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Abstract

Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with
a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease.
Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants.
Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how
select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects
recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence
specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering
and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation
sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation
sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their
respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele
classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained
using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited
high rates of concordance, matching at 759 out of 766 (99.1%) alleles.
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Introduction

The classical human leukocyte antigen (HLA) loci -A, -B, and -C

(class I) as well as -DRB1, -DQB1, and -DPB1 (class II) are

expressed on the cell surface and function as antigen-presenting

proteins. HLA loci were first identified during studies involving

transplantation of tumor cells among different strains of mice, and

later shown to be the principle genetic barrier to allogeneic

transplantation of cells, tissues, and organs [1]. In humans, these

genes are clustered within a roughly 4 Mb region on Chromosome

6p21 [2]. The genes encoding the HLA proteins are characterized

by frequent polymorphisms, occurring as often as 1 out 8

nucleotides, resulting in greater than 7,800 characterized alleles

and more than 5,700 protein variants [3]. Select alleles have been

implicated in pharmacogenomics [4] and human diseases,

associating with immune response to infectious agents as well as

autoimmunity and narcolepsy [2].

The impact of HLA diversity on transplant genetics, the

requirement to match HLA alleles between unrelated donor and

recipient, is that there is currently an estimated 60% chance of

finding a matched donor-recipient pair when genotyping for HLA-

A, -B, and -DRB1 [5,6]. Timely matching of donor with recipient,

therefore, depends upon ongoing recruitment of volunteer donors.

Currently, screening of HLA genotypes from increasingly large

cohorts is achieved using the sequence specific oligonucleotide

(SSO) typing approach. In this methodology, genomic DNA is

PCR amplified and the product detected by hybridization of allele

specific probes [7]. When determining 4-digit resolution (e.g.,

HLA-DRB1*15:01 and denoting the protein sequence subtype) the

SSO method is highly accurate and can be performed rapidly [8].

For example, the overall accuracy of SSO based genotyping of

HLA-DRB1 is estimated at roughly 99% based upon blinded

analysis of 1,652 reference samples [8], however, full resolution

genotyping of alleles defining substitutions occurring among

synonymous codons as well as within introns and untranslated

regions are not routinely achieved.

In contrast, full resolution genotyping of HLA loci can be

achieved by next-generation sequencing based protocols [9,10].

Since it was first developed pyrosequencing technology has

advanced substantially allowing it to be used in ways that enable

efficient preparation of thousands of individually prepared clones

for analysis within a single sequencing run, scaling of the reaction

to picoliter volumes, and increasing read lengths to several

hundred nucleotides [11]. As the length of the polymorphic exons

of HLA class I (exons 2 and 3) and class II loci (exon 2) are between

264 base pairs for HLA-DPB1 exon 2 and 276 base pairs for exon 3

of HLA-A, -B, and -C the method is capable of sequence based

typing of HLA alleles. In fact, a number of research laboratories

have already reported achieving high resolution typing of HLA

class I and class II loci using genomic DNA isolated from human

cell lines as well as blood samples [9,10,12,13] and from cDNA
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created from isolations of mRNA [14,15]. Along with translating

the methodology from the research based setting to the HLA

genotyping laboratory there is a need to develop robust

computational methods for analyzing the data [12,16,17].

Materials and Methods

Ethics Statement
All subjects were recruited for genetic studies at the University

of Pittsburgh under institutional review board approved protocols

[18].

Materials
Residual DNA samples were selected from cohorts recruited as

part of a study into the genetics of Ulcerative Colitis (UC). The

UC cohort had been previously analyzed during a genome-wide

scan of SNPs and the 4-digit HLA-DRB1 genotypes were inferred

via the imputation of SNPs approach and confirmed by SSO

genotyping [18]. Individual DNA samples (n = 383), representing

a subset of subjects recruited for the UC cohort, were chosen for

next-generation sequencing in order to capture a wide range of

alleles (Table 1). HLA-DRB1 alleles covered by the UC cohort

accounted for 36 commonly occurring alleles, including 29 out of

the 31 most frequently occurring alleles observed among subjects

of European ancestry [19]. The cumulative frequency of allelic

variance covered for -DRB1 was 99.5% among European

populations and 84.3% among populations worldwide [19,20].

