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ABSTRACT: We apply a hierarchy of multiscale modeling approaches to investigate the
structure of ring polymer solutions under planar confinement. In particular, we employ both
monomer-resolved (MR-DFT) and a coarse-grained (CG-DFT) density functional theories
for fully flexible ring polymers, with the former based on a flexible tangent hard-sphere
model and the latter based on an effective soft-colloid representation, to elucidate the ring
polymer organization within slits of variable width in different concentration regimes. The
predicted monomer and polymer center-of-mass densities in confinement, as well as the
surface tension at the solution-wall interface, are compared to explicit molecular dynamics
(MD) simulations. The approaches yield quantitative (MR-DFT) or semiquantitative (CG-
DFT) agreement with MD. In addition, we provide a systematic comparison between
confined linear and ring polymer solutions. When compared to their linear counterparts, the
rings are found to feature a higher propensity to structure in confinement that translates into
a distinct shape of the depletion potentials between two walls immersed into a polymer
solution. The depletion potentials that we extract from CG-DFT and MR-DFT are in
semiquantitative agreement with each other. Overall, we find consistency among all approaches as regards the shapes, trends, and
qualitative characteristics of density profiles and depletion potentials induced on hard walls by linear and cyclic polymers.

1. INTRODUCTION

Topological effects can have a profound impact on static and
dynamic properties of polymers, being especially pronounced in
melts and solutions of polymer rings. More specifically, the
presence of topological nonconcatenation constraints in
concentrated systems of rings enforces their compact, globular
conformations that are very different from that of linear chains
under similar conditions.1−3 Moreover, the lack of ends
prohibits their relaxation via reptation and therefore significantly
alters polymer dynamics.4,5 A consequence of the latter is a
distinctive power-law stress relaxation in entangled ring polymer
melts that does not feature a typical rubbery plateau in the case
of the linear polymer melts.4,6 Another hallmark of ring polymer
systems is the presence of the so-called threading constraints
that correspond to the case when one ring pierces through the
contour of another one. The impact of threading on the
equilibrium dynamics of rings has not been entirely understood,
as such constraints are usually hard to take into account in
effective analytical models.7,8 Nevertheless, its effect has recently
became amenable to analysis in computer simulations.9−11

Interestingly, a mutual threading of two rings slows down their
diffusive relaxation10,12 and results in more correlated dynamics
that have been conjectured to become glasslike for very long
rings in concentrated solutions.13 While the required ring sizes
for observing such phenomenon are not currently accessible
either in experiments or simulations,13 a similar slow down of

ring dynamics has recently been associated with enhanced
threading in melts under nonequilibrium conditions.14−16

While the effects of ring topology are certainly more
pronounced at higher system concentrations, they are found
in dilute solutions as well.17−23 Notably, the nonconcatenation
condition imposed on polymer loops without excluded volume
alone leads to the Flory exponent of a self-avoiding random walk
for the scaling of polymer size R with its polymerization degree
N: R ∼ N0.588.24,25 Accordingly, more compact ring con-
formations in conjunction with topological constraints yield a
very different form of the effective interaction potential between
two coils Veff(r), which is usually defined in terms of the free
energy penalty of placing two polymers at the center-of-mass
separation r. In particular, in the case of rings one finds a
distinctly non-Gaussian form of the effective potential that
contrasts the Gaussian shape of Veff(r) for linear chains.

17,26−28

More specifically, the effective interaction between two rings
features a plateau at short center-of-mass separations r ≲
0.5Rg,0

ring, where Rg,0
ring is the ring’s radius of gyration at infinite

dilution, with an amplitude of about 6−7 kBT for moderately
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sized rings with a polymerization degree N = 50−100.26,27
Interestingly, the ring conformations that contribute to the
plateau region of Veff(r) at short center-of-mass separations are
predominantly threading.28 For very long rings with N ≳ 2000,
the amplitude of Veff(r) decreases to about 4.5 kBT; however, its
shape otherwise remains unchanged.26,28

Many thermodynamics properties of ring polymer solutions in
the dilute regime can be described using the effective
representation of polymer coils as “soft colloids” interacting
via effective potentials Veff(r).

29 For instance, in our previous
work,19 it was shown using a mean-field density functional
theory (DFT) that the distinct form of Veff(r) for rings leads to a
stronger tendency of rings to structure in planar confinement in
comparison to the linear counterparts. Accordingly, the resulting
form of the depletion potential Vdep(d) between two walls
immersed in a ring polymer liquid at a distance d is quite
different from that in the case of linear chains at similar polymer
concentrations, expressed in terms of the corresponding overlap
values. In particular, the two cases differ both in terms of the
shape of Vdep(d) as well as in its value at d = 0, with the latter
being deeper for rings. This highlights the rings as stronger
depleting agents as compared to the liner chains. Furthermore,
Vdep(d) for rings

19 somewhat resembles that of hard spheres by
featuring a notable repulsive part with an oscillatory tail, both
enhancing with increasing polymer concentration.
In this work, we consider in more detail the properties of ring

polymer solutions confined between hard, repulsive wall using a
series of multiscale modeling approaches. We employ a
monomer-resolved DFT (MR-DFT), which we develop in
section 2 for ring polymers of finite length N and molecular
dynamics (MD) simulations, the details of which are given in
section 3, as well as themean-field DFT based on the soft-colloid
representation summarized in section 4. The latter approach will
be denoted as the coarse-grained DFT (CG-DFT) throughout
this work. While CG-DFT is an approach based on eliminating
degrees of freedom that can be important for large systems both
in bulk and confinement, its accuracy may be very sensitive to
the confinement strength and system density. Thus, a critical
assessment of its validly is called for. Here, we provide such an
assessment by systematically comparing CG-DFT to MD and
MR-DFT. As presented here, MR-DFT is of particular interest,
as it combines both the monomer degrees of freedom with
flexibility of DFT approaches that are typically implemented in a
grand canonical ensemble and feature readily available free
energies. One of the major advantages of the latter is a direct
access to thermodynamic quantities, such as surface tension,
which are much more cumbersome to determine in MD.
However, MD provides great flexibility in modeling interparticle
interactions, while the MR-DFT is usually limited to hard-
sphere potentials. So far, MR-DFT has been successfully used
for both flexible and semiflexible linear polymer chains;30−33

