A3B levels above the uninduced basal level in the lacZ

controls. Together with the above data above, these results demonstrated that A3B expression is

impacted independently by tTAg/E2F and PKC/ncNF-kB and signal transduction mechanisms.

Repressive E2F4/DREAM and E2F6/PRC1.6 complexes bind to the A3B
promoter
Collectively, the data so far indicate that the putative E2F binding site is functionally relevant in

repressing both A3B-luciferase reporter activity and endogenous A3B expression. However, the

identity of the repressive complex(es) bound to this cis-element was unclear because multiple E2F

family members are capable of transcriptional repression (Introduction). To address this problem in

an unbiased manner, a series of proteomic experiments was conducted to identify MCF7 nuclear

proteins capable of binding to the wildtype A3B +1 to +50 promoter sequence but not to repres-

sion-defective mutants (see Figure 4A for a schematic of the proteomics workflow and

Materials and methods for details). This approach was facilitated by stable isotope labeling with

amino acids in cell culture (SILAC) to create heavy (H) and light (L) nuclear extracts for H versus L

and L versus H comparisons with the different promoter substrates. Interestingly, in an experiment

comparing proteins bound to the wildtype A3B promoter sequence versus a promoter sequence

with mutations spanning the predicted E2F binding site (matching the +22-to-30 mutant in

Figure 1D–E), a greater than four-fold enrichment was observed for almost all proteins in the repres-

sive DREAM complex, including TFDP1, TFDP2, RBL1, RBL2, E2F4, E2F5, and the MuvB components

LIN9, LIN37, LIN52, and LIN54 (Figure 4B–C and Supplementary file 2; confirmatory immunoblots

for representative enriched proteins in Figure 4—figure supplement 1). Given that a single-base

substitution +22 C-to-G was sufficient for full de-repression in reporter assays (Figure 2E), we

repeated the SILAC DNA pull-downs comparing the wildtype promoter sequence and this mutant.

Importantly, again, most members of the DREAM complex preferentially bound to the wildtype but

not to the A3B mutant promoter sequence (Figure 4B,D, Supplementary file 2). Similar enrich-

ments for DREAM complex components were also evident in a separate proteomics experiment

comparing MCF7 nuclear proteins bound to the wildtype A3B promoter versus a promoter sequence

with mutations spanning the CHR element (matching the +12-to-20 mutant in Figure 1D–E;

Figure 4B, E, Supplementary file 2). These additional results indicated that the CHR site is also

required for A3B promoter binding by the DREAM complex and that the E2F site alone is

insufficient.

Interestingly, the proteomics data sets also implicated components of the PRC1.6 complex in

binding to wildtype but not to E2F or CHR mutant A3B promoter sequences. In particular, E2F6,

MGA, and L3MTBL2 were found enriched repeatedly (Figure 4B–E, Supplementary file 2, and con-

firmatory immunoblots for representative enriched proteins in Figure 4—figure supplement 1). Two

additional PRC1.6 components, PCGF6 and WDR5, also approached the four-fold cut-off in one

dataset (Supplementary file 2). These results indicated that the repressive PRC1.6 complex is also

capable of binding to the wildtype A3B promoter sequence and may therefore also play a role in

suppressing expression.
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E2F4 and E2F6 complexes participate in A3B transcriptional repression
A series of chromatin immunoprecipitation (ChIP) experiments was done to determine whether A3B

repression in non-tumorigenic MCF10A cells is mediated by one or both of the identified E2F com-

plexes. Although prior work has implicated the E2F4/DREAM complex (Periyasamy et al., 2017),

the potential involvement of E2F6/PRC1.6 is novel. Anti-E2F4 and anti-E2F6 antibodies were used to

immunoprecipitate cross-linked transcriptional regulatory complexes from MCF10A lacZ4 (control)

and HDR49 (E2F site E mutant) cells described above and promoter occupancy was determined by

quantitative PCR (Figure 5A–B). The wildtype A3B promoter in lacZ4 cells showed similarly strong

enrichment for binding by both E2F4 and E2F6, and single-base substitutions in E2F site E in HDR49

cells reduced binding of both proteins to background levels. In parallel analyses, significant E2F4

enrichment was evident in the promoter regions of two established E2F4/DREAM-repressed genes,

RAD51 and TTK (Dean et al., 2012; Engeland, 2018; Müller et al., 2017). E2F6 was enriched only

at the RAD51 promoter and not the TTK promoter.
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Figure 4. The DREAM and PRC1.6 repressive complexes bind to the CHR-E2F region of the A3B promoter. Immunoblot validations of representative

binding proteins from proteomic experiments are in Figure 4—figure supplement 1. (A) Schematic of the SILAC DNA pull-down strategy used to

identify proteins from MCF7 cells capable of interacting with A3B promoter sequences. (B) Illustration of DREAM and PRC1.6 complexes positioned

over the indicated A3B promoter elements (proteomic hits shaded blue and green, respectively). (C–E) Log2-transformed SILAC ratios of proteins

purified using the indicated promoter sequences and identified through LC-MS/MS (dashed line, SILAC ratio threshold >2.0 [log2]). ‘Top hits’ are

proteins surpassing the >2.0 log2 SILAC ratio threshold in both datasets (rank based on heavy versus light SILAC ratio). ‘Others’ are proteins of interest

surpassing the >2.0 log2 SILAC ratio threshold in at least one dataset. Data for DREAM and PRC1.6 components are shaded blue and green,

respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Immunoblot validations of representative A3B promoter-binding proteins identified in proteomics experiments.
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The higher E2F6 signal at the A3B promoter compared to the RAD51 and TTK promoters

prompted us to ask whether other PRC1.6 components may also bind preferentially. ChIP experi-

ments for L3MBTL2 revealed strong binding of this PRC1.6 component to the A3B promoter, inter-

mediate levels to the RAD51 promoter, and insignificant levels to the TTK promoter (Figure 5C).

These ChIP experiments indicated that the A3B promoter can be occupied by both E2F4 and E2F6

complexes, that the binding of either complex requires an intact +21 to +28 E2F site, and that the

binding of the same proteins to other established E2F sites can vary significantly within the same cell

population.

