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ABSTRACT

As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the 
biggest threat to human health. In addition, infectious respiratory diseases are particularly 
prominent. In addition to killing and clearing the infection pathogen directly, regulating 
the immune responses against the pathogens is also an important therapeutic modality. 
Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, 
silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide 
range of physiological processes, including oxidative stress, inflammation, cell apoptosis, 
autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating 
immune responses by deacetylation modification, especially through high-mobility group 
box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with 
many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, 
and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 
on immune system in respiratory diseases. First, the structure and catalytic characteristics 
of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the 
immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of 
SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases 
were discussed separately. Taken together, this review implied that SIRT1 could serve as a 
promising specific therapeutic target for the treatment of respiratory diseases.

Keywords: Silent information regulator type-1 (SIRT1); Deacetylation; Respiratory diseases; 
Modulate; Promising target

INTRODUCTION

At present, respiratory diseases, especially infectious respiratory diseases, are still the biggest 
threat to human health. Infection-induced inflammation is a physiological response of the 
immune system to harmful infectious stimuli. In response to such stimuli, immune cells, such 
as macrophages and neutrophils cells take concerted actions to recover and maintain immune 
homeostasis. Immune imbalance has been implicated to be the pathogenesis of various 
respiratory diseases, including coronavirus disease 2019 (COVID-19), bacterial pneumonia, 
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tuberculosis, and so on (1-3). Actively restoring the balance of the immune system will be an 
effective treatment strategy. High-mobility group box 1 (HMGB1) as the core molecule of the 
immune regulatory network has become a research hotspot. Silent information regulator type-1 
(SIRT1) has received particular attention based on its specific modulatory role on HMGB1.

SIRT1 can regulate the immune system and restore immune homeostasis through its NAD+ 
dependent histone deacetylase (HDAC) activity. It shares a generic catalytic core domain with 
other sirtuins family members, but it has its unique N-terminal and C-terminal sequences. 
Substrate and catalytic core domain binding plays an essential role in the deacetylation 
activity of SIRT1. Base on the structure characteristics, SIRT1 was originally identified as a 
critical enzyme to increase life expectancy in yeast, worm, fly and mice (4). More importantly, 
it also has other vital functions such as anti-apoptosis, anti-oxidation, anti-inflammation, 
and regulating autophagy and mitochondrial biogenesis (5). At present, the mechanisms by 
which SIRT1 and HMGB1 participate in inflammation are still not fully defined. However, 
there is no doubt that SIRT1 is involved in a variety of respiratory diseases, including 
COVID-19, bacterial pneumonia, tuberculosis, etc., bringing a heavy burden to patients and 
society. It is of great significance to validate SIRT1 as a promising therapeutic target. Hence, 
the focus of this review is to summarize the latest advances regarding the potential beneficial 
roles of SIRT1 in regulating respiratory inflammation.

MOLECULE STRUCTURE AND NAD+ DEPENDENT 
CATALYTIC CHARACTERISTICS OF SIRT1
Sirtuins belong to the NAD+ dependent class III HDAC family, and are highly conserved 
during the process of evolution (6,7). Currently, 7 Sirtuin members including SIRT1–7 have 
been identified. SIRT1, SIRT6, and SIRT7 are mainly localized in the nucleus, while most 
SIRT3, SIRT4, and SIRT5 are localized in mitochondria (8). Residues 41–46 of SIRT1 protein 
constitute a nuclear localization signal (KRKKRK). Moreover, SIRT1 is also expressed in 
the cytoplasm, and the nuclear import and export sequences on N-terminal region are 
responsible for nucleocytoplasmic shuttling of SIRT1 (9). SIRT1 gene is located on human 
chromosome 10q22.1, containing 9 exons and 8 introns. Its exons encode 747 amino acids, 
including about 270 deacetylated amino acids in the core domain (10). The gene sequence 
is about 33kb in length, and consists of an untranslated region of 53 bp and 1,793 bp at the 5' 
and 3' ends, respectively (11).

All sirtuins share an evolutionarily conserved NAD+-dependent catalytic core domain. 
Moreover, each of them has an unique N-terminal and C-terminal sequence that is related 
to its specific cellular localization and function (12,13). The generic catalytic core domain 
of about 270 amino acids (spanning residues 244–512) folds into 2 subdomains. The larger 
subdomain adopts a Rossmann fold conformation that is typical for NAD+ binding proteins, 
comprising 6 parallel β-strands forming a central β-sheet surrounded by α-helices. The small 
subdomain forms a Zn2+ binding module in which 4 cysteine residues serve as Zn2+ binding 
ligands (13). A groove is shaped between the large and small subdomains, which can bind 
the substrate. Among SIRT1–7, SIRT1 has the largest terminal region extensions. Its unique 
N-terminal (the NH2-terminal region) contains 513–747 residues, and its unique C-terminal 
(the COOH-terminal region) includes 1–180 residues. SIRT1 protein is characterized by a 
N-terminal triple-helix bundle representing the sirtuins-activating compounds binding 
domain, and a C-terminal regulatory segment (9,12,14) (Fig. 1).
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In Sirtuin-mediated deacetylation reaction, the acetyl group of the substrate is transferred 
to the ADP ribosyl moiety of NAD+. At the same time, 1 NAD+ molecule splits into 1 
nicotinamide (NAM) and 1 2′-O-acylated ADP-ribose (15) (Fig. 1). NAD+ participates in the 
deacetylation of target proteins, and a low NAD+/NADH ratio will weaken SIRT1 activity. 
Meanwhile, as a product of the deacetylation process, NAM can suppress the activity 
of SIRT1 through a negative feedback mechanism (16) (Fig. 1). SIRT1 recognizes NAD+ 
through the active sites located on the Rossmann fold. One study showed that SIRT1 first 
approached specific hydrophobic amino acids near target lysine (Lys) residue for substrate 
recognition (17). Once recognized, SIRT1 deacetylates the substrate using the same catalytic 
mechanism as other members of the Sirtuin family. When the acetylated substrate binds 
to the enzyme, the conformation of NAD+ changes, which allows the NAM group to be 
easily cleaved. Through the active site on the Rossmann fold of SIRT1, the carbonyl oxygen 
group of the acetylated Lys residue in the substrate contacts the anomeric carbon of the 
NAD+ NAM nucleoside. This combination promotes cleavage of the NAD+ NAM moiety 
and transfer of ADP-ribose, resulting in deacetylation of the substrate (18). The process 