however, its application for the ring architecture is rather
scarce.34 The rest of the article is structured as follows. In section
5, we provide a monomer-resolved view on the problem at hand.
In particular, we compare the monomer densities and surface
tension at the interface as obtained from MD and MR-DFT.
Additionally, we investigate the polymer organization within
slits of variable width and the associated changes in the polymer
conformation in contact with the hard walls at different
densities. In section 6, we adopt a coarse-grained viewpoint.
The results for the ring polymer organization in planar
confinement from MD are compared to those from CG-DFT,
with the latter showing quite good agreement with the former

below the semidilute regime. Finally, we compare the polymer-
induced depletion potentials as obtained from CG-DFT and
MR-DFT, and we find good agreement between the two at
comparable densities in the dilute regime, indicating rings as
stronger depletants as compared to linear chains at similar
volume fractions of the polymer component.

2. MONOMER-RESOLVED DENSITY FUNCTIONAL
THEORY
2.1. Microscopic Model and Equation of State. In the

monomer-based version of DFT used in this work, we model
both linear and ring polymers using a freely jointed tangent hard-
sphere model, which has been extensively used in our earlier
DFT-based work on linear chains.30−32 In this model, each
polymer consists of N tangent hard-sphere monomers of
diameter σ; no bond-bending33 or torsional potentials are
incorporated in this model so that the chains are fully flexible.
For linear chains, all pairs of successive monomers (i, i + 1, with i
= 1, ..., N − 1) are connected by a rigid bond of fixed length σ,
with the monomers i = 1 and i =N corresponding to the two free
ends. In the ring model used here, these two monomers are also
connected by a rigid bond of length σ, so that all N monomers
are completely equivalent.
We consider polymers under planar slit confinement between

two hard walls. The monomer−wall interaction potential for the
walls located at z = 0 and z = d has the form:

l
moo
noo

V z
z z d

z d
( )

for 0 and

0 for 0wall =
+∞ ≤ ≥

< < (1)

One of the key ingredients of the DFT discussed in section 2.2
is the equation of state (EOS) of the homogeneous polymer
fluid. For the linear chains, we use the generalized Flory dimer
(GFD) EOS obtained by Honnel and Hall.35 According to the
GFD EOS, the compressibility factor Z for linear freely jointed
tangent hard-sphere chains is given by35

Z
N P

Y Z Y Z( ) ( 1) ( ) ( )N Nlin
b

2 1η β
ρ

η η= = + −
(2)

where β = 1/kBT, T is the temperature, P is the pressure, and η =
πρbσ

3/6 is the packing fraction of monomers with bulk density
ρb. In the present case, the bulk density ρb corresponds to a fixed
chemical potential μ, which is the true variable in the grand
canonical DFT.
In the above, the compressibility factor for the monomer

hard-sphere fluid Z1(η) is taken from the Carnahan−Starling
EOS:36

Z ( )
1

(1 )1

2 3

3η η η η
η

= + + −
− (3)

while the compressibility factor for the tangent dimer hard-
sphere fluid Z2(η) is taken from the Tildesley−Streett EOS:37

Z ( )
1 2.45696 4.10386 3.75503

(1 )2

2 3

3η η η η
η

= + + −
− (4)

Finally

Y
N( ) (2)

(2) (1)N
ex ex

ex ex

υ υ
υ υ

=
−
− (5)

where υex(k) is the volume excluded by a tangent hard-sphere k-
mer to a hard-sphere monomer averaged over conformations of
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the k-mer. For k = 1, 2, and 3, the respective excluded volumes
are35 υex(1) = 4πσ3/3, υex(2) = 9πσ

3/4, and υex(3)≈ 9.82605σ3,
while for larger values of k, υex(k) can be estimated from35

k k( ) (3) ( 3)( (3) (2))ex ex ex exυ υ υ υ≈ + − − (6)

The above expression for the compressibility factor of linear
chains can be written in the form:38

N P a b c1
(1 )b

2 3

3
β
ρ

η η η
η

= + + +
− (7)

where constants a, b, and c follow from eqs 2−6. Subtracting the
ideal compressibility factor (Zid ≡ 1) from eq 7 and using
standard thermodynamic relations,39 one obtains the following
result for the excess free energy per site of linear chains:38

f c
b c

a b c b a c

(1 ) ln(1 )
1 2

1
1

2(1 )
3 3

2

ex
lin

2

η
η

η

= − + − + − −
−

+ + + +
−

− − + −
(8)

which is one of the inputs required by DFT, as discussed in
section 2.2 below.
For the ring polymers, we use the EOS obtained by Jiang et

al:34
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which yields for the excess free energy per site of ring polymers:

i
k
jjjj

y
{
zzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjj

y
{
zzzz

f
4 3
(1 )

5
2

ln
1

1 0.5
ln

1
(1 0.5 )

2
3

ln
1

0.5
1
3

ln (1 ) 0.5

ex
ring

2

2 2
η η

η
η

η
η
η

η
η

η η

= −
−

+ −
−

− −
−

+ −
+

− [ − + ]

(10)

2.2. Density Functional Theory. The starting point of any
DFT-based treatment40,41 is the expression of the grand free
energy,Ω, as a functional of the polymer density profile ρp(Rp),
where Rp = (r1, r2, ..., rN) is a collective variable with the
individual monomer coordinates ri. The minimization ofΩ with
respect to ρp(Rp) yields the equilibrium polymer density
distribution. The functional Ω is related to the Helmholtz free
energy functional, F, via a Legendre transform:

F VR R R R R( ) ( ) d ( ) ( )p p p p p p p ext p∫ρ ρ ρ μΩ[ ] = [ ] + [ − ]
(11)

where μ is the polymer chemical potential and Vext(Rp) is the
external field, which in the present case is due to the interaction
of the polymer beads with the two walls:

V VR r( ) ( )
i

N

iext p
1

wall∑=
= (12)

We employ the following approximation for the Helmholtz
free energy functional, which separates it into ideal and excess
parts according to42

F F FR R r( ) ( ) ( )p p id p p exρ ρ ρ[ ] = [ ] + [ ] (13)

with the ideal functional given by42,43

F

V

R R R R

R R R

( ) d ( ) ln ( ) 1

d ( ) ( )

id p p p p p p p

p p p b p

∫
∫

β ρ ρ ρ

β ρ

[ ] = [ − ]

+
(14)

while the excess term is a functional of the monomer density
given by42,43

r R r r R( ) d ( ) ( )
i

N

ip
1

p p∫ ∑ρ δ ρ= −
= (15)

For the excess free energy functional, we adopt the weighted
density approximation:44

F fr r r r( ) d ( ) ( ( ))ex ex∫ρ ρ ρ[ ] = ̅ (16)

with

wr r r r r( ) d ( ) ( )∫ρ ρ̅ = ′ ′ | − ′|
(17)

In the above, fex(ρ) is the excess free energy density per site of
the polymer melt with site density ρ (which is obtained from the
corresponding equation of state given in section 2.1), ρ̅(r) is the
weighted density, and w(r) is the weighting function, which is
normalized according to ∫ dr w(r) = 1. In the present work, we
employ the simple square-well form for the weighting function,
whose range is given by the diameter σ of the polymer
segment:45

w r r( )
3

4
( )3πσ
σ= Θ −

(18)

where Θ(...) is the Heaviside step function. While more
sophisticated forms of weight function are available in the
literature (e.g., those used in the fundamental measure theory
version of DFT),46 earlier studies47 have shown relative
insensitivity of DFT results for polymeric systems to the specific
choice of the weight function.
The minimization of the grand free energy functionalΩ yields

the following result for the equilibrium polymer density profile:

V VR R R R( ) exp ( ( ) ( ) ( ) )p p ext p b p pρ β μ= [− + + Λ − ]
(19)

where

F F
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δρ
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For our microscopic model, the binding energy for the linear
chains has the form:

V gR r r
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(21)

while for the rings it takes the form:
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with the convention r1 ≡ rN+1.
In order to obtain the segment density profile for linear chains,

we now substitute the external field from eq 12, the excess free
energy from eqs 8 and 16, and the bonding energy from eq 21
into eq 19. The resulting polymer density profile ρp(Rp) is then
substituted into eq 15, which gives the following result for the
segment density profile of linear chains:42

G Gr r r r( ) exp exp ( ) ( ) ( )
j

N
j N jlin

1
lin
( )

lin
( 1)∑ρ βμ β λ= [ ] [− ]

=

− +

(23)

where

V f f wr r r r r r r r( ) ( ) ( ) d ( ) ( ) ( )wall ex ex∫λ ρ ρ ρ= + [ ̅ ] + ′ ′ ′ [ ̅ ′ ] | − ′|

(24)

G G gr x x x r x( ) d exp ( ) ( ) ( )i i
lin
( )

lin
( 1)∫ β λ= [− ] | − |−

(25)

and G(1)(r) = 1.
In order to obtain the segment density profile for ring chains,

we substitute the external field from eq 12, the excess free energy
from eqs 10 and 16 and the bonding energy from eq 22 into eq
19. The resulting polymer density profile ρp(Rp) is then
substituted into eq 15 to give the following segment density
for ring chains:

N

G g

r r

x x x r r x

( ) exp exp ( )

d exp ( ) ( , ) ( )N

ring

ring
( 2)∫

ρ βμ β λ
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with
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ring
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(27)

and

G g gx r y y y x y r( , ) d exp ( ) ( ) ( )ring
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(28)

where N ≥ 3, which is a necessary condition to form a ring.
In the limitN→∞, the aboveDFT result for the ring segment

density profile takes a simplified form:48

N Gr r r( ) exp exp ( ) ( )ring 2ρ βμ β λ= [ ] [− ] (29)

where

G G gr x x x r x( ) d exp ( ) ( ) ( )ex∫ βμ β λ= [ − ] | − |
(30)

with
f

ex
ex

b

μ =
ρ ρ ρ

∂
∂ =

.

Due to its simplicity, the above result has been used (as an
approximation) in an earlier DFT study34 of ring polymers of
finite length N. To the best of our knowledge, no DFT
implementation of eqs 26−28 for ring polymers of finite length
N has been yet reported in the literature.

2.3. Numerical Implementation. For the planar confine-
ment considered in this work, segment density profiles are
functions of a single coordinate z. Thus, for linear chains, eq 23
takes the form42

z z G z G z( ) exp exp ( ) ( ) ( )
j

N
j N jlin

1
lin
( )

lin
( 1)∑ρ βμ β λ= [ ] [− ]

=

− +
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with
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(32)

and

g z z x y g r r( ) d d ( )∫ ∫̅ | − ′| = ′ ′ | − ′|
(33)

Likewise, for ring polymers under planar confinement, eq 26
takes the form

z N z
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and

G z z z z g z z
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(1) ∫ β λ′ = ″ [− ″ ] | − ″|

| ′ − ″| (36)

In our numerical implementation, we compute the density
profiles on an equidistant grid along the z axis with the stepΔz =
0.025σ. The eq 31 for the segment density profile of linear chains
and the analogous equation for the ring polymers are both solved
iteratively using Picard method, the tolerance criterion for
terminating the iterative procedure is set to 10−6.