Next, we used small interfering (si)RNAs to interrogate the repressive function of each complex in

MCF10A cells. Surprisingly, E2F4 depletion alone did not alter A3B expression, whereas E2F6 deple-

tion caused an increase in A3B protein levels by immunoblotting (Figure 5D). We also observed that

combined E2F4/E2F6 depletion increases A3B protein levels more than E2F6 alone, indicating that

both complexes contribute to repression with the latter potentially being more dominant. Analogous

knockdown attempts in MCF7 cells caused overt distress and inviability (data not shown). Con-

versely, overexpression of either E2F4 or E2F6, as well as E2F5 which also forms a DREAM complex

(Litovchick et al., 2007), was able to repress A3B expression to varying extents in multiple different

breast cancer cell lines (Figure 5E). Taken together, the ChIP, knockdown, and overexpression stud-

ies indicate that both E2F4/DREAM and E2F6/PRC1.6 complexes can occupy the A3B promoter and

repress transcription. Moreover, the significant A3B upregulation observed upon E2F6 knockdown
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Figure 5. Endogenous A3B regulation by both E2F4/DREAM and E2F6/PRC1.6 complexes. (A) Schematics of the promoter regions interrogated by

ChIP experiments. Wildtype E2F sites are depicted by blue boxes and the mutant E2F site in the A3B promoter by a white X-box. (B–C) E2F4, E2F6,

and L3MBTL2 occupancy at the indicated E2F sites in A3B, RAD51, and TTK, as analyzed by ChIP-qPCR using lacZ4 and HDR49 cells. Experiments in (B)

report mean ± SD of n = 3 biologically independent replicates and in (C) of n = 2 biologically independent replicates (p values from unpaired t-test).

Dashed lines indicate the average IgG background. (D) Immunoblots of A3B, E2F4, and E2F6 in MCF10A cells treated 24 hr with the indicated siRNAs.

Tubulin was used as a loading control. Representative blots are shown and fold-changes below are based on the average values from n = 3 biologically
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E2F. Tubulin was used as a loading control.
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but not E2F4 knockdown suggests that the PRC1.6 complex repression mechanism may

predominate.

Breast tumors with overexpression of an E2F-repressed gene set elicit
higher levels of APOBEC signature mutations
Breast tumors frequently display A3B overexpression and APOBEC signature mutations

(Alexandrov et al., 2013; Angus et al., 2019; Bertucci et al., 2019; Burns et al., 2013a;

Burns et al., 2013b; Nik-Zainal et al., 2012; Nik-Zainal et al., 2016; Roberts et al., 2013). How-

ever, association studies with large breast cancer cohorts have shown only weak positive or negligi-

ble associations between A3B expression levels and APOBEC signature mutation loads, and clear

outliers exist including tumors with high A3B and few APOBEC signature mutations and low A3B

and many APOBEC signature mutations (Buisson et al., 2019; Burns et al., 2013a; Burns et al.,

2013b; Nik-Zainal et al., 2014; Roberts et al., 2013). This variability may be due to a number of

factors including different durations of mutagenesis (i.e. tumor age is unknown and distinct from a

patient’s biological age) and mutagenic contributions from other APOBEC3 enzymes governed by

distinct regulatory mechanisms (Buisson et al., 2019; Cortez et al., 2019; Nik-Zainal et al., 2014;

Starrett et al., 2016). However, given our results implicating both E2F4 and E2F6 complexes in A3B

repression, we reasoned that effects from these and other potentially confounding variables may be

overcome by asking whether the APOBEC mutation signature is enriched in breast tumors with func-

tional overexpression of an E2F-repressed 20 gene set.

This was done by analyzing TCGA breast cancer RNA-seq and whole-exome sequencing data

(Cancer Genome Atlas Network, 2012) for gene expression levels and base substitution mutation

signatures (workflow in Figure 6A). The top 20 genes associating positively with A3B and also show-

ing evidence for E2F repression (Litovchick et al., 2007; Müller et al., 2014) were used to rank

tumors based on highest to lowest expression levels of each gene (Figure 2A–B and

Supplementary files 1 and 3). Tumors ranking in the top or bottom quartiles for expression of all 20

genes were considered for additional analyses (n = 53 and n = 111 tumors in the common high and

common low groups, respectively). Once common high and low groups were delineated, pairwise

comparisons were made for A3B expression levels, percentage of APOBEC signature mutations, and

APOBEC signature enrichment values. As expected from the analysis work-flow and the likelihood of

a shared transcriptional regulation mechanism, tumors with common high-expressing genes showed

an average of twenty-fold higher A3B mRNA levels than tumors with common low-expressing genes

(p<2.4�10�6 by Welch’s test; Figure 6B). More interestingly, tumors with the common high-express-

ing genes showed an average of 9.3% APOBEC signature mutations versus 3.2% in the common low

group (p=0.026 by Welch’s test; Figure 6C). As an independent metric, significantly higher APOBEC

mutation signature enrichment values were evident in tumors defined by the common set of high-

expressed genes in comparison to tumors with the same genes expressed at low levels (p=0.003 by

Welch’s test; Figure 6D). A pairwise analysis of the mean expression value of the top 20 A3B-associ-

ating/E2F-repressed genes yielded similar positive associations with A3B mRNA expression levels,

APOBEC mutation percentages, and enrichment scores (Figure 6—figure supplement 1).

Although associations between A3B mRNA levels and APOBEC mutation signature have been

analyzed previously (references above), we wanted to apply an A3B-focused quartile-binning

approach to be able to compare results with those from the 20-gene set above (work-flow in

Figure 6E). Therefore, TCGA breast tumor RNA-seq data were used to identify the top 25% and

bottom 25% of A3B expressing tumors (n = 179 per group). As mentioned above and expected

from the work-flow, average A3B mRNA levels were much higher in the A3B-high group in compari-

son to the A3B-low group (Figure 6F). Also similar to the analysis above, both the average APOBEC

mutation signature percentages and average APOBEC enrichment scores trended upward in A3B-

high tumors (Figure 6G–H). However, in contrast to the analysis above, the difference in APOBEC

mutation signature percentages was not significant and the difference in APOBEC enrichment scores

was barely significant (p=0.154 and 0.042 by Welch’s test, respectively). Altogether, these results

indicate that coordinated overexpression of an RB/E2F-repressed gene set may be a better indicator

for APOBEC mutation susceptibility than expression of A3B itself. Potential explanations for the dif-

ferent results from each analysis approach are discussed below.
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Figure 6. Elevated levels of APOBEC signature mutations in breast tumors with coordinated overexpression of an