https://doi.org/10.4110/in.2022.22.e21

SIRT1 in Respiratory Diseases

1 244 512 747

SBD Helical Zn2+ binding domains CTR/ESA

N-terminal C-terminalNAD+ binding domains

SIRT1

Target protein

Target protein

NAM2'-OAADPr

NAD+

Hydrophobic
amino acids

Low NAD+/NADH ratio,
NAM

SIRT1
Target acetyl-Lys

NAD+

NAM

SIRT1

NAD+

NAD+

NAD+,
STACs

STAC

A

B

C

③ Active SIRT1① Target protein ② Inactive SIRT1

Figure 1. Molecular structure and biological functional characteristics of SIRT1. (A) SIRT1 has an evolutionarily 
conserved NAD+-dependent catalytic core domain (244–512 residues), unique N-terminal (513–747 residues), and 
C-terminal (1–180 residues) sequences. SBD locates on N-terminal, and CTR/ESA locates on C-terminal. (B) SIRT1 
prefers specific hydrophobic amino acids near the target Lys residue for substrate recognition (panel 1). Low 
NAD+/NADH ratio and NAM weaken the activity of SIRT1 (panel 2). STACs activate SIRT1 by combing with the SBD, 
increasing the catalytic activity of SIRT1 (panel 3). (C) The deacetylation mechanism is mediated by SIRT1. The 
acetyl group of the substrate is transferred to the ADP ribosyl part of NAD+, while an NAD+ molecule is split into 1 
NAM and 1 2-OAADPr. 
SBD, sirtuins-activating compounds binding domain; STAC, sirtuins-activating compound; CTR, C-terminal 
regulatory segment.
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of deacetylation of acetylated substrates catalyzed by SIRT1 is as follows: Step one, SIRT1 
deacetylase recognizes NAD+ and acetylated substrate to form a ternary complex. Then, 
NAD+ is hydrolyzed, releasing NAM from the 1′-ribose carbon of NAD+, which concomitantly 
forms a new covalent bond through binding with the acyl oxygen of the acylated Lys residue 
on the substrate. Step 2, the resulting 1′-O-alkylimidate intermediate is converted to a 
second bicyclic 1′-2′-acetal intermediate. The last step, in the presence of water molecules, 
the bicyclic intermediate is hydrolyzed to yield the deacetylated substrate and 2′-O-acylated 
ADP-ribose (2-OAADPr). Under physiological conditions, 2-OAADPr can be reversibly 
transformed to 3-OAADPr (13).