Amplicon Preparation
Forward barcoded oligonucleotide primer 59-

CGTATCGCCTCCCTCGCGCCATCAG[MID]CCG-

GATCCTTCGTGTCCCCACAGCAC-39 employing a multiplex

identifier region (MID) and reverse primer 59-

CTATGCGCCTTGCCAGCCCGCTCAGCCGCTG-

CACTGTGAAGCTCTC-39 were used to target HLA-DRB1 exon

2 for amplification, and were chimeras of titanium primers A and

B along with HLA-DRB amplification primers [9]. DNA ampli-

fication was performed in 10 ml and used 40 ng genomic DNA,

400 nM oligonucleotide primers, 0.2 mM dNTP, and 1 unit

FastStart High Fidelity Enzyme Blend (Roche Diagnostics).

Thermal cycling was performed by incubation at 94uC for 3

minutes followed by 40 cycles at 94uC for 30 seconds, 61uC for 45

seconds, and 72uC for 1 minute. The reactions were then

incubated at 72uC for 2 minutes.

Next-Generation Sequencing
Next-generation sequencing was performed using the Roche/

454 titanium assay as described previously [18]. Briefly, emulsion

of PCR reagents in microreactors was prepared by mixing beads,

PCR reaction mix (1X amplification mix, Amplification Primers,

0.15 U/ml Platinum Taq (Invitrogen, Carlsbad, CA)), and

emulsion oil and mixing vigorously using a Tissue Lyser (Qiagen,

Valencia, CA). Emulsion was distributed into a PCR plate and

template amplification was carried out in a thermocycler using the

following cycling conditions: Hotstart activation for 4 minutes at

94uC, 40 cycles of 94uC for 30 seconds, 58uC for 1 minute, 68uC
for 90 seconds followed by 13 cycles of 94uC for 30 seconds and

58uC for 6 minutes. Sequencing primers were added to the

mixture of beads and annealing buffer and annealed to the

template using the following thermocycler conditions: 65uC for 5

minutes, ramp to 50uC at 0.1uC/second, hold at 50uC for 1

minute, ramp to 40uC at 0.1uC/second, hold at 40uC for 1

minute, ramp to 15uC at 0.1uC/second, hold 15uC. Packing

beads, sample beads and enzyme beads were applied to the

picotiter plate as per manufacturer instructions. The sequencing

reaction was performed in picotiter plates loaded onto the

sequencer. The Roche/454 instrument used pyrosequencing

chemistry and detected the incorporation of each nucleotide in

real time.

CAPSeq Genotyping
HLA genotypes were determined from sequence data using the

CAPSeq software application (Figure 1). The CAPSeq application

uses next-generation sequences and their corresponding Q-Scores

to enable alignment followed by classification of sequences into

their corresponding allelic components. The consensus sequences

are then compared with known HLA alleles [3] and the nearest

match reported as the genotype. The application is written in R

and PERL and can be run using the R command source

(‘‘CAPSeq.R’’). The software is compatible with Linux and Mac

operating systems.

Online Software and Sample Data
The CAPSeq software and HLA-DRB1 sample data are

available at (http://wpicr.wpic.pitt.edu/WPICCompGen/) and

consist of four R Scripts CAPSeq.R, CompleteTmp.R, diffuse.R,

GenoFuns1.R; the six PERL Scripts CreateReadsQscore.pl,

Edit_Alignment.pl, Edit_Nucmer_SNP.pl, Format_Delta_Files.pl,

Identity_Score.pl, Matrix_Check.pl; and the HLA-DRB1 Se-

quence File Library_DRB_Release370_unique_exon2. Sample

Data obtained from five subjects are available in the folder

DRB_Example and are formatted for use with the CAPSeq

application. All new data have been deposited in GenBank

(SUB162897). The ReadMe file provides directions for installing

and running the CAPSeq application.