E2F-repressed gene set. Complementary analyses are presented in Figure 6—figure supplement 1. (A)

Schematic depicting the bioinformatics workflow of TCGA breast tumor data sets based on the 20 genes most

strongly associated with A3B expression (Figure 2A and Supplementary file 1). (B–D) The mean A3B mRNA

levels, mean APOBEC mutation percentages, and mean APOBEC enrichment scores in breast tumors with

coordinated overexpression (high) or repression (low) of the 20 gene set (mean ± SD; n = 53 tumors in the high

group and n = 111 in the low group; p values from Welch’s t-test). (E) Schematic depicting the bioinformatics

workflow of TCGA breast tumor data sets based solely on A3B mRNA expression levels. (F–H) The mean A3B

mRNA levels, mean APOBEC mutation percentages, and mean APOBEC enrichment scores in breast tumors with

high or low A3B mRNA levels (mean ± SD of top and bottom quartiles; n = 179 tumors in each group; p values

from Welch’s t-test).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure 6 continued on next page
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Discussion
The studies here are the first to demonstrate that two repressive E2F complexes, E2F4/DREAM and

E2F6/PRC1.6, combine to suppress A3B transcription and thereby protect genomic integrity in nor-

mal cells. The construction of a novel A3B-luciferase reporter enabled the delineation of a repressive

cis-element comprised of juxtaposed E2F and CHR sites. Site-directed mutation of either site caused

full de-repression that could not be further enhanced by co-expression of BK-PyV tTAg. These

results indicated that TAg-mediated upregulation of A3B reported previously (Starrett et al., 2019;

Verhalen et al., 2016) is occurring exclusively through the RB/E2F axis and not through an alterna-

tive LxCxE-dependent mechanism. The importance of this E2F binding site in the endogenous A3B

promoter was demonstrated definitively by CRISPR/Cas9-mediated base substitution mutation and

experimentation with a panel of independent knock-in clones. Proteomics experiments revealed that

two distinct repressive regulatory complexes, specifically E2F4/DREAM and E2F6/PRC1.6, are capa-

ble of binding to the wildtype A3B promoter but not to E2F or CHR mutant derivatives. Repressive

roles for both E2F complexes were demonstrated by ChIP, knockdown, and overexpression studies.

Finally, the potential pathological significance of E2F-mediated de-repression of A3B in breast can-

cer was supported by TCGA data analyses showing significant positive associations between ele-

vated expression of a set of 20 coordinately expressed E2F-regulated genes and higher levels of

APOBEC signature mutations.

There is a broad interest in understanding the molecular mechanisms that govern A3B transcrip-

tional regulation due to its physiological functions in antiviral immunity and pathological roles in can-

cer mutagenesis. Although prior studies implicated the E2F4/DREAM complex and generally the RB/

E2F axis in repressing A3B transcription (Periyasamy et al., 2017; Starrett et al., 2019), the work

here is the first to define the responsible cis-elements (juxtaposed CHR and E2F sites), show that all

PyV tTAg-mediated activation occurs through this single bipartite sequence, and demonstrate coor-

dinated repression not only by the E2F4/DREAM complex but, surprisingly, also by the E2F6/PRC1.6

complex. Moreover, A3B induction by E2F4/6 de-repression occurs independently of A3B activation

by PKC/ncNF-kB signal transduction. This additional result suggests that upregulation of A3B

expression through genetic or viral perturbation of the RB/E2F cell cycle pathway has the potential

to combine synergistically with inflammatory responses and trigger even greater levels of genomic

DNA damage and mutagenesis. The role of p53 in A3B transcriptional regulation is less clear with

some studies indicating that p53 inactivation leads to A3B upregulation (Menendez et al., 2017;

Periyasamy et al., 2017) and others demonstrating that TP53 knockout has no effect on A3B tran-

scription (Nikkilä et al., 2017; Starrett et al., 2019). This may be due to differences in cell types

and growth conditions. Alternatively, rather than playing an upstream role in A3B transcriptional reg-

ulation, p53 may function to help activate a downstream DNA damage response to prevent the

accumulation of mutations by A3B, which also explains why genetic inactivation of TP53 associates

positively with elevated A3B mRNA levels (Burns et al., 2013a).

Our results support a model in which E2F4/DREAM and E2F6/PRC1.6 complexes combine to

repress A3B transcription (Figure 7). These two complexes are likely to compete for binding to the

same conserved E2F site located at +21 to +28 of the A3B promoter because tandem base substitu-

tion mutations (C22G and G25C) de-repress expression of endogenous A3B and render the locus

non-responsive to further activation by tTAg (Figure 3F). Similar results were obtained using E2F

site E mutants of the episomal A3B-luciferase reporter (Figure 2E). Base substitution mutations in

the adjacent CHR site in the episomal A3B-luciferase reporter also caused A3B de-repression to lev-

els that could not be further increased by tTAg (Figure 2E). These genetic results were corroborated

by proteomics data sets indicating that base substitution mutations in either the E2F site or the CHR

site fully abrogate promoter sequence binding by both the DREAM and PRC1.6 complexes (Fig-

ure 4). However, unlike E2F4, E2F6 is not known to be regulated through a TAg/LxCxE-dependent

mechanism nor has its function been shown to require a CHR site. Future work will be required to

bridge this knowledge gap. For instance, it may be possible that a subset of E2F6/PRC1.6 complex

Figure 6 continued

Figure supplement 1. Global pairwise comparisons of the mean mRNA levels of the top 20 E2F-repressed/A3B-

associated genes and A3B mRNA levels and APOBEC mutation signature prevalence in primary breast tumors.
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leverages an as-yet-unknown CHR binding factor to repress genes such as A3B. Alternatively, it may

be possible that LxCxE-dependent interactions with PRC1.6 components other than E2F6 might

interfere with the repressive function of PRC1.6. It is unlikely, however, that the E2F6/PRC1.6 com-

plex requires the E2F4/DREAM complex as a cofactor for binding because E2F4-depleted cells main-

tain near-complete repression of A3B expression (Figure 5D).