DEACETYLATION EFFECTS AND MOMENTOUS SUBSTRATES

Truly, as a HDAC, SIRT1 has been reported to indeed catalyze the deacetylation of histone H1 
at Lys 26 (K26), histone H3 at Lys 9 (K9), and histone H4 at Lys 16 (K16) (19). However, it also 
plays an important role in regulating the deacetylation of non-histone proteins, including 
p53, HMGB1, forkhead box Os (FoxOs), STAT3, peroxisome proliferator-activated receptor-γ 
(PPAR-γ), NF-κB, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), B-cell 
lymphoma 2-associated X protein (Bax), etc. (8,20). Recently, many studies have reported the 
emerging roles of SIRT1 in many diseases, especially in the occurrence, development, and 
prognosis of respiratory diseases (Fig. 2).
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Figure 2. Three-dimensional structure, effects of SIRT1 and the underlying mechanism. SIRT1 has obvious effects in regulating a variety of respiratory diseases by 
acting on different momentous substrates. SIRT1 can regulate gastric cancer, NSCLC, and sepsis-associated liver injury by activating the STAT3/MMP-13 pathway or 
inhibiting the JAK/STAT3 pathway, especially via STAT3. SIRT1 affects gouty arthritis, hyperuricemia, and allergic inflammation by activating ABCG2, inhibiting Th2 
response and inflammatory cell infiltration, especially through binding with PPAR-γ. SIRT1 can modulate diabetic cardiomyopathy, atherosclerosis, and arterial 
thrombosis through inhibiting PD-1, cardiomyocyte apoptosis, vWF, and P-selectin, especially acting on FOXO-1. SIRT1 can control COPD, diabetic nephropathy, 
oxidative stress, and inflammation by activating autophagy, mitophagy, or regulating mitochondrial function, mitochondrial biogenesis, especially via PGC-1α. 
vWF, von Willebrand factor; CTR, C-terminal regulatory segment; CR, caloric restriction.
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STAT3 is a member of the STATs, and is described as a cytoplasmic transcription factor. It 
participates in regulating many biological events, including cell proliferation, differentiation, 
apoptosis, angiogenesis, inflammation, and immune responses (21,22). STAT3 has been 
reported as a downstream target of SIRT1, which catalyzes the deacetylation of STAT3 
Lys residue to control its function (23). Recently, some posttranslational modifications 
related to the transcriptional function of STAT3 have been mentioned, such as acetylation 
and methylation (24). Some studies have shown that SIRT1/STAT3 plays an important 
role in the development of some diseases, including influencing the expression of IL-4 in 
T-lymphocytes, inhibiting T-cell differentiation into Th7 and Th17 cells, suppressing the 
proliferation and metastasis of gastric cancer cells, and preventing hyperglycemia in sepsis, 
etc. (23,25). Moreover, the role of SIRT1 in regulating respiratory diseases has also been 
revealed. For example, a recent study has found that microRNA (miR)-30e-5p can inhibit 
the development of non-small cell lung cancer (NSCLC) through downregulating ubiquitin-
specific peptidase 22-mediated SIRT1/JAK/STAT3 signaling (26).

Transcriptional coactivator PGC-1α is regarded as a main regulator of oxidative 
phosphorylation and ROS detoxification, and it is also described as an essential factor 
in tying metabolic regulation, redox control, and inflammatory pathways (27). The post-
transcriptional activity of PGC-1α was modulated by several post-translational modifications 
in cells, including phosphorylation, acetylation, and ubiquitination (28). PGC-1α is 
considered as a substrate of SIRT1, which means that the transcriptional activity of PGC-1α 
is influenced by SIRT1-mediated deacetylation (29). A number of studies have suggested 
the protective role of SIRT1/PGC-1α against some diseases, including protecting the 
intestinal mucosal barrier from free oxygen radical damage, coping with oxidative stress 
caused by hyperglycemia, and protecting the diabetic heart (30,31). Specifically, one study 
indicated that resveratrol could exert a therapeutic effect on the rat chronic obstructive 
pulmonary disease (COPD) model. This study also pointed out that the efficacy of resveratrol 
was interrelated to the inhibition of oxidative stress and inflammatory responses, and 
the possible underlying mechanism might involve the activation and upgrading of the 
SIRT1/PGC-1α pathway (32). Another strong evidence showed that hesperidin mitigated 
inflammatory responses and oxidative stress in cigarette smoke extract-induced COPD mice, 
which was reported to be associated with the SIRT1/PGC-1α/NF-κB signaling axis (33). These 
findings demonstrate that SIRT1 may have a therapeutic effect for some diseases, including 
respiratory diseases, through targeting its specific substrates, such as PGC-1α.

FoxOs are a subgroup family of forkhead box transcription factors and play a crucial role in 
cell proliferation, differentiation, and apoptosis. In mammals, this family consisted of 4 
members, including FOXO1 (also named FKHR), FOXO3 (also named FKHRL1), FOXO4 (also 
named AFX1), and FOXO6 (34,35). The activity of FoxOs is dependent on its phosphorylation 
modification and nuclear localization. In addition, the transcriptional activity of FOXOs can 
be regulated by other post-translational modifications, such as acetylation and deacetylation 
(36). FOXO1 is one target of SIRT1. Some studies have reported the role of SIRT1/FOXO1 in 
some diseases, such as decreasing osteoclast and increasing osteoblast number in bone, 
preventing the progression of atherosclerosis and arterial thrombosis, and inhibiting 
oxidative stress and apoptosis in cardiomyocytes (37,38). In a recent study, SIRT1 has been 
demonstrated to be a major factor to mediate the deacetylation of FOXO1, thus inhibiting 
apoptosis. This view was further confirmed by the fact that knockdown and inhibition of 
SIRT1 could maintain the acetylated state of FOXO1. Moreover, this study also showed that 
Leishmania negatively regulated the production of inflammatory TNFα, ROS, and nitric oxide 

https://doi.org/10.4110/in.2022.22.e21

SIRT1 in Respiratory Diseases



6/21https://immunenetwork.org

via the SIRT1/FOXO1 axis (39). A recent study has shown that the expression levels of SIRT1 
and FOXO1 in PBMCs of COPD outpatients are positively correlated with the duration of 
physical activity (40). Although the longitudinal relationship among physical activity, SIRT1, 
and FOXO1 in COPD is unclear, the results may provide a novel strategy in controlling COPD. 
According to these evidences, we can infer that SIRT1/FOXO1 may be a potential therapeutic 
target for the treatment of respiratory diseases, although there are no definite reports on the 
mechanism underlying the action of SIRT1/FOXO1 in respiratory diseases.