Results

Next-generation Sequencing
Next-generation sequencing analysis of HLA loci -DRB1 exon 2

was performed using the Roche/454 GSFLX instrument and

resulted in 371,657 sequences from the UC cohort of 383 subjects.

Sequencing assays were performed so as to obtain data from both

strands. Upon analysis of read lengths for those sufficient to enable

direct analysis of exon 2, that is, without the need to assemble

truncated DNA sequences there were 368,610 sequences remain-

ing, accounting for 99% of the total. After data cleaning in which

sequence barcodes were used to identify subjects [21] and

sequence motifs found within HLA exons were used to identify

the location of the -DRB1 exon start and finish boundaries there

were 330,981 (89%) of the sequences remaining. Due to the

complexity of the HLA-DRB sub-region in which amplicons in

addition to those at the HLA-DRB1 locus were generated the data

were subjected to additional cleaning steps designed to minimize

the occurrence of sequences containing motifs found only in HLA-

DRB pseudogenes (e.g., HLA-DRB6/7/8/9) and paralogous loci

(i.e., HLA-DRB3/4/5). After data cleaning there were 130,513

(35%) sequences remaining corresponding to a mean and standard

deviation of 3406132 sequences per subject.

HLA-DRB1 Genotyping
The Clustering and Alignment of Polymorphic Sequences

(CAPSeq) software makes use of statistical analysis for calling each

genotype. The CAPSeq application incorporates MUMmer [22]

to align sequences and the R package diffusionMap [23,24] to

classify the sequence data into allelic groups. The genotyping

process is organized into three main steps (Figure 1). The first step

consists in identifying the clusters of reads generated by the

CAPSeq Software for HLA Genotyping
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different alleles. To do this, a pairwise weighted similarity score is

computed as the difference between the alignment length and the

number of mismatches among the aligned sequences. At this stage

the information about the variable regions are incorporated via

their overall sequence quality score, giving lower weight to the

mismatches belonging to these regions (e.g., when Q-Scores are

less than 30). Second, Diffusion Mapping [23,24] is used to

generate a data transformation that can simplify cluster structures

and protect from the presence of outliers (e.g., sequence reads

containing infrequent variants generated during PCR amplifica-

tion). The data representing the pairwise weighted similarity score

are projected into diffusion space in which the Euclidean distance

between two points is small if the points are highly connected in

the original feature space and large otherwise. Then the K-means

algorithm is applied and the reads are clustered into homogeneous

groups. During this process the consensus sequence for each

sequenced cluster is established. The genotype is determined by

comparing the consensus sequence with that of known HLA allele

sequences obtained from the HLA/IMGT database [3]. A third

step is performed for ensuring classification precision. To this end

Bootstrap Aggregating, Bagging, is used [25]. Bagging is a machine

learning technique that generates multiple versions of the same

Table 1. HLA-DRB1 alleles.