The E2F-governed regulatory mechanism described here provides an attractive explanation for a

large proportion of reported A3B overexpression in both viral and non-viral cancer types. For

instance, the HPV E7 and PyV TAg oncoproteins may trigger A3B upregulation directly by dissociat-

ing repressive E2F complexes. Accordingly, cervical cancers are almost invariably HPV-positive, A3B-

overexpressing, and enriched for APOBEC signature mutations (Burns et al., 2013b;

Cancer Genome Atlas Research Network, 2017; Roberts et al., 2013; Zapatka et al., 2020). HPV-

positive head/neck cancers also show A3B-overexpression and APOBEC mutation signature enrich-

ment (Burns et al., 2013b; Cancer Genome Atlas Network, 2015; Cannataro et al., 2019;

Faden et al., 2017; Roberts et al., 2013; Vieira et al., 2014; Zapatka et al., 2020). Importantly,

many HPV-negative cancers elicit similarly high A3B expression levels and APOBEC mutation bur-

dens (Burns et al., 2013b; Cancer Genome Atlas Network, 2015; Cannataro et al., 2019;

Gillison et al., 2019). Moreover, HPV status in head/neck cancer appears mutually exclusive with

alterations of RB/E2F axis genes, such that HPV-negative cancers often display copy number loss of

CDKN2A (encoding p16) and overexpression of CCND1 (encoding Cyclin D1; Cancer Genome Atlas

Network, 2015; Gillison et al., 2019; Zapatka et al., 2020), which effectively mimics a subset of

the oncogenic effects of E7. This indicates that both virus-dependent and independent tumors may

exploit the same pathway to derepress A3B and gain an evolutionary advantage. This possibility is

also supported by frequent lesions in the RB/E2F pathway in breast cancer, including loss of RB1,

CDKN1B (encoding p27), and CDKN2A as well as amplification of CCND1 (Angus et al., 2019;

Bertucci et al., 2019; Cancer Genome Atlas Network, 2015; Ertel et al., 2010; Nik-Zainal et al.,

2016; Cancer Genome Atlas Network, 2012).

Our studies also raise the possibility that high levels of expression of a set of 20 normally E2F-

repressed genes may be used to identify tumors with elevated levels of APOBEC signature muta-

tions (Figure 6A–D and Figure 6—figure supplement 1). Such information could be useful, for

instance, to help identify the subset of patients with hypermutated tumors that may be most respon-

sive to immunotherapy. It is also interesting that A3B mRNA levels do not associate as strongly with

APOBEC signature mutation loads or enrichment values (Figure 6E–H). This discordance is unex-

pected and may be due to a combination of factors including cell cycle dysregulation (magnitude

and mechanism), DNA damage response and DNA repair capabilities (including p53 functionality),

tumor microenvironment (including inflammation and infection status), and possible contributions

from related APOBEC3 family members including A3A and A3H. For instance, a more rapid cell
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Figure 7. Model for coordinated repression of A3B transcription by both E2F4/DREAM and E2F6/PRC1.6

complexes. Transcriptional repression of A3B through the combined activities of E2F4/DREAM and E2F6/PRC1.6

complexes. Other regulatory mechanisms including A3B transcriptional activation by PKC/ncNF-kB signal

transduction are not shown. See text for details and discussion.
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cycle, dampened or disabled cell cycle checkpoints, downregulated (or saturated) DNA repair mech-

anisms, and potential coordination with A3A (Figure 2A) may combine to create conditions favoring

an overall accumulation of APOBEC signature mutations. The overall APOBEC signature may also be

influenced by an A3A-B fusion allele but its low frequency in TCGA data sets precluded analysis

here. We are particularly intrigued by the potential for synergistic A3B induction by simultaneous

E2F de-repression as part of cell cycle dysregulation and inflammation (modeled here by PyV tTAg

expression and PMA treatment, respectively, in Figure 3F–G). These perturbations, especially in

combination with others such as viral or mutational inactivation of p53, may both activate the APO-

BEC mutation program and create an optimal environment for DNA damage tolerance, mutation

accumulation, and tumor evolution.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo sapiens, female)

MCF10A ATCC Cat#:CRL-10317
RRID:CVCL_0598

Cell line
(Homo sapiens, female)

MCF10A-4C10 This study Hemizygous for A3B Request by
contacting RSH

Cell line
(Homo sapiens, female)

MCF7 ATCC Cat#:HTB-22
RRID:CVCL_0031

Cell line
(Homo sapiens, female)

BT474 ATCC Cat#:CLR-7913
RRID:CVCL_0179

Cell line
(Homo sapiens, female)

Hs578T ATCC Cat#:HTB-126
RRID:CVCL_0332

Cell line
(Homo sapiens, female)

MDA-MB-453 ATCC Cat#:HTB-131
RRID:CVCL_0418

Cell line
(Homo sapiens, female)

HEK 293T ATCC Cat#:CRL-3216
RRID:CVCL_0063

Antibody Anti-RAD51
(rabbit monoclonal)

Abcam Cat#:ab133534
RRID:AB_2722613

WB (1:10,000)

Antibody Anti-E2F4
(mouse monoclonal)

Santa Cruz Cat#:sc-398543 WB (1:250)
ChIP: 5 mg per
20 mg Dynabeads

Antibody Anti-E2F6
(rabbit polyclonal)

Abcam Cat#:ab53061
RRID:AB_2097254

WB (1:500)
ChIP: 5 mg per
20 mg Dynabeads

Antibody Anti-HA
(rabbit monoclonal)

Cell Signaling Cat#:3724
RRID:AB_1549585

WB (1:5000)

Antibody Anti-Rb
(mouse monoclonal)

Santa Cruz Cat#:sc-102
RRID:AB_628209

WB (1:300)

Antibody Anti-E2F1
(mouse monoclonal)

Santa Cruz Cat#:sc-251
RRID:AB_627476

WB (1:1,000)

Antibody Anti-E2F3
(mouse monoclonal)

Santa Cruz Cat#:sc-56665
RRID:AB_1122397

WB (1:800)

Antibody Anti-E2F5
(mouse monoclonal)

Santa Cruz Cat#:sc-374268
RRID:AB_10988935

WB (1:800)

Antibody Anti-E2F6
(mouse monoclonal)

Santa Cruz Cat#:sc-53273
RRID:AB_783163

WB (1:300)

Antibody Anti-LIN9
(mouse monoclonal)

Santa Cruz Cat#:sc-398234 WB (1:300)

Antibody Anti-tubulin
(mouse monoclonal)

Sigma-Aldrich Cat#:T5168
RRID:AB_477579

WB (1:20,000)