3. MOLECULAR DYNAMICS SIMULATIONS

We performed molecular dynamics (MD) simulations of both
ring and linear polymers chains confined within a slit of variable
width d. Fully flexible polymer chains were modeled using the
standard Kremer and Grest bead−spring model.49 The excluded
volume potential between a bead pair was given by the Weeks−
Chandler−Andersen (WCA) potential
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where Θ(...) is the Heaviside step function. Since the potential
(eq 37) is purely repulsive, it corresponds to polymer chains in
good solvent conditions. Neighboring monomers along the
polymer were connected via the finitely extensible nonlinear
elastic (FENE) potential
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with rmax = 1.5σ and K = 30ϵ/σ2. No bending was used in the
present case.
In our simulations, steeply repulsive structureless walls were

parallel to the xy-plane of a Cartesian coordinate system and
always placed at z = 0 and d. The interaction between the wall
and a monomer at the position r = (x, y, z) was similarly given by
the WCA potential (eq 37):

V z V z V d z( ) ( ) ( )wall WCA WCA= + − (39)

where the first term corresponds to the wall at z = 0 and the
second term to that at z = d. As usual, in the MD simulations σ
was chosen as the unit of length, and the reduced temperature
was set to unity: kBT* ≡ kBT/ϵ = 1. Finally, note that the MD
model for polymer chains employed here differs from the one
used in the MR-DFT, where the monomer−monomer and
monomer−wall interaction potentials are completely hard. The
reason is convenience in performing theMD simulations, but no
effect is expected, since in the Kremer−Grest model the
equilibrium bond length is stiff.
Ring and linear polymer solutions composed of chains of

length N = 40, i.e., the same length as chains in the MR-DFT,
were initialized in a large simulation box that was subsequently
contracted to the final volumeV = Lx× Ly× d. The values of Lx =
Ly were chosen to match a given average monomer density ρ =
NM/V in a slit of width d. In every case, we used M = 500
polymer chains. Typically, we considered monomer densities
ranging from ρσ3 = 0.1 to ρσ3 = 0.6 with a step of 0.1. In addition,
we highlight again that ρ of MD and ρb of MR-DFT generally do
not coincide, since the former is an average, canonical density
and the second is a proxy for μ; in other words, ρb is the
monomer density of a bulk fluid that coexists with the confined
one. To maintain the constant temperature kBT = ϵ, the system
was coupled to a Langevin thermostat with γ = 0.1τ−1, where τ =
σ(m/ϵ)1/2 andm is the monomermass. The equations of motion
of the system were integrated with the time step Δt = 0.005τ.
MD simulations were performed using the HOOMD-blue
simulation package50,51 on graphics processing units (GPU’s). A
typical MD run consisted of an equilibration phase with 107

integration time steps and a subsequent up to 108 steps long
production phase. During a production run, monomer densities
ρ(z) were measured on an equidistant grid along the z-axis with
the step Δz = 0.01σ, whereas polymer center-of-mass densities
ρCM(z) and polymer conformational properties (see Section 5)
with the step Δz = 0.1σ.

4. COARSE-GRAINED DENSITY FUNCTIONAL THEORY

Similar to the MR-DFT, we employ a grand canonical CG-DFT,
in which the grand potential Ω of the system is expressed
through densities of the coarse-grained degrees of freedom.39,40

In our model, we will use effective pair interactions between two
polymers’ centers of mass in combination with an effective
interaction potential between a polymer’s center of mass and a
hard wall. Therefore,Ω of CG-DFT is a functional of the center
of mass polymer density ρCM(r):

F F

Vr r rd ( ) ( )

CG DFT CM id CM ex CM

CM ext∫
ρ ρ ρ

ρ μ

Ω [ ] = [ ] + [ ]

+ [ − ]

−

(40)

where μ = constant is a fixed value of the fluid’s chemical
potential, Vext(r) is the external potential, i.e., the effective
potential between a polymer’s center of mass and a hard wall,
Fid[ρCM] is the ideal contribution to the free energy

F r r rd ( ) ln( ( ) ) 1id CM
1

CM CM
3∫ρ β ρ ρ[ ] = [ Λ − ]−

(41)

with β = 1/kBT and m2 /2
pπβΛ = ℏ (mp is the polymer’s

mass), and the excess free energy Fex[ρCM] is modeled here with
the mean-field functional

F Vr r r r r r
1
2

d d ( ) ( ) ( )ex CM CM CM eff∬ρ ρ ρ[ ] = ′ ′ | − ′|

(42)

with Veff(r) being the effective pair potential between two
polymers’ centers of mass. As Veff(r) for both ring17,27,28,52 and
linear29,53 polymers belongs to the class of ultrasoft pair
potentials, i.e., fulfilling the condition ∫ 0

∞ dr r2 Veff(r) < ∞, it
is expected that the mean-field theory (eq 42) will provide
reasonably accurate results given that the polymer concentration
is below the semidilute regime.54−57 We nevertheless extend our
analysis to higher densities in order to explore in detail the limits
of applicability of the models at hand.
The equilibrium center of mass density profiles are obtained

by minimizing the grand potential (eq 40) with respect to
ρCM(r), yielding the following integral equation:

V Vr r r r r rln( ( ) ) d ( ) ( ) ( )CM
3

CM eff ext∫ρ ρ β β

βμ

Λ + ′ ′ | − ′| +

= (43)

where the fixed chemical potential μ can be expressed through
the density of the polymer fluid in the bulk, ρbp:

V

V V

r r r r r

r

ln( ( )/ ) d ( ) ( )

( )

CM bp CM eff

ext bp 0

∫ρ ρ ρ β

β ρ β

+ ′ ′ | − ′|

+ = (44)

with V0 = ∫ dr Veff(|r|). Above, we used the fact that
i
k
jjj

y
{
zzz

F

M
T V

( )