PPAR-γ is a member of the PPAR family, which includes 3 members, PPAR-α, PPAR-β/δ, 
and PPAR-γ (41). Recent studies have shown that PPAR-γ mediates part of the SIRT1 
reactions, and the SIRT1/PPAR-γ signaling plays a crucial role in anti-hyperuricemia and 
anti-inflammatory function (42,43). On one hand, a recent study demonstrated that SIRT1 
and RSV (the activator of SIRT1) inhibited inflammatory cell infiltration and secretion of 
inflammatory factors through mediating PPAR-γ, which could control the acute onset of 
gouty arthritis (43). On the other hand, another study showed that SIRT1 inhibited the 
activity of PPAR-γ in dendritic cells, thus facilitating a Th2 response (44). Based on the 
substrate profile of SIRT1, it can be indicated that PPAR-γ is an emerging target of SIRT1 in 
controlling some diseases, including respiratory diseases.

DOWNSTREAM PATHWAYS AND MECHANISMS 
THROUGH HMGB1
HMGB1 is a nuclear protein that is considered a key component involved in the late 
inflammatory responses (45). The functions of HMGB1 rely on its localization and post-
translational modifications. In addition, translocation and secretion of HMGB1 are important 
processes influencing inflammation (46). Recently, TLRs have been demonstrated to be of 
great significance in the innate immune system, and HMGB1 could control the inflammatory 
responses through binding with other cellular receptors such as TLR2 and TLR4 (47). NF-κB 
refers to a family of transcription factors that exist in numerous cell types (48). Many studies 
have shown the key effect of NF-κB on regulating immunity and inflammatory responses. In 
the process of inflammation, extracellular HMGB1 activates some receptors such as advanced 
glycation end products and TLRS via medullary differentiation factor 88 (MyD88)-dependent 
signaling and non-MyD88-dependent signaling pathways (49). These pathways contribute to 
the activation of NF-κB. Phosphorylation of NF-κB can promote the release of a large number of 
inflammatory cytokines to initiate inflammation (50). The activation of HMGB1/NF-κB pathway 
is regulated by post-translational modifications, among which acetylation catalyzed by HDACs 
and histone acetyltransferases is a common post-translational modification form. Translocation 
and secretion of HMGB1 are also regulated by these enzymes, including SIRT1 (51).

HMGB1/TLR4/NF-κB pathway plays a critical role in regulating the occurrence, development, 
and prognosis of many diseases, such as the diseases of the digestive system, respiratory 
system, and nervous system, through acting on NLRP3 and absent in melanoma 2 
inflammasomes in macrophages (52). In vivo mouse neonatal hypoxic-ischaemic brain injury 
model and in vitro experiments have shown that HMGB1 released from microglia can activate 
the TLR4/MyD88/NF-κB signaling in microglia, which contributes to high expression of 
neuroinflammatory mediators, leading to neuroinflammation (53,54). Moreover, another 
study also reported that ω-3 PUFA enhanced the SIRT1 activity to inhibit acetylation of 
HMGB1, leading to direct interactions between SIRT1 and HMGB1. This kind of interaction 
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can inhibit the translocation and secretion of HMGB1, and hold back the activation of the NF-
κB pathway mediated by HMGB1 after TBI-induced microglia activation, thus controlling the 
subsequent inflammatory responses (49). In summary, SIRT1 can modulate the development 
of some diseases via the HMGB1/TLR4/NF-κB pathway.

Other SIRT1-related pathways also play an important role in regulating respiratory diseases, 
and the mechanisms may involve influencing autophagy, anti-inflammation, anti-apoptosis, 
and so on (55-59). Recent reports have shown that regulating SIRT1/NF-κB pathway can 
inhibit TNF-α-induced pro-inflammatory responses (60). SIRT1/GATA-3 signaling could 
decrease the expression of IL-4 in patients with severe asthma (61). SIRT1/Akt/NF-κB 
signaling can play an anti-inflammatory role in asthma, while SIRT1/HIF-1α signaling 
exhibits a pro-inflammatory effect (62). In addition, SIRT1/TAK1 and SIRT1/Bax pathways 
are implicated in tuberculosis (63), SIRT1/COX-2 signaling is involved in the development of 
bacterial pneumonia (64), and SIRT1/MAPK signaling is important in regulating lung cancer 
progression (65) (Fig. 3).

ACTIVATORS AND INHIBITORS OF SIRT1

SIRT1 regulates its downstream targets through deacetylation, influencing the occurrence, 
development, and prognosis of various diseases (63,66-68). Therefore, SIRT1 may become 
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a novel therapeutic target in treating many diseases, especially respiratory diseases. In 
addition, more efforts have been put into developing the modulators of the emerging 
attractive therapeutic target. The modulators of SIRT1 included 2 forms, the activators and 
inhibitors (Table 1). The former contained resveratrol, berberine, quercetin, metformin, 
SRT1720, SRT1460, SRT2183, and so on (69-76). The later comprised EX-527, tenovin-1, 
tenovin-6, cambinol, sirtinol, salermide, splitomicin, and NAM (77-84). These extensively 
investigated activators and inhibitors can modulate SIRT1 in cardiovascular diseases, 
inflammatory diseases, diabetes, and obesity (Fig. 4).