HLA-DRB1 European Freq (Rank) Worldwide Freq (Rank) UC Cohort Freq

*01:01 0.09149 (4) 0.04123 (8) 0.07311

*01:02 0.01703 (13) 0.01161 (26) 0.02872

*01:03 0.00889 (19) 0.00329 (41) 0.02480

*03:01 0.12916 (3) 0.06760 (3) 0.10183

*04:01 0.09111 (5) 0.02896 (13) 0.07963

*04:02 0.00972 (17) 0.00742 (32) 0.00392

*04:03 0.00572 (23) 0.02659 (17) 0.00392

*04:04 0.03634 (9) 0.01795 (19) 0.02219

*04:05 0.00368 (25) 0.04776 (6) 0.00522

*04:07 0.00947 (18) 0.01536 (23) 0.00783

*04:08 0.00248 (26) 0.00188 (43) 0.00261

*07:01 0.13767 (2) 0.06986 (2) 0.10574

*08:01 0.02363 (12) 0.00875 (29) 0.03525

*08:02 0.00025 (34) 0.02104 (17) 0.00131

*08:03 0.00133 (29) 0.03864 (9) 0.00261

*08:04 0.00089 (31) 0.00500 (36) 0.00392

*08:06 0.00006 (41) 0.00101 (47) 0.00131

*08:10 0.00000 (NA) 0.00003 (68) 0.00131

*09:01 0.00820 (21) 0.05450 (5) 0.01175

*10:01 0.00826 (20) 0.01284 (24) 0.01044

*11:01 0.05654 (7) 0.05945 (4) 0.08747

*11:02 0.00152 (28) 0.00604 (33) 0.00131

*11:03 0.00483 (24) 0.00227 (42) 0.00522

*11:04 0.03189 (10) 0.01780 (20) 0.04178

*11:14 0.00000 (NA) 0.00003 (68) 0.00131

*11:15 0.00000 (NA) 0.00000 (NA) 0.00131

*11:29 0.00000 (NA) 0.00002 (69) 0.00131

*12:01 0.01468 (14) 0.02712 (16) 0.03003

*13:01 0.06283 (6) 0.03152 (12) 0.05875

*13:02 0.04015 (8) 0.03746 (10) 0.03655

*13:03 0.00991 (16) 0.00784 (30) 0.01436

*13:27 0.00000 (NA) 0.00000 (NA) 0.00131

*14:01 0.02459 (11) 0.03218 (11) 0.02742

*15:01 0.14441 (1) 0.07864 (1) 0.13316

*15:02 0.00775 (22) 0.04507 (7) 0.00653

*16:01 0.01061 (15) 0.01656 (21) 0.02480

Study Panel Total 0.995 0.843

Allele frequencies and rankings are taken from Maiers et al. [19] for European -DRB1 and from Lancaster et al. [20] for worldwide frequencies. UC cohort frequencies are
determined from CAPSeq genotyping results.
doi:10.1371/journal.pone.0059835.t001
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predictor (e.g., by random sampling of sequence reads), taking an

‘‘average’’ as the final result. In the present example it consists in

sampling a subset of N= 20 reads, while performing steps one and

two in an iterative fashion.

The genotyping results obtained using CAPSeq software are

summarized in Table 2. Analysis was performed in quadruplicate

at increasing Bagging iterations from 5 to 60 times. A greater

number of iterations lead to improved identification of the HLA-

DRB1 genotypes. For example, the rate of concordance between

CAPSeq and SSO determined genotypes improved with in-

creasing Bagging from 95.7% at Bagging 5 to 99.1% when

Bagging was performed 60 times. The improvement resulted from

a decreased number of sensitivity errors occurring when a genotype

determined as heterozygous via the SSO approach was reported as

homozygous during CAPSeq analysis of the next-generation

sequencing data. For instance, there was a roughly 6-fold decrease

in sensitivity errors when Bagging iterations were increased with 5

persistent sensitivity errors occurring at Bagging 60 compared to

31 sensitivity errors observed at Bagging 5 (Table 2).

Listed in Supplementary Table S1 are the complete sets of 6-

digit CAPSeq genotyping results for Bagging iterations set at 60

along with the 4-digit genotyping results obtained using the SSO

approach. The roughly 1% of CAPSeq called alleles that were

discordant when compared with the results of SSO based

genotyping are identified by bold font. The CAPSeq data also

include ‘‘Call Rate’’ (the frequency with which each allele is

detected during the Bagging iterations), ‘‘Average Cluster Size’’

(the average number of times each allele is observed during

sampling of the sequence data), and ‘‘Average Identity Score’’

(how well the final CAPSeq derived consensus sequence matched

the sequence of the closest known HLA-DRB1 allele), exhibiting

overall mean and standard deviation values 93618, 52618, and

10060, respectively. Discordant calls were attributable to a com-

bination of sensitivity errors occurring 0.7% (5 out of 766), in

which CAPSeq analysis of next-generation sequences identified

heterozygous genotypes as homozygous, and specificity errors

occurring 0.3% (2 out of 766) in which an alternate genotype was

called (Table 2). Sensitivity errors also referred to as ‘‘allele

dropout’’ result from unbalanced amplification of HLA alleles,

exhibit low Call Rates, and most likely result from nucleotide

polymorphisms that influence amplification efficiency [26,27].