,

bpμ =
ρ∂

∂
for the bulk fluid’s free energy F(ρbp) = Mβ−1

[ln(ρbpΛ3) − 1] + 1/2(MρbpV0), and M denotes the number of
polymer chains in the system. Finally, we note that the bulk
polymer density ρbp, which corresponds to some fixed chemical
potential μ in the grand canonical ensemble, is not the same as
the average polymer density ρp ≡ M/V that is typically used in
MD in the canonical ensemble. To accurately compare the
results fromMD and CG-DFT, it is therefore necessary to relate
ρp with ρbp, and we will treat this issue systematically in the
sections to follow.
In this work, we use the effective pair potentialVeff(r) between

the centers of mass of two ring polymers obtained in ref 27 and
modeled by the following analytical expression:17
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with the parameters U0 = 1.434[Rg,0
ring]−3, R> = 1.419Rg,0

ring, R< =
1.000Rg,0

ring, and R± = R> ± R<. Here, Rg,0
ring denotes the radius of

gyration (see section 5 for an explicit definition) of a ring
polymer at infinite dilution. The potential (eq 45) was derived
for two isolated rings at infinite dilution, thereby limiting its
applicability to dilute polymer concentrations. For the effective
ring−wall interaction Veff

wall(r)≡ Veff
wall(z) (assuming that the walls

are orthogonal to the z-direction in the given system geometry),
we utilize the potential obtained in ref 19 for rings of lengthN =
40 that can be accurately fit using Veff

wall(z) = a0 exp(a1z + a2z
2 +

a3z
3) with a0 = 64.1620(4), a1 = −8.360(30), a2 = 7.657(39),

and a3 = −3.885(18). Whenever CG-DFT results are presented
for linear chains, we use the Gaussian effective potential between
the polymers’ center of mass developed in ref 58 in combination
with the effective external potential for linear chains from ref 19.
Due to a series of different length scales used in this work, for

the sake of clarity let us again review the quantities presented in
the following sections as well as the units employed. In section 5,
wemainly focus on the comparison between the results obtained
with the MR-DFT and MD, thus the monomer diameter σ is
adopted as the unit of length. We typically compare monomer
density profiles h(z) = ρ(z)/ρ − 1, where ρ(z) is the monomer
density within a slit and ρ = NM/V is the average monomer
density. To highlight the differences between rings and linear
chains, it is also interesting to consider polymer center-of-mass
profiles hCM(z) = ρCM(z)/ρp − 1, where ρCM(z) is the polymer
center-of-mass density in a slit and ρp = M/V is the average
polymer density, respectively. The average polymer density ρp is
related to the averagemonomer density ρ through ρp = ρ/Nwith
N being the polymer length. In section 6, we focus on the
comparison between CG-DFT with MD and the MR-DFT. As
the infinite dilution radius of gyration Rg,0 of polymers is the only
relevant length scale in CG-DFT (eq 40), we adopt it as the unit
of length throughout that section. For the two polymer

architectures considered, we find Rg,0
lin = 4.125σ and Rg,0

ring =
3.064σ for chains of lengthN = 40 using theMDmodel outlined
in section 3. In addition, it is convenient to use the express the
average polymer densities ρp in terms of the polymer overlap
density ρp* = 3/(4πRg,0

3 ) that demarcates the onset of the
semidilute regime. In terms of the monomer units, we have ρp*σ

3

= 0.0034 for linear chains and ρp*σ
3 = 0.0083 for rings.

5. MONOMER-RESOLVED VIEWPOINT

5.1. Polymer Solutions in Contact with aWall.We begin
by presenting the structure of ring and linear polymer solutions,
as obtained from MD and MR-DFT, consisting of chains of
length N = 40 confined within a broad slit of width d = 50σ. For
this N, such an arrangement effectively corresponds to polymer
solutions in contact with a single hard wall. To take into account
the difference between monomer-wall interaction potentials in
MD (eq 39) and MR-DFT (eq 1), the walls in MR-DFT were
placed at z = σ and d − σ (that is, effectively dMR−DFT ≈ dMD −
2σ). Figure 1 shows the monomer density profiles h(z) = ρ(z)/ρ
− 1 for the ring and linear polymer case at various densities from
MD and MR-DFT. In the MR-DFT, the results correspond to
bulk densities ρb in a grand canonical ensemble (taken to be the
same as ρ) and a constraint that the density in the middle of the
slit coincides with ρb: ρmiddle ≡ ρ(d/2) = ρb. In contrast, in MD
the results were obtained from simulations at a fixed average
monomer densities ρ in theNVT ensemble. Due to the latter, the
enhanced depletion of polymer chains at the confining walls59

leads to ρmiddle that deviates from ρ. In particular, in MD we find
ρmiddleσ

3 = 0.1096, 0.2124, 0.3143, 0.4160, 0.5176, and 0.6196
compared to ρmiddleσ

3 = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 in MR-
DFT, respectively. In summary, the difference in the simulation
ensembles leads to a somewhat different average monomer
average density ρ = d−1 ∫ 0

d dz ρ(z) in the slit in theMR-DFT that
is about 3−10% different from ρb. Accordingly, in Figure 1 we
normalize the MR-DFT monomer density profiles with
observed average density ρ. Despite such a discrepancy between
the two modeling approaches, we find very good agreement
between the final density profiles inMD andMR-DFT. For both
rings and linear chains, MR-DFT reproduces the location of
density peaks as well as main developments of the profiles (see
Figure 1a,b) at both lower and higher concentrations (also note
the difference in the employedMD andMR-DFTmodels). This
indicates that MR-DFT is a robust approach that is expected to