Antibody Anti-A3B
(rabbit monoclonal)

NIH AIDS
Reagent Program

Cat#:12397
RRID:AB_2721202

WB (1:1,000)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Anti-L3MBTL2
(rabbit polyclonal)

Active Motif Cat#:39569
RRID:AB_2615062

ChIP: 5 mg per
20 mg Dynabeads

Recombinant
DNA reagent

pGL4.74 TK-RL renilla
control (plasmid)

Promega Cat#:E692A Internal control for
luciferase assays

Recombinant
DNA reagent

pGL3 basic (plasmid) Promega Cat#:E1751 Base vector for
luciferase assays

Recombinant
DNA reagent

pA3B-luciferase (plasmid) This study Wildtype A3B
promoter + luciferase

Request by
contacting RSH

Recombinant
DNA reagent

pLenti-lox-empty
vector (plasmid)

Carpenter et al., 2019

Recombinant
DNA reagent

pLenti-lox-BKPyV
tTAg (plasmid)

Starrett et al., 2019

Recombinant
DNA reagent

pLenti-lox-BKPyV tTAg
LxCxE mutant (plasmid)

Starrett et al., 2019

Recombinant
DNA reagent

pLenti4/TO-mCherry-
T2A-MCS (plasmid)

This study Base vector for E2F
expression

Request by contacting RSH

Recombinant
DNA reagent

pLenti4/TO-mCherry-
T2A-HA-E2F4 (plasmid)

This study Lentiviral vector for
expression of E2F4

Request by contacting RSH

Recombinant
DNA reagent

pLenti4/TO-mCherry-
T2A-HA-E2F5 (plasmid)

This study Lentiviral vector for
expression of E2F5

Request by
contacting RSH

Recombinant
DNA reagent

pLenti4/TO-mCherry-
T2A-HA-E2F6 (plasmid)

This study Lentiviral vector for
expression of E2F6

Request by
contacting RSH

Recombinant
DNA reagent

pLentiCRISPR-LoxP-
A3B-gRNA#1 (plasmid)

This study Lentiviral vector for
expression of gRNA
targeting E2F site E

Request by
contacting RSH

Recombinant
DNA reagent

pLentiCRISPR-LoxP-
A3B-gRNA#3 (plasmid)

This study Lentiviral vector for
expression of gRNA
targeting E2F site E

Request by
contacting RSH

Sequence-
based reagent

Cas9-encoding
modified RNA

TriLink Biotech Cat#:L7206-100

Commercial
assay or kit

Dual Luciferase
Reporter Assay

Promega Cat#:E1960

Commercial
assay or kit

Neon Transfection
System 100 mL Kit

ThermoFisher Cat#:MPK10025

Software,
algorithm

MaxQuant version 1.5.2.8 MaxQuant RRID:SCR_014485

Software,
algorithm

Fiji Fiji RRID:SCR_002285

Software,
algorithm

GraphPad Prism 6 GraphPad RRID:SCR_002798

Software,
algorithm

Image Studio LI-COR Biosciences RRID:SCR_015795

Other Spark Multimode
Microplate Reader

Tecan

Other Neon Transfection System ThermoFisher Cat#:MPK5000

Other LI-COR Odyssey FC LI-COR Cat#:2800

Other LightCycler 480 Instrument Roche Cat#:04640268001

Other EASY-nLC 1200 system ThermoFisher Cat#:LC140

Other Q Exactive HF mass
spectrometer

ThermoFisher
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Cell lines and culture conditions
All cell lines were cultured at 37˚C under 5% CO2. MCF10A cells and derivative cell lines were grown

in advanced DMEM/F-12 (Invitrogen) with HEPES and L-Glutamine, supplemented with 5% horse

serum (Invitrogen), 20 ng/mL EGF (Peprotech), 0.5 mg/mL hydrocortisone (Sigma), 100 ng/mL chol-

era toxin (Sigma), 10 mg/mL recombinant human insulin (Sigma), penicillin (100 U/mL), and strepto-

mycin (100 mg/mL). MCF7 cells were cultured as described (Law et al., 2016) for A3B-luciferase

reporter assays and for proteomics in DMEM containing 10% dialyzed FBS (PAN-Biotech), penicillin

(100 U/mL), and streptomycin (100 mg/mL). BT-474 and Hs578T cells were cultured in DMEM supple-

mented with 10% FBS (Invitrogen), penicillin (100 U/mL), and streptomycin (100 mg/mL). MDA-MB-

453 and 293 T cells were cultured in RPMI supplemented with 10% FBS, penicillin (100 U/mL), and

streptomycin (100 mg/mL). All cell lines tested negative for Mycoplasma using a PCR-based assay

(Uphoff and Drexler, 2011). PMA (ThermoFisher) was used at 25 ng/mL for 6 hr.

Plasmids and site-directed mutagenesis
The integrity of all plasmids was confirmed by Sanger sequencing. Oligos used for cloning, sequenc-

ing, and site-directed mutagenesis are listed in Supplementary file 4. The pLenti-lox constructs

encoding BKPyV tTAg or the LxCxE mutant were described (Starrett et al., 2019). The A3B pro-

moter sequence (�900 to +50 corresponding to chr22:39,377,504–39,378,453 of the GRCH37/hg19

assembly) was ordered as a gBlock (IDT), subjected to overhang extension PCR to add 5’ KpnI and

3’ NheI restriction sites, and then cut and ligated into compatibly digested pGL3-basic (Promega).

Site-directed mutagenesis was done following standard procedures (Quickchange, Agilent).

E2F overexpression in BT-474 was done using pLent4/TO/V5-DEST (ThermoFisher), modified to

lack the V5 tag through XhoI and AgeI digestion followed by insertion of a stuffer with compatible

overhangs. 5’ EcoRI and 3’ AgeI sites were then added to a mCherry-T2A-MCS (multiple cloning

site) cassette through overhang extension PCR and ligated into the base vector using compatible

overhangs, resulting in the parental pLenti4/TO-mCherry-T2A-MCS vector. Then, coding regions of

E2F4 (NM_001950.3), E2F5 (NM_001951.3 var 1), and E2F6 (NM_198256.3 var A) were cloned into

pcDNA3.1, and a N-terminal HA-tag was inserted by site-directed mutagenesis. Finally, 5’ NheI and

3’ AgeI sites were added to the HA-tagged E2F sequences by overhang extension PCR, followed by

ligation into compatibly digested pLenti4/TO-mCherry-T2A-MCS parental vector. Transduction of

BT-474, MDA-MB-453, and Hs578T, plated at 300,000 cells per well of a six-well plate, was then per-

formed with lentiviral particles produced in 293 T cells as described (Burns et al., 2013a;

Carpenter et al., 2019; Vieira et al., 2014).