Activators
Resveratrol is a natural polyphenol with anti-inflammatory properties that has been deeply 
studied and can activate sirtuins (85). One study demonstrated that resveratrol could protect 
osteoblasts in osteoporosis rats by promoting mitophagy, and this effect was realized by 
mediating SIRT1 and PI3K/AKT/mTOR signaling pathways (69). Another study showed that 
resveratrol inhibited oxidative stress and apoptosis through SIRT1/FOXO3a and PI3K/AKT 
signaling pathways, which alleviated radiation-induced intestinal injury (86). Similarly, 
resveratrol exhibited a protective role against respiratory diseases. For example, resveratrol 
can inhibit oxidative stress and inflammatory responses on a rat COPD model, probably 
through activating the SIRT1/PGC-1α signaling (32).

Quercetin is a kind of abundant flavonoid compound present in plants and shows a 
variety of biological activities. It is reported that quercetin has powerful antioxidant, 
anti-inflammatory, and anti-tumor effects, offering significant prospects in the clinical 
application (87). In a study on diabetic encephalopathy, quercetin up-regulated the 
expression of SIRT1 protein and inhibited the expression of endoplasmic reticulum (ER)-
associated proteins, which meant that quercetin may participate in diabetic encephalopathy 
through the SIRT1/ER pathway (88). In addition, quercetin could increase the expression of 
SIRT1 and suppress the content of NLRP3 inflammasome in COVID-19 patients, showing 
therapeutic potential to treat COVID-19 (70).

SRT1720 and SRT1460 are structurally diverse synthetic compounds and are also used as 
small molecular modulators of SIRT1. It was found that SRT1460 could activate SIRT1, which 
played a protective role in myocardial ischemia/reperfusion (I/R) injury (71). This finding may 
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Table 1. List of activators and inhibitors of SIRT1
Type Modulator Function Model Reference
Activator Resveratrol Increase mitophagy Osteoporosis rats (69)

Quercetin Suppress NLRP3 inflammasome COVID-19 (70)
Berberine Promote autophagy of peritoneal macrophages Atherosclerosis (73)
Metformin Activate autophagy, mitigates cartilage degradation Mouse osteoarthritis (74)
Melatonin Regulate apoptosis and autophagy Sepsis-induced cardiac dysfunction (75)
SRT1720 Partially attenuate fibrosis and apoptosis Fibrotic kidney disease (72)
SRT1460 Weaken oxidative stress Myocardial ischemia/reperfusion injury (71)
SRT2183 Induce autophagy Ovarian cancer cells (76)

Inhibitor EX-527 Induced cell apoptosis Glioma (77)
Tenovin-1 Induce a nonlinear apoptosis-inducing factor-dependent cell death p53 null Ewing’s sarcoma cell line (78)
Tenovin-6 Induced apoptosis and cell cycle arrest Primary effusion lymphoma (79)
Cambinol Inhibit proliferation and induce apoptosis Myeloma cell lines (80)
Sirtinol Protect the allograft from inflammatory cell infiltration Mouse cervical heterotopic heart transplantation (81)
Salermide Induce autophagy in human NSCLC cells NSCLC (82)
Splitomicin Enhance the yield of specific hematopoietic lineage cells from embryonic 

stem cells
Hematopoietic differentiation of embryonic stem 
cells

(83)

NAM Increase the sensitivity of chronic myeloid leukemia to doxorubicin Chronic myeloid leukemia (84)
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provide a new treatment strategy for myocardial I/R injury. Moreover, another study showed 
that SRT1720 improved the level of SIRT1 and partly alleviated unilateral ureteral obstruction 
(UUO)-induced renal fibrosis and apoptosis (72). This study concluded that SRT1720 as a 
SIRT1 activator had clinical significance in treating UUO-induced tubulointerstitial fibrosis.

Inhibitors
EX-527 is a SIRT1 inhibitor with great effectiveness and selectivity compared with other SIRT1 
inhibitors (89). A recent study has shown that SIRT1 promotes tumorigenesis in glioma, 
and EX-527 induces cell apoptosis through activating p53, suggesting that EX-527 might 
be a potential target in the treatment of glioma (77). Moreover, it was reported that small 
interfering RNA (siRNA) or EX-527 could inhibit SIRT1 activity, which notably strengthened 
MK-1775-induced apoptosis and growth inhibition in human lung cancer cells (90).

Tenovin-6 is a potent class III-specific HDAC inhibitor and is also known as a p53 activator 
(91). It was confirmed in NSCLC cell lines with different liver kinase B1 status that the 
combination of metformin and tenovin-6 was more effectual in inhibiting cell growth 
compared with either drug alone (92). In addition, it was demonstrated that knockdown of 
SIRT1 by specific short hairpin RNAs or using SIRT1 inhibitor tenovin-6 induced apoptosis 
and cell cycle arrest in primary effusion lymphoma cells (79).