Figure 1.Monomer density profiles for (a) ring and (b) linear polymers confined within a broad slit, effectively resembling a contact with a single hard
wall, fromMD (solid lines) and monomer-resolved DFT (open circles). The MD results were obtained for average monomer densities ρ indicated in
the legend of panel (a), whereas the MR-DFT results correspond to bulk densities ρb in a grand canonical ensemble indicated in the legend of panel
(b). While we impose ρb = ρmiddle in MR-DFT, this does not necessarily hold true in MD. MD and DFT results were obtained from simulations of
polymer solutions in a slit of width d = 50σ≫Rg

ring/lin. For the sake of clarity, the profiles for consecutive densities have been shifted vertically by a value
0.5.
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deliver accurate structure at concentration where more coarse
DFT methods based on soft potentials are no longer applicable.
As shown in Figure 2, ring polymers feature a higher tendency

to structure at the confining wall, as compared to the linear ones.
We illustrate this using the MD polymer center-of-mass density
profiles hCM(z) = ρCM(z)/ρp − 1 (where ρp = M/V) is the
average polymer concentration within the slit) for different
monomer densities ρ, as seen in Figure 2a,d. We find that linear
chains feature a single density peak followed by a uniform
distribution of chains as indicated by a horizontal profile of
hCM
lin (z) (see Figure 2d). The rings similarly exhibit the first main
peak, which is however more pronounced as compared to the
linear counterparts, followed by a shallow dip in hCM

ring(z) and
another very small secondary peak (see Figure 2a and S1). Such
spatial organization is preserved at all densities ρ considered for
both architectures, although in both cases the main peaks are
shifted toward the confining wall, demonstrating enhanced
aggregation of polymers in the respective region. In summary,
these results confirm our previous analysis based on a mean-field
DFT that employed a soft particle representation of ring and
linear polymers valid at dilute concentrations19 (a quantitative
comparison is given in the section 6). For the average monomer
density ρσ3 = 0.3, we have ρp/ρp* ≈ 0.9 for ring, i.e., about the
onset of the semidilute regime, and ρp/ρp* ≈ 2.2 for linear
polymers. Here, ρp* = 3/(4πRg,0

3 ) is the overlap concentration of
the respective species and Rg,0 is the polymer’s radius of gyration
at infinite dilution, as defined below.
To gain a better understanding of the fluid structure within

the slit and its layering at the walls, we additionally quantify the
size and orientation of polymer conformations in MD using the
three eigenvalues λ1, λ2, and λ3 (λ1≥ λ2≥ λ3) and the associated
normalized eigenvectors e1̂, e2̂, and e3̂ of the radius of gyration
tensor G, whose components are defined as follows:

G
N

r r r r
1

( )( )
i

N

i i
1

, cm, , cm,∑= − −αβ α α β β
= (46)

where ri is the position of the ith monomer, r r
N i

N
icm

1
1= Σ = is the

center of mass position of the polymer, and α and β = 1, 2, and 3
denote the three Cartesian components. The polymer’s radius of
gyration is then given by Rg ≡ ⟨R̂g

2⟩1/2 with R̂g
2 = λ1 + λ2 + λ3,

where ⟨...⟩ denotes a statistical average over conformations and a
hat stands for instantaneous values. Using the eigenvectors and
corresponding eigenvalues of G, we quantify the average
extension of a polymer chain in the directions parallel and
perpendicular to the walls, R∥ ≡ ⟨R̂∥

2⟩1/2 and R⊥ ≡ ⟨R̂⊥
2 ⟩1/2,

respectively, given by

R sin sin sin2
1

2
1 2

2
2 3

2
3λ θ λ θ λ θ̂ = + + (47a)

R cos cos cos2
1

2
1 2

2
2 3

2
3λ θ λ θ λ θ̂ = + +⊥ (47b)

where θi is the angle between the eigenvector eî and the z-axis
(perpendicular to the confining walls), implying that cos θi = eî·z.̂
In addition, a random orientation of polymers in the slit results
in R⊥

2 = Rg
2/3 and R∥

2 = 2Rg
2/3. Finally, the orientation of a

polymer in the slit can be quantified by means of the orientation
of the eigenvectors eî using the second Legendre polynomial

P (cos )
1
2

(3 cos 1)i i2
2θ θ= −

(48)

whose average yields 0, if the eigenvector eî features no
preferential orientation along z.̂ However, its average gives 1
or−0.5, indicating that eî is aligned with z ̂ or lies orthogonally to
it, respectively.
In the following section, we will focus on the conformational

properties for polymer solution at ρσ3 = 0.3, although essentially
the same trends apply to other densities as well (compare

Figure 2.Organization of ring (top row) and linear (bottom row) polymer chains in contact with a hard repulsive wall. Center-of-mass density profiles
for (a) ring and (d) linear polymers at different average monomer densities ρ. The total Rg, parallel to the wall Rg,∥, and orthogonal to the wall Rg,⊥
radius of gyration of a polymer for (b) rings and (e) linear chains as a function of the distance z away from the wall for ρσ3 = 0.3. The alignment of the
three eigenvalues of a polymer’s gyration tensor with the confining wall quantified by means of the second Legendre polynomial (eq 48) for (c) rings
and (f) linear chains as a function of z for ρσ3 = 0.3. The results presented here correspond to polymer solutions confined in a broad slit of width d =
50σ. Qualitatively similar dependence of the conformational properties on z is obtained for other densities (see Figures S1 and S2). The results
presented here were obtained in MD.
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Figures 2 to S1 and S2). Naturally, the ring and linear polymer
chains located in close proximity to the confining wall feature
extended conformations that almost entirely lie in the xy-plane,
as seen from vanishing values of Rg,⊥ in Figures 2b,a. This is
further supported by the fact that ⟨P2(cos θ1)⟩ and ⟨P2(cos θ2)⟩
approach −0.5 for the two larger eigenvalues of the polymer’s
gyration tensor, whereas for the smallest one, we find ⟨P2(cos
θ3)⟩≃1 at small wall separations. For both architectures, we find
that at the position of themain density peak (z≈ 3σ) the average
polymer size is about the same as in the bulk, albeit being more
extended in the in-plane direction. Furthermore, at this point we
still find that the largest eigenvalue λ1 lies predominantly in the
xy-plane, whereas the middle one λ2 becomes almost isotropic
with a slight tendency to align with the z-axis (see Figure 2c,f).
As we move away from the wall, in the case of linear chains the
polymer’s orientation gradually becomes isotropic, and Rg,⊥ and
Rg,∥ approach monotonously their bulk values (Figures 2e,f),
flattening at about the point where the corresponding center-of-
mass density profile becomes horizontal (Figure 2a). Interest-
ingly, while such behavior is generally similar in the case of rings
(Figures 2e,f), there exist certain differences pertinent to the
layer of reduced density seen for polymer rings (4.5 ≲ z/σ ≲ 8
for ρσ3 = 0.3 in Figure 2a), namely, in the latter layer the rings
feature maximal Rg,⊥ and positive values of ⟨P2(cos θ1)⟩
combined with negative values of ⟨P2(cos θ2)⟩ and ⟨P2(cos
θ3)⟩, indicating a tendency toward reorientation as compared to
the first ring layer in the wall proximity. As we show below, such
a structural arrangement of rings can even become amplified by
confining polymer solutions to narrower slits, where the density
correlations become stronger.
We now assess the effect of polymer architecture on the