Dual luciferase assays
MCF10A cells were plated at 50,000 cells per well and MCF7 at 100,000 cells per well in a 24-well

plate, grown as described above, and transfected 24 hr later with a 1:2 ratio of plasmid cocktail and

TransIT-2020 following vendor instructions (Mirus). Each transfection reaction was comprised of 250

ng luciferase reporter construct (pGL3-basic, pA3B-luciferase, or mutant derivatives), 10 ng pGL4.74

TK-RL renilla control plasmid, and 50 ng of pLenti-lox vector expressing BKPyV tTAg, tTAg LxCxE

mutant, or empty control (Starrett et al., 2019). Lysates were prepared 48 hr later using the Dual

Luciferase Reporter Assay according to manufacturer’s instructions (Promega). Luminescence was

detected using a Spark Multimode Microplate Reader (Tecan).

CRISPR/Cas9-mediated editing of the A3B promoter
All sequences of oligos used during CRISPR/Cas9-mediated editing are listed in Supplementary file

4. pLenti-based CRISPR/Cas9 gene disruption was used initially to interrogate the A3B promoter

using established protocols (Carpenter et al., 2019). Constructs targeting the A3B promoter or lacZ

as a control were made using Golden Gate ligation and lentiviral particles were produced using 293

T cells (Burns et al., 2013a; Carpenter et al., 2019; Vieira et al., 2014). Transduction of 300,000

MCF10A cells per well of a six-well plate was followed 48 hr later by selection with puromycin. Indi-

vidual clones were obtained by limited dilution and multi-week outgrowth. The promoter region

from >6 clones per condition was amplified, cloned into pJET1.2 (ThermoFisher), and subjected to

Sanger sequencing.
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CRISPR/Cas9-mediated HDR was used to generate MCF10A clones with precise base substitu-

tions in the A3B promoter. The MCF10A A3B hemizygous cell line was engineered by transducing

MCF10A wildtype cells with pLentiCRISPR lentiviral particles expressing a single gRNA targeting the

homologous 3’UTR of A3A and A3B, treating 48 hr with puromycin, and deriving single cell clones

by limiting dilution. Clones were PCR-screened for alleles mimicking the natural A3B deletion

(Kidd et al., 2007). A clone hemizygous for A3B was selected for precision editing of the +21 to

+28 region of the A3B promoter. In short, 50,000 cells were transfected (Neon Transfection, Invitro-

gen) with 1 ng modified gRNA targeting the A3B promoter or lacZ (Synthego), 1.5 mg Cas9-encod-

ing modified RNA (TriLink Biotech), and 6.25 pmol HDR targeting ssDNA oligo based on prior

literature (Prykhozhij et al., 2018). The 5’ and 3’ terminal nucleotides of the ssDNA oligo were pro-

tected with phosphorothioates (Richardson et al., 2016). Clones were retrieved by limiting dilution

72 hr post transfection, outgrown for several weeks, and subjected to A3B promoter region DNA

sequencing. Primers used for screening can be found in Supplementary file 4.

Immunoblotting
For all immunoblot experiments, cells were harvested and counted using an automated cell counter

(Countess, ThermoFisher). Pelleted cells were resuspended in PBS, and whole-cell protein extracts

prepared by adding Laemmli reducing sample buffer followed by incubation at 98˚C for 15 min. Pro-

tein expression was analyzed by immunoblot using standard laboratory techniques. Antibodies were

rabbit anti-RAD51, 1:10,000 (Abcam, ab133534), mouse anti-E2F4, 1:250 (Santa Cruz, sc-398543),

rabbit anti-E2F6, 1:500 (Abcam, ab53061), rabbit anti-HA, 1:5000 (Cell Signaling, C29F4), mouse

anti-Rb, 1:300 (Santa Cruz, sc-102), mouse anti-E2F1, 1:1000 (Santa Cruz, sc-251), mouse anti-E2F3,

1:800 (Santa Cruz, sc-56665), mouse anti-E2F5, 1:800 (Santa Cruz, sc-374268), mouse anti-E2F6,

1:300 (Santa Cruz, sc-53273), mouse anti-LIN9, 1:300 (Santa Cruz, sc-398234) mouse anti-tubulin,

1:20,000 (Sigma-Aldrich, T5168), and rabbit anti-A3B, 1:1,000 [5210-87-13] (Brown et al., 2019).

mRNA quantification: mRNA was extracted (GenElute, Sigma-Aldrich) and cDNA was synthesized

using SuperScript First-Strand RT (ThermoFisher). mRNA expression of all APOBEC3 family members

and TBP was quantified by RT-qPCR with specific primers (Refsland et al., 2010) in Ssofast Supermix

(Bio-Rad) using a Lightcycler (Roche). Primer sequences are listed in Supplementary file 4.

ChIP experiments
ChIP experiments were done as described (Leonard et al., 2015) with minor modifications. A 15 cm

plate with approximately 107 sub-confluent cells was used as input for each immunoprecipitation.

Chromatin was crosslinked for 10 min in 1% formaldehyde and then the crosslinking reaction was

quenched using 125 mM glycine. Cells were washed in PBS, concentrated by centrifugation, and

lysed in 1 mL Farnham lysis buffer (5 mM PIPES pH 8.0, 85 mM KCl, 1% Igepal CA-630, supple-

mented with protease inhibitors). After a 15 min incubation on ice, the cell nuclei were collected by

4˚C centrifugation and then incubated 30 min on ice in nuclear lysis buffer (50 mM Tris-HCl pH8.1,

10 mM EDTA, 1% SDS, supplemented with protease inhibitors). Chromatin was sheared into 200–

300 bp fragments using a Misonix sonicator for 13 cycles (30’ on and 45’ off) at an amplitude setting

of 2. Chromatin was cleared of debris by centrifugation, diluted 5� with IP dilution buffer (50 mM