Sirtinol is another SIRT1 inhibitor discovered among more than 1,000 compounds through 
a high throughput cell-based screen (93). Some data from a recent study revealed the 

https://doi.org/10.4110/in.2022.22.e21

SIRT1 in Respiratory Diseases

Pro-IL-Iβ
Pro-IL-18

Increase
autophagy

Increase
autophagosome

Ovarian
cancer cells

Macrophages

NLRP3
inflammasome

Embryonic
stem cells

NSCLC cells
Increase

autophagosome

Myeloma cells Inhibit proliferation

Enhance
hematopoietic cells

Figure 4. Regulatory effects verification of SIRT1 by activators or inhibitors injection. The regulatory effects of several SIRT1 activators and inhibitors are 
shown. Quercetin (an activator of SIRT1) suppresses NLRP3 inflammasome in COVID-19. Berberine (an activator of SIRT1) promotes the autophagy of peritoneal 
macrophages. SRT2183 (an activator of SIRT1) induces autophagy in ovarian cancer cells. SRT1720 (an activator of SIRT1) notably decreases collagen deposition 
in the mice kidneys. Salermide (an inhibitor of SIRT1) induces autophagy in human NSCLC cells. EX-527 (an inhibitor of SIRT1) suppresses the proliferation and 
colony formation ability of human glioma cells.
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oncogenic role of SIRT1. In this study, it was also found that sirtinol could reduce cell 
proliferation of adrenocortical cancer and formation of colony and spheroids, as well as 
activate the intrinsic apoptotic pathway (94). Another evidence showed that SIRT1 played a 
key role in the immune responses after organ transplantation. However, inhibiting SIRT1 
through sirtinol could protect the allograft from inflammatory cell infiltration then lengthen 
allograft survival time (81).

Salermide is a reverse amide with a strong inhibitory effect on SIRT1 (95). Some results have 
shown that SIRT1 inhibitors (such as salermide, NAM, sirtinol, and EX-527) significantly 
increase the survival rate of taste bud organoids after irradiation (96). Moreover, Mu et al. 
(82) found that the expression of SIRT1/2 was blocked by salermide or siRNAs, which could 
induce autophagy in human NSCLC cells.

MULTITASKING ROLES IN RESPIRATORY DISEASES

The COVID-19 broke out in December 2019. It is a kind of respiratory disease with a highly 
destructive effect, which has brought a heavy burden to patients, medical systems, and 
societies worldwide (97). According to recent data, including those on COVID-19, respiratory 
diseases seriously affected physical and mental health, as well as social development. Among 
respiratory diseases, infectious diseases account for a large proportion. In addition to acting 
directly on viruses and bacteria, regulating immunity is also an important therapeutic 
strategy in the treatment of infectious respiratory diseases and other respiratory diseases. 
When targeting different substrates, SIRT1 may show different effects in regulating the 
immunity. Thus, SIRT1 can exhibit multitasking roles in the development and treatment of 
respiratory diseases (Table 2).
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Table 2. Summary of the related mechanism of SIRT1 in regulating several respiratory diseases
Disease Receptor/Pathway Activation Inhibition Function Reference
COPD FOXO3a/p53 + Protect against ACEII senescence in rats (127)

PGC-1α/NF-κB + Alleviate inflammation and oxidative stress responses (33)
NF-κB/p65 + Suppress COPD inflammation (66)
PGC-1α + Inhibit oxidative stress and inflammatory response (32)

Asthma IL-6 + Affect pulmonary function (56)
mTOR + Inhibit allergic airway inflammation by suppressing autophagy (57)
Akt/NF-κB + Inhibit the development of airway inflammation (62)
HIF-1α/VEGF + Increase the secretion of proinflammatory cytokines (62)
PPAR-γ + Inhibit anti-inflammatory actions (62)

Tuberculosis TAK1/p65/p38/JNK/ERK + Enhance the secretion of IL-6 and TNF-α (63)
RelA/p65 + Dampen Mtb-mediated persistent inflammatory responses (114)
GSK3β + Inhibit M. tuberculosis-induced apoptosis in macrophage (58)

Bacterial pneumonia hBD-2 + Antimicrobial effect (110)
IL-8 + Reduce inflammatory response (110)
COX-2 + Reduce the bacterial load in different organs (64)

Lung cancer NF-κB/Smac + Reduce radiosensitivity (59)
NF-κB + Attenuate cell proliferation, migration and invasion (67)
ATF4 and DDIT4 + Induce pro-survival autophagy in NSCLC cells (82)

COVID-19 NLRP3 + Inhibit inflammation (70)
K63 + Boost virally mediated induction of type 1 interferons (102)
HMGB1 + Enhance the antiviral efficacy of type 1 interferons (102)

ARDS p65 + Ameliorate inflammatory response and oxidative stress (58)
MAPK + Alleviate ARDS (132)
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COVID-19
The COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
erupted in December 2019 and was declared a pandemic by the World Health Organization 
(WHO) (98). COVID-19 infections are related to respiratory dysfunctions that can cause 
substantial alterations in clinical manifestation and have become a significant public health 
concern (99). COVID-19 may have 3 clinical phases, including the incipient upper respiratory 
tract infection phase, the pneumonia phase, and the hyperinflammatory phase that can 
lead to death (100). It has also been reported that imbalance of inflammatory responses, 
defectiveness in immune responses, and lymphopenia are annotated as critical factors of the 
pathogenesis of SARS-CoV-2 infection (100). In addition, high expression of p53 is associated 
with significantly decreased expression of SIRT1 and is related to higher expression of p21 in 
COVID-19 patients (101). A study showed that SIRT1 might improve the antiviral efficacy of 
type 1 interferons by preventing hyperacetylation of HMGB1 (102). Moreover, the inhibition 
of SIRT1 can reduce cytotoxicity of CD8 T cells in patients with systemic erythematosus lupus 
who were susceptible to SARS-CoV-2 infections (103). Given the above findings, SIRT1 may 
be an important factor regulating inflammatory responses, which may be necessary for the 
fight against COVID-19.