surface tension γ of the liquid−wall interface. In MD, we
compute the surface tension using the Irving and Kirkwood
approach60−62 based on evaluating the normal PN(z) and
tangential PT(z) components of the pressure tensor within the
slit and then integrating their difference:

z P z P z
1
2

d ( ) ( )
d

0
N T∫γ = [ − ]

(49)

where the equation above assumes that there are two hard walls
in the system, located at z = 0 and z = d, respectively.
Accordingly, the two components of the pressure at the position
z can be evaluated as follows:61,62
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where ρ(z) is the monomer density at z, A ≡ Lx × Ly is the
interface area, rij = rj − ri, U′(rij) is the derivative of a pair
potential, and Θ(...) is the Heaviside step function. The sum in
eqs 50 and 51 runs over different particle pairs, and for any pair
contribution between particles at ri and rj, one needs to update
the pressure components for all z that lie between zi and zj. The
contributions from the wall-monomer interactions can be
similarly computed using eqs 50 and 51 by taking into account
that the tangential part is identically zero. Finally, note that eqs
50 and 51 applies only in the case of pair interactions between
particles, and other expressions are necessary in the case of
three-body or multibody forces.62 The surface tension γ in the
MR-DFT was computed from equilibrium monomer density
profiles as detailed in ref 59.
In Figure 3, we show the surface tension γ at the interface as

obtained from MD and MR-DFT. Figure 3a shows the
dependence of the normal PN(z) and tangential PT(z) pressure
components at the interface for rings at ρσ3 = 0.3 (we find very
similar profiles for linear chains at the same densities). As
expected, due to mechanical stability,61 we find a constant
profile for PN(z) ≡ constant, and variations in PT(z) with both
components becoming equal further into the slit. In Figure 3b,
we compare the surface tensions as obtained from MD at
different average monomer densities ρ and the MR-DFT at
different bulk monomer densities ρb. To enable a comparison
with the MR-DFT, we assumed that the interface in MD is
effectively located at z ≈ σ; thus, the integral over the pressure
component difference PN(z)− PT(z) in (eq 49) runs between z1
= σ and z2 = d − σ. We find very good agreement between the
surface tensions in MD and MR-DFT at lower monomer
densities (ρσ3 ≲ 0.3), but some differences are observed for ρσ3

≳ 0.3, where the MR-DFT yields higher values of γ than in MD.
Such a difference might stem from the approximations
employed in the EOS, as even small deviations in the density
profiles can lead to notable changes in the free energy that is used

Figure 3. (a) Tangential PT(z) and normal PN(z) components of the pressure as a function of the distance away from the wall for a ring polymer
solution at ρσ3 = 0.3. The profiles for linear chains are very similar. (b) Surface tension for ring and linear solutions in contact with a hard repulsive wall
as extracted from MR-DFT for different monomer bulk densities ρb (solid lines) and MD at different average monomer densities in the slit ρ (open
circles).
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for computing the surface tension. From both methods, we
systematically observe that rings feature a somewhat smaller γ
than in the case of linear chains. Although it indicates that at the
fixed monomer density linear chains generate a stronger
attraction between the walls immersed into the polymer fluid

(limd→0 Vdep(d) = −2γ), the conclusion turns out to be the

opposite if one compares ring and linear polymer solutions at the

same polymer volume fraction, i.e., in terms of the polymer

overlap concentration as discussed further in section 6.

Figure 4.Center-of-mass density profiles for (a−c) ring and (d−f) linear polymers confined within a slit of width d for different values of d and average
monomer densities ρ obtained from MD. The legends in panels (b−f) are the same as that in panel (a).

Figure 5.Conformational properties of ring (top row) and linear (bottom row) polymers confined in a slit of width d = 6Rg,0
ring and 6Rg,0

lin , respectively, at
ρσ3 = 0.3. The total Rg, parallel to the wall Rg,∥, and orthogonal to the wall Rg,⊥ radius of gyration of a polymer for (a) rings and (c) linear chains as a
function of the distance z away from the first wall for ρσ3 = 0.3. The dashed curves in (a) and (c) indicate the respective center-of-mass density profiles
that have been arbitrarily scaled for clarity. The alignment of the three eigenvalues of a polymer’s gyration tensor with the confining wall quantified by
means of the second Legendre polynomial (48) for (b) rings and (d) linear chains as a function of z for ρσ3 = 0.3. The results presented here were
obtained in MD.
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5.2. Polymer Solutions Confined between Two Hard
Walls. We now consider ring and linear polymer solutions
confined in narrower slits. Anticipating a comparison with CG-
DFT, in MD for the latter two cases we have simulated slit
widths that correspond to a fixed multiple of the polymer’s
radius of gyration at infinite dilution,Rg,0

ring/lin. The organization of
ring and linear polymers in terms of their center-of-mass density
profiles hCM(z) within slits of width d/Rg,0 = 2, 4, and 6 for
different average monomer densities ρ is shown in Figure 4. In
the narrowest slit that we simulated (d/Rg,0 = 2), we find that the
polymers at all densities considered tend to be located in the
center of the slit in both cases (Figure 4a,d). A somewhat
different pattern arises when d is increased. In particular, in the
case of linear chains, we find two peaks of hCM(z) at the walls and
a flat density profile in the middle of the slit for all ρ considered
(Figure 4e,f), similar to the results in a very wide slit in Figure 4d.
More correlated and oscillatory density profiles are found for
rings (Figure 4b,c) that tend to develop a secondary peak in the
center of the slit at higher densities, in agreement with previous
CG-DFT results.19