This can lead to reporting of an individual as homozygous due to

the resulting unbalanced representation of the two alleles.

Inspection of the next-generation sequencing data indicated that

in the examples identified as persistent sensitivity errors (Table 2)

the alleles were represented in the sequence data at unequal

frequencies and incorporation of the Bagging approach resulted in

improved sensitivity (Figure 2). As illustrated in the figure, the

frequency of the ‘‘minor’’ sequence (occurring when HLA alleles

are PCR amplified in an unbalanced manner) was detectable at

improved sensitivity when Bagging iterations were increased. For

example, increasing Bagging iterations improved sensitivity

thresholds for the underrepresented allele from 15.6% for Bagging

5 to 8.8% when Bagging was performed 60 times. Moreover, the

underlying data supported the genotype call obtained by the

CAPSeq method in the sense that the non-called allele was the

next most frequently identifiable sequence, presumably a reflection

of unbalanced amplification rather than an effect of the CAPSeq

application per se.

In contrast, persistent specificity errors were reported for 2

subjects (Table 2). In each instance inspection of individual

sequences was consistent with the CAPSeq called genotype. For

example, Subject 150 was identified as HLA-DRB1*03:05, *11:01
versus HLA-DRB1*03:01:01G, *11:01:01G while Subject 307 was

genotyped as HLA-DRB1*11:04, *13:01 versus HLA-

DRB1*11:01:01G, *13:01:01G by SSO and CAPSeq based

methods, respectively (Supplementary Table S1). The CAPSeq

identified genotype was strongly supported by the underlying

sequence data accounting for 47% (236 out of 500) and 45% (157

out of 350) of the total number of sequences obtained from

Subjects 150 and 307, and indicating the likely possibility that

CAPSeq provided genotypes are, in fact, correct for these samples.

The overall quality of the genotyping results were evaluated by

comparing the frequency of alleles observed when analyzing next-

generation sequencing data against the expected frequency

determined by the SSO genotyping method (Figure 3). For

example, the frequency of genotypes determined using the SSO

and CAPSeq methods exhibited strong correlation with a Pearson’s

Figure 1. The Clustering and Alignment of Polymorphic
Sequences (CAPSeq) software application illustrated as a sche-
matic. Input Data: Next-generation sequence data formatted as
modified FASTQ files consisting of sequences and corresponding Q-
scores along with an additional input data file containing known HLA
allele sequences. CAPSeq Application: The analysis software can be
broken down into 3 principle steps consisting of those developed to
align sequences and use corresponding Q-scores to generate a weight-
ed pairwise similarity score (step 1) that can be analyzed via diffusion
mapping, followed by K-means clustering to enable the identification of
homogeneous sequence groups (step 2) followed by Bootstrap
Aggregating, Bagging, of multiple analyses of the data to ensure
genotyping precision (step 3). Output Data: The HLA genotyping data is
provided as a tab delimited text file containing the most likely allelic
match between the CAPSeq generated consensus sequences and list of
known HLA alleles.
doi:10.1371/journal.pone.0059835.g001

Table 2. Comparison of SSO based 4-digit HLA-DRB1
genotyping with CAPSeq.

Bagging
Iterations Concordant

Sensitivity
Error Specificity Error

5 733 (95.7%) 31 (4.0%) 2 (0.3%)

10 747 (97.5%) 17 (2.2%) 2 (0.3%)

20 752 (98.2%) 11 (1.4%) 3 (0.4%)

40 758 (99.0%) 6 (0.8%) 2 (0.3%)

60 759 (99.1%) 5 (0.7%) 2 (0.3%)

doi:10.1371/journal.pone.0059835.t002
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correlation coefficient r.0.999 when the SSO genotypes and

Bagging 60 results were compared (Figure 3). Moreover, as

summarized in Table 1, the observed frequency of individual

CAPSeq determined alleles were highly correlated with the

expected frequencies of these HLA-DRB1 alleles observed for

subjects of European ancestry and to a lesser extent with

worldwide allele frequencies, exhibiting Pearson’s correlation

coefficients r.0.97 and 0.75, consistent with the expected validity

of the CAPSeq analysis approach.