Tris pH 7.4, 150 mM NaCl, 1% Igepal CA-630, 0.25% deoxycholic acid, 1 mM EDTA), and incubated

with 5 mg of each mAb coupled to 20 mg Dynabeads Protein G magnetic beads (Invitrogen). Input

controls of 1% were frozen down for later analysis. ChIP antibodies were mouse anti-E2F4 (Santa

Cruz, sc-398543), rabbit anti-E2F6 (Abcam, ab53061), and rabbit anti-L3MBTL2 (Active Motif,

39569). After overnight incubation beads were washed twice with IP wash buffer 1 (50 mM Tris-HCl

pH7.4, 150 mM NaCl, 1% Igepal CA-630, 0.25% deoxycholic acid, 1 mM EDTA), three times with IP

wash buffer 2 (100 mM Tris-HCl pH 9.0, 500 mM LiCl, 1% Igepal CA-630) and once with IP wash

buffer 3 (100 mM Tris-HCl pH 9.0, 500 mM LiCl, 1% Igepal CA-630, 1% deoxycholic acid, 150 mM

NaCl). Chromatin was eluted in elution buffer (50 mM NaHCO31% SDS) for 30 min at 65˚C, and

reverse-crosslinked in an overnight reaction at 62˚C in 500 mM NaCl, 50 mM EDTA, 100 mM Tris-

HCl pH 6.8 and 2 mg proteinase K (Roche). DNA was cleaned up and concentrated using a ChIP

DNA Clean and Concentrator kit (Zymo Research). Quantitative PCR reactions were done using spe-

cific primer sets (Supplementary file 4).
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RNAi-mediated knockdown
MCF10A cells were plated at 175,000 cells per well of a six-well plate and transfected the next day

using 30 pmol siRNAs targeting E2F4 (SI02654694) and/or E2F6 (SI00375445; Qiagen) using the

RNAiMAX protocol (Invitrogen). Samples were harvested 24 hr post transfection.

SILAC labeling and DNA pull-down experiments
For SILAC labeling, MCF7 cells were incubated in DMEM (-Arg, -Lys) medium containing 10% dia-

lyzed FBS (PAN-Biotech) supplemented with 42 mg/L 13C6
15N4L-arginine and 73 mg/L 13C6

15N2L-

lysine (Cambridge Isotope) or the corresponding non-labeled amino acids, respectively. SILAC incor-

poration was verified by in-gel trypsin digestion and MS analysis of ‘heavy’ input samples to ensure

an incorporation rate of >98%.

Cells were harvested and nuclear extracts were prepared as described (Kappei et al., 2017).

Cells were harvested and incubated in hypotonic buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10

mM KCl) on ice for 10 min. Cells were transferred to a Dounce homogenizer in hypotonic buffer sup-

plemented with 0.1% Igepal CA630 (Sigma) and 0.5 mM DTT by 40 strokes. Nuclei were washed

once in 1� PBS and extracted in hypertonic buffer (420 mM NaCl, 20 mM HEPES, pH 7.9, 20% glyc-

erol, 2 mM MgCl2, 0.2 mM EDTA, 0.1% Igepal CA630 (Sigma), 0.5 mM DTT) for 1 hr at 4˚C on a

rotating wheel. Samples were centrifuged at 4˚C and >16,000 g for 1 hr and supernatants were used

as nuclear protein extracts in the in vitro reconstitution DNA pull-down assays.

DNA pull-downs were performed as described (Kappei et al., 2017). Briefly, 25 mg of forward

and reverse sequence oligonucleotides (Supplementary file 4) were diluted in annealing buffer (20

mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM KCl), denatured at 95˚C and annealed by cooling.

Annealed double-strand oligonucleotides were incubated with 100 units T4 kinase (ThermoFisher)

for 2 hr at 37˚C followed by incubation with 20 units T4 ligase overnight. Concatenated DNA strands

were purified using phenol-chloroform extraction. Following biotinylation with desthiobiotin-dATP

(Jena Bioscience) and 60 units DNA polymerase (ThermoFisher) the biotinylated probes were puri-

fied using MicroSpin G-50 columns (GE Healthcare). DNA baits were immobilized on 500 mg para-

magnetic streptavidin beads (Dynabeads MyOne C1, ThermoFisher) on a rotation wheel for 30 min

at room temperature. Subsequently, baits were incubated with 400 mg of nuclear extracts from

MCF7 cells in PBB buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM MgCl2, 0.5% Igepal CA-630

[Sigma]) while rotating for 2 hr at 4˚C. 10 mg sheared salmon sperm DNA (Ambion) was added as a

DNA binding competitor. After three PBS washes (450/500/600 mL), bound proteins were eluted in

2� Laemmli buffer and boiled for 5 min at 95˚C.

Mass spectrometry data acquisition and analysis
DNA pull-down samples were separated on a 12% NuPAGE Bis-Tris gel (ThermoFisher) for 30 min at

170 V in 1� MOPS buffer (ThermoFisher). The gel was fixed using the Colloidal Blue Staining Kit

(ThermoFisher) and each lane was divided into four equal fractions. For in-gel digestion, samples

were destained in destaining buffer (25 mM ammonium bicarbonate; 50% ethanol), reduced in 10

mM DTT for 1 hr at 56˚C followed by alkylation with 55 mM iodoacetamide (Sigma) for 45 min in the

dark. Tryptic digest was performed in 50 mM ammonium bicarbonate buffer with 2 mg trypsin (Prom-

ega) at 37˚C overnight. Peptides were desalted on StageTips and analyzed by nanoflow liquid chro-

matography on an EASY-nLC 1200 system coupled to a Q Exactive HF mass spectrometer

(ThermoFisher). Peptides were separated on a C18 reversed-phase PicoFrit column (25 cm long, 75

mm inner diameter; New Objective) packed in-house with ReproSil-Pur C18-AQ 1.9 mm resin (Dr.