Bacterial pneumonia
Pneumonia can be caused by bacteria infection, such as Streptococcus pneumoniae, Klebsiella 
pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa (104), which is also named 
bacterial pneumonia. The common complications of bacterial pneumonia include respiratory 
failure, sepsis, multiorgan failure, coagulopathy, etc. Many studies have shown that drug 
resistance of bacteria is increasing for some reasons, for example, the abuse of antibiotics 
(105). Because of the diversity of pathogenic bacteria, the severity of complications, and 
increased drug resistance, it is critical to develop a better treatment strategy for bacterial 
pneumonia. Streptococcus pneumoniae is a Gram-positive bacterium, and pneumococcal 
infection is a pathogenic factor for some diseases, including pneumonia, meningitis, and 
bacteremia/sepsis (106). Recent studies have shown that SIRT1 plays an important role in 
infection and inflammation (107,108). Previous in vivo and in vitro studies have demonstrated 
that celecoxib, a non-antibiotic agent, induced SIRT1 expression, which controlled the 
expressions of COX-2 and NF-κB, thus causing decreased expressions of pro-inflammatory 
cytokines (64). Similar effects were shown in a study on the effect of the SRT3025 compound 
(a SIRT1 activator) in treating pneumococcal pneumonia. The results showed that SRT3025 
promoted the elimination of bacteria and reduced inflammatory cytokines in tissues of 
animals infected with Streptococcus pneumoniae, and this effect was most pronounced in the 
lung (109). Moreover, another study showed similar findings and reported that recombinant 
human β-defensin-2 (hBD-2) had an antimicrobial effect on Streptococcus pneumoniae in 
human pulmonary epithelial cells. IL-8 is a kind of CXC chemokine that can promote the 
recruitment of neutrophils and maintain inflammatory responses in the airway. It was found 
that enhancing expression of SIRT1 through activators could increase mRNA expression 
of hBD-2 but decrease IL-8 mRNA expression, and this effect could be reversed by SIRT1 
inhibitors (110). Furthermore, chlorogenic acid could alleviate Klebsiella pneumoniae-induced 
pneumonia via SIRT1, concretely, chlorogenic acid inhibited the acetylation level and 
nuclear translocation of HMGB1 by activating SIRT1, thereby promoting M2 polarization and 
alleviating Klebsiella pneumoniae-induced pneumonia (111). Thus, we can deduce that SIRT1 
plays an important role in bacteria pneumonia, especially Streptococcus pneumoniae.

https://doi.org/10.4110/in.2022.22.e21

SIRT1 in Respiratory Diseases



12/21https://immunenetwork.org

Tuberculosis
Tuberculosis, a special kind of bacterial infectious disease caused by Mycobacterium tuberculosis 
(Mtb), is one of the deadliest infectious diseases around the world and has become a global 
health issue (112). A study reported that the increase in autophagy could promote innate 
host defense against multiple intracellular pathogens, especially Mtb (113). Thus, regulating 
autophagy is of great significance in controlling tuberculosis. In addition, it was found that 
post-translational activation of autophagy was realized by deacetylating autophagy-related 
genes ATG5, BECN1, and ATG7 through activating SIRT1 (114). In another study on SIRT1 and 
its activators in cells and animals infected by Mtb, some data such as bacillary loads and SIRT1 
mRNA expression indicated that the activation of SIRT1 could inhibit the growth of Mtb and 
increase the clearance rate of Mtb with anti-tuberculosis drugs (115). Resveratrol can activate 
SIRT1, and in Mtb-infected macrophages, it can inhibit the activation of MAPK, TAK1, and NF-
κB signaling pathways, as well as the levels of inflammatory cytokines, indicating that resveratrol 
may be used to treat tuberculosis through targeting SIRT1 (63). Therefore, we reasonably 
speculate that SIRT1 may become a potential target for the treatment of tuberculosis.

COPD and asthma
COPD is a prevalent and severe disease with high health and social care costs (116). Because 
of its complicated pathogenesis, there is no curative treatment currently. It has been reported 
that more than 3 million people die of COPD worldwide, accounting for 6% of all deaths (55). 
Moreover, COPD can further develop into pulmonary heart disease and respiratory failure 
(117), so it is of great significance to find a better treatment strategy for COPD. Zhou et al. 
(118) reported that oxidative stress, inflammation, and apoptosis were considered the most 
important influential factors for COPD occurrence. It was found that SIRT1 exerted anti-
inflammatory, anti-apoptotic, and antioxidant roles in the pathogenesis of COPD (119). A recent 
study has demonstrated that LINC00987 regulates LPS-induced oxidative stress, cell apoptosis, 
inflammation, and autophagy through promoting the binding of let-7b-5p with SIRT1, which 
ameliorated COPD. Moreover, this regulation could be reduced by the knockdown of SIRT1 
gene (120). A similar protective role of SIRT1 against COPD was also shown in another study. 
The results showed that melatonin could alleviate apoptosis and ER stress by upregulating the 
expression of SIRT1 in rats, which played a positive role in controlling COPD. However, this 
positive role would be abolished by the addition of EX-527 (an inhibitor of SIRT1) (121). There 
is also much other evidence showing that SIRT1 plays an important role in regulating COPD 
(66,122,123), which indicates that SIRT1 might be a key target in the treatment of COPD.