Discussion

The HLA loci constitute the most highly polymorphic genetic

system in humans [2]. A stable, inherited polymorphism, the

alleles, gives rise to alternative forms of the protein with 5,764

variants reported [3]. The molecular basis for the HLA poly-

morphism resides in nucleotide sequence differences present in the

coding regions of the HLA gene. Nearly all the HLA loci have

various alleles with HLA-DRB1 reported to have 1,260 distinct

forms [3]. During recent years, substantial progress has been made

in converting the protocols for molecular HLA genotyping to next-

generation sequencing technologies [28]. For example, the choice

of the Roche/454 GSFLX instrument allows direct sequencing of

polymorphic HLA exons without the need to assemble partial

reads. When compared with the SSO-based method, the next-

generation sequencing approach to HLA genotyping provides

increased accuracy and sample throughput [28]. Moreover,

a number of publications have reported achieving high resolution

typing of HLA loci using genomic DNA isolated from human cell

lines, blood samples, as well as from cDNA created from isolations

of mRNA [9,10,12,14].

The CAPSeq software application was developed as an open

source solution for genotyping of HLA alleles, offering a standalone

approach to HLA genotyping. The CAPSeq analysis method has

been developed initially for genotyping -DRB1 alleles but has also

been used with -DPB1 providing similar levels of accuracy (data

not shown). In contrast, computational methods for analysis of

next-generation sequencing data generated on the Roche/454

GSFLX instrument are commercially available [17,28]. In

addition, use of the Genome Analysis Tool Kit (GATK) suite of

open source software applications for HLA typing has also been

described [16] and is available as source code but unfortunately is

no longer supported by the GATK help desk [29]. Recently,

Illumina based next-generation sequencing of HLA loci has also

been reported with similar levels of accuracy [30]. Like CAPSeq,

these various methods for analysis of next-generation sequences for

HLA genotypes have reported a roughly 99% concordance when

compared with test samples [16,17], a threshold that may increase

when subjects are examined directly via cloning and traditional

Sanger based sequencing. The CAPSeq application uses the depth

of sequencing provided by the next-generation based method to

enable the R module diffusionMap in order to classify sequences

based upon their similarity score. This feature results in the

classification of sequences into their respective alleles. Along with

MUMmer, used to align sequences, the application generates

a consensus for each sequence class. The consensus sequence is

used to identify known HLA genotypes with sequence identity

scores approaching 100%. The inclusion of Bagging improves the

Figure 2. CAPSeq Bagging iterations result in improved genotyping sensitivity. Bagging iterations (x-axis) were varied from 5 to 60. The
median frequency of the minor sequence that was detectable by CAPSeq (y-axis) is determined from interrogation of the raw sequencing data
obtained using the Roche/454 GSFLX instrument.
doi:10.1371/journal.pone.0059835.g002
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frequency of concordant calls in excess of 99% when compared

with the results of SSO based typing. The application is freely

available (http://wpicr.wpic.pitt.edu/WPICCompGen/) and con-

sists of R and PERL scripts as well as sample data and allele

reference files for HLA-DRB1.

Supporting Information

Table S1 HLA-DRB1 genotypes determined by SSO and
CAPSeq analyses of next-generation sequencing data.
The table lists the Subject Identifier (column 1); Classification

whether the SSO and CAPSeq results were concordant or

discordant (column 2); Description of the error type or genotype

(column 3); the 4-digit and 6-digit SSO and CAPSeq derived

genotypes (columns 4 through 7); along with the CAPSeq derived

values for the frequency with which individual alleles were called

during the Bagging steps, Call Rate (columns 8 and 9), the average

number of times each allele was observed when sampling the

sequence data, Average Cluster Size (columns 10 and 11); and

how closely each CAPSeq derived consensus sequence matched

the sequence of the closest known HLA-DRB1 allele, Average

Identity Score (Columns 12 and 13).

(PDF)
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