Maisch). The column was mounted on an Easy Flex Nano Source and temperature controlled by a

column oven (Sonation) at 40˚C. A 105 min gradient from 2% to 40% acetonitrile in 0.5% formic acid

at a flow of 225 nL/min was used. The spray voltage was set to 2.2 kV. The Q Exactive HF was oper-

ated with a TOP20 MS/MS spectra acquisition method per MS full scan. MS scans were conducted

with 60,000 at a maximum injection time of 20 ms and MS/MS scans with 15,000 resolution at a max-

imum injection time of 50 ms. The raw files were processed with MaxQuant version 1.5.2.8 (Cox and

Mann, 2008) with preset standard settings for SILAC labeled samples and the re-quantify option

was activated. Carbamidomethylation was set as a fixed modification while methionine oxidation

and protein N-acetylation were considered as variable modifications. Search results were filtered

with a false discovery rate of 0.01. Known contaminants, proteins groups only identified by site, and

Roelofs et al. eLife 2020;9:e61287. DOI: https://doi.org/10.7554/eLife.61287 19 of 27

Research article Cancer Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.61287


reverse hits of the MaxQuant results were removed and only proteins were kept that were quantified

by SILAC ratios in both ‘forward’ and ‘reverse’ samples. Raw mass spectrometry data will be accessi-

ble through the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al., 2016) partner reposi-

tory with the dataset identifier PXD020473.

Bioinformatics analyses
Primate genomes were accessed through Ensembl using the Compara application program interface

via Bio::EnsEMBL::DBSQL::MethodLinkSpeciesSetAdaptor using the method_link_type ‘EPO_LOW_-

COVERAGE’ and the species_set_name ‘primates’. The human A3B gene, including the �900 to

+50 region, was compared to other sequences and further analyzed using Geneious Prime software

(version 2019.1.3). A3B promoter transcription factor binding sites were predicted using the JASPAR

database (Fornes et al., 2020) with score threshold set to 80%.

TCGA primary breast tumors represented by both RNA-seq and whole-exome sequencing

(Cancer Genome Atlas Network, 2012) were downloaded from the Firehose GDAC resource

through the Broad Institute pipeline (http://gdac.broadinstitute.org/; n = 716). Genes correlated

with A3B mRNA expression across the entire primary breast tumor data set were obtained using the

USCS Xena Browser (bioRxiv 326470; doi: https://doi.org/10.1101/326470) and the top 20 genes in

this list with the highest positive Spearman’s correlations were used in this analysis. Quartiles for

RSEM gene expression values relative to the housekeeping gene TBP were obtained for this gene

list, and top (>75%) and bottom (<25%) quartiles of expression were calculated for every gene. Sam-

ples were then sorted into groups based on whether the expression of that gene fell into the top

(n = 53 samples) or bottom (n = 111 samples) quartile for every gene in the list. RNA-seq data for

A3B were also downloaded for every primary breast tumor, normalized to TBP, and used to establish

expression correlations. The same methodology was used to calculate the top (>75%) and bottom

(<25%) quartiles of expression for A3B mRNA to examine the mean A3B expression, APOBEC muta-

tion signature, and APOBEC enrichment score.

APOBEC mutation signatures were determined as described (Alexandrov et al., 2013;

Jarvis et al., 2018) using the deconstructSigs R package (Rosenthal et al., 2016). APOBEC muta-

tion enrichment scores were calculated using the hg19 reference genome and published methods

(Chan et al., 2015). Enrichment score significance was assessed using a Fisher exact test with Benja-

mini-Hochberg false discovery rate (FDR) correction. All dataset analyses and visualizations were con-

ducted using R and the ggplot2 package (https://www.R-project.org/).
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Fenton TR, Doorbar J, Fuller-Pace F, Meek DW, Coombes RC, Buluwela L, Ali S. 2017. p53 controls expression
of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids
Research 45:11056–11069. DOI: https://doi.org/10.1093/nar/gkx721, PMID: 28977491

Pilkinton M, Sandoval R, Colamonici OR. 2007. Mammalian mip/LIN-9 interacts with either the p107, p130/E2F4
repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM
complex. Oncogene 26:7535–7543. DOI: https://doi.org/10.1038/sj.onc.1210562, PMID: 17563750

Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D,
Berman JN. 2018. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids
Research 46:e102. DOI: https://doi.org/10.1093/nar/gky512, PMID: 29905858

Qin J, Whyte WA, Anderssen E, Apostolou E, Chen HH, Akbarian S, Bronson RT, Hochedlinger K, Ramaswamy S,
Young RA, Hock H. 2012. The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex
that is essential in pluripotent stem cells and early development. Cell Stem Cell 11:319–332. DOI: https://doi.
org/10.1016/j.stem.2012.06.002, PMID: 22770845

Rashid NN, Rothan HA, Yusoff MS. 2015. The association of mammalian dream complex and HPV16 E7 proteins.
American Journal of Cancer Research 5:3525–3533. PMID: 26885443

Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS. 2010. Quantitative profiling of the full
APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids
Research 38:4274–4284. DOI: https://doi.org/10.1093/nar/gkq174, PMID: 20308164

Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology-directed genome editing by
catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology 34:339–344.
DOI: https://doi.org/10.1038/nbt.3481, PMID: 26789497

Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL,
Saksena G, Harris S, Shah RR, Resnick MA, Getz G, Gordenin DA. 2013. An APOBEC cytidine deaminase
mutagenesis pattern is widespread in human cancers. Nature Genetics 45:970–976. DOI: https://doi.org/10.
1038/ng.2702, PMID: 23852170

Roberts SA, Gordenin DA. 2014. Hypermutation in human cancer genomes: footprints and mechanisms. Nature
Reviews Cancer 14:786–800. DOI: https://doi.org/10.1038/nrc3816, PMID: 25568919

Roper N, Gao S, Maity TK, Banday AR, Zhang X, Venugopalan A, Cultraro CM, Patidar R, Sindiri S, Brown AL,
Goncearenco A, Panchenko AR, Biswas R, Thomas A, Rajan A, Carter CA, Kleiner DE, Hewitt SM, Khan J,
Prokunina-Olsson L, et al. 2019. APOBEC mutagenesis and copy-number alterations are drivers of
proteogenomic tumor evolution and heterogeneity in metastatic thoracic tumors. Cell Reports 26:2651–2666.
DOI: https://doi.org/10.1016/j.celrep.2019.02.028, PMID: 30840888

Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. 2016. DeconstructSigs: delineating mutational
processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome
Biology 17:31. DOI: https://doi.org/10.1186/s13059-016-0893-4, PMID: 26899170

Sadasivam S, DeCaprio JA. 2013. The DREAM complex: master coordinator of cell cycle-dependent gene
expression. Nature Reviews Cancer 13:585–595. DOI: https://doi.org/10.1038/nrc3556, PMID: 23842645
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