Asthma is a chronic airway inflammatory disease, featured as aberrant immune-inflammatory 
responses and increased mucus exudation and airway remodeling (124). Epidemiological 
statistics have shown the increased prevalence of asthma during the past few decades, meaning 
that asthma poses a great threat to human health (125). There are about 235 million asthma 
patients, and more than 20 million people in China are suffering from asthma, with an 
incidence rate of 1.24% (56). Many recent studies have reported that the activity and expression 
level of SIRT1 are related to asthma conditions (126,127). However, it seems that SIRT1 has 
dual roles in asthma development, including pro-inflammatory and anti-inflammatory effects. 
It was reported that increased SIRT1 activity contributed to the suppression of NF-κB p65 
acetylation and inhibited the production of IL-6 and IL-8, which could reduce the inflammatory 
responses in asthma (60). However, the proinflammatory function of SIRT1 may be related to 
repressed PPAR-γ activity (62). It was found that the expression of SIRT1 inhibited the activity of 
PPAR-γ in dendritic cells (44). Meanwhile, in mice dendritic cells with a shortage of SIRT1, the 
development of airway inflammation was notably reduced with the increased activity of PPAR-γ 
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(62). Other evidences also demonstrated that SIRT1 exhibited a vital role in regulating asthma 
(128-130). Thus, the inhibition of PPAR-γ activity by SIRT1 may exert a pro-inflammatory effect 
in the pathological process of asthma. Since SIRT1 exhibits dual roles in asthma development, 
it is important to explore the precise effect of SIRT1 in asthma progression, which has a great 
significance for the treatment of asthma.

Acute respiratory distress syndrome (ARDS)
ARDS, a syndrome of acute respiratory failure, is mainly caused by direct lung injuries and 
indirect systemic diseases, such as sepsis and severe trauma. It is featured as a systemic 
inflammatory response to infection, which can cause multiple-organ dysfunction and death 
(131,132). The high incidence rate, mortality, and medical costs of ARDS have brought a heavy 
burden to patients and society. Although some measures have been taken, such as lung-
protective ventilation and the establishment of an overall intensive care unit, the fatality rate 
of ARDS patients is still high (133). Recently, some studies have indicated that SIRT1 may 
become a novel target in regulating ARDS. It was reported that in alveolar macrophages, SIRT1 
was a direct target of miR-199a, and the level of SIRT1 was negatively related to miR-199a. The 
results also suggested that downregulating miR-199a could suppress excessive inflammatory 
responses and cellular apoptosis through upregulating SIRT1, which prevented lung tissue 
from sepsis-induced ARDS (134). Moreover, another study showed that the pretreatment with 
SRT1720 (the SIRT1 activator) decreased the levels of IL-6, TNF-α, and IFN-γ, while increasing 
the level of IL-10 and attenuating lung injury. It also exhibited that activation of SIRT1 alleviated 
inflammatory reaction and oxidative stress in ARDS induced by LPS (68). In addition, a present 
study has illustrated that 3,5,4'-tri-O-acetylresveratrol (AC-Rsv) plays a protective role against 
LPS exposure-induced ARDS in mice by regulating the expression of SIRT1 (135). Another study 
showed that low expression of mir-138-5p induced by metformin might increase the expression 
of SIRT1 and inhibit MAPK signaling, which alleviated ARDS (136). According to these reports, 
it is indicated that regulating SIRT1 may be a promising treatment strategy for ARDS.

CONCLUSIONS AND PERSPECTIVES

In this review, we summarize the latest evidence on the multitasking roles of SIRT1 in 
regulating respiratory diseases. As one of the most well-studied sirtuins, SIRT1 can modulate 
multiple biological functions, including oxidative stress, inflammation, cell apoptosis, 
autophagy, antibacterial and antiviral effects, through its NAD+-dependent deacetylation 
enzymatic activity.

The immune-balance regulatory effects of SIRT1 have been stated in vivo and in vitro models 
of infectious respiratory disease. Previous research has indicated that SIRT1 can modulate 
reactions in respiratory disease via many different signaling pathways and molecules. 
Here some potential modulatory pathways are summarized, especially the downstream 
signalings mediated by HMGB1. Moreover, specific SIRT1 activators and inhibitors are 
reviewed respectively, and the molecular functions of SIRT1 are inversely verified by relevant 
experiments. Some regulatory details of SIRT1 in the process of different respiratory diseases, 
including COVID-19 infection, bacterial pneumonia, tuberculosis, are further described.

Although numerous mechanisms underlying the action of SIRT1 have been elaborated, 
some questions still need to be answered. For example, due to the diversity and abundance 
of substrates, the intricacy of the regulatory mechanisms, and the involvement of 
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multiple regulating pathways, it is complicated to determine the roles of SIRT1 during 
the pathogenesis and prognosis of different respiratory diseases. Therefore, further 
investigations on SIRT1 are still needed to estimate the promising targets for the treatment 
of respiratory diseases, especially the signaling pathways mediated by HMGB1, which is the 
core immunomodulatory molecule.
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