Similar to the case of a contact with a single hard wall (Figure
2), we find that more pronounced density correlations in the
case of rings are associated with conformational changes in the
polymer fluid layers at the wall. We illustrate this in Figure 5 by
comparing polymer conformational properties within the slit for
both rings and linear chains for d = 6Rg,0 at ρσ

3 = 0.3. For linear
chains, we again observe that Rg,⊥ and Rg,∥ monotonously arrive
at the bulk value corresponding to the flat region of hCM(z)
(Figure 5c). However, for rings we find a nonmonotonic
behavior with Rg,⊥ having a maximum close to the region of
reduced polymer density (Figure 5a). As in the case of a single
wall but more pronounced here, in the latter region the biggest
eigenvalues of the ring’s gyration tensor λ1 tends to orient in the
direction orthogonal to the wall (compare Figure 5 panels b and
d).

6. COARSE-GRAINED VIEWPOINT

From now on, we will adopt a coarse-grained viewpoint on the
problem at hand by treating polymers in solution as soft
colloids.29,53,56 While such a description leads to relatively
simple effective pair interactions between the chosen polymer’s
coarse-grained degrees of freedom that can allow for systematic
analytical treatment, it certainly oversimplifies multibody
correlations between the chains, as well as neglects chain
deformations that become increasingly important at higher
system densities. Nevertheless, as we will show below using a
mean-field CG-DFT, even such an approach provides a
reasonably good description of ring polymer systems at lower
densities when compared to more computationally expensive
MD and MR-DFT methods discussed previously.
6.1. Polymer Solutions Confined within a Slit. We now

consider CG-DFT for polymer solutions confined within a slit of
width d, that is being in contact with two parallel, hard walls
located at z = 0 and d. In such a geometry, the external potential
Vext(r) ≡ Vext(z) in eq 40 becomes

l
m
oo
n
ooV z

V z V d z z d
( )

( ) ( ) for 0

otherwise
ext

eff
wall

eff
wall

=
+ − ≤ ≤

+∞ (52)

Such a form of the external potential clearly implies that ρCM(r)
≡ ρCM(z) (ρCM(z) = 0 for z < 0 and z > d) and allows us to recast
the original integral eq 44 for 0 < z < d as follows:19
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(53)

for 0≤ z≤ d, whereΔρCM(z) = ρCM(z)− ρbp and β V̅eff(|z− z′|)
= ∫ −∞

+∞ dx′ ∫ −∞
+∞ dy′ βVeff(|r− r′|).More details on the derivation

of eq 53 and on CG-DFT used here are available in ref 19. The
integral eq 53 is solved iteratively until the tolerance criterion set
to 10−6 between two consecutive iterations is satisfied.
Figure 6 shows the resulting CG-DFT center-of-mass density

profiles hCM(z) = ρCM(z)/ρp − 1 for ring polymers in

comparison to the MD results in a broad slit of width d = 50σ
≈ 16.3 Rg,0

ring at various polymer densities. In such a wide slit, two
hard walls are essentially independent from each other. To
compare MD and CG-DFT results, we first matched the slit
width in CG-DFT (dCG−DFT ≈ dMD − 2σ due to differences in
the monomer−wall interaction potentials) and then determined
the bulk polymer density ρbp that corresponds to the same
average polymer density ρp = d

−1 ∫ 0
d dz ρCM(z) as in MD. Figure

6 contains density profiles from CG-DFT and MD at ρp/ρp* =
0.3, 0.6, 0.9, and 1.2 that correspond to the MD monomer
densities ρσ3 = 0.1, 0.2, 0.3, and 0.4, respectively. We find very
good agreement between the two approaches at the two lower
concentrations in the dilute regime. A similar comparison is
found for narrower slits (see Figure 7 for d = 6Rg,0

ring and Figure S3
for d = 4 Rg,0

ring), confirming the validity of a simple mean-field
theory (40) based on the infinite-dilution interaction potentials
below the semidilute regime. As already shown in Figure 4 and in
ref 19, even under such relatively dilute conditions rings feature a
higher propensity to structure at the confining walls as compared
to equally sized linear chains. Clearly, as we consider ring

Figure 6. Center-of-mass density profiles for ring polymers in a broad
slit of width d ≈ 16.3Rg,0

ring (effectively resembles a contact with a single
hard wall) from monomer-resolved MD (solid lines) and CG-DFT
(open circles) for different mean polymer densities ρp in the slit.
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polymer solutions that approach the semidilute regime (ρp ≳
ρp*), CG-DFT fails by overestimating the structuring effect and
the oscillatory character of density profiles. In addition, CG-
DFT does not capture pronounced chain deformations near the
walls that ultimately lead to tighter packing and stronger layering
of polymers at the surface in MD and MR-DFT. Nevertheless, a
quite good accuracy of CG-DFT at densities below the overlap
concentration ρp* gives confidence in employing such approach
in the estimation of ring-polymer-induced depletion interactions
between two walls or two colloidal particles. The latter case is of
particular interest, as for large colloid−polymer size ratios the
monomer-based simulations are not feasible computationally.
6.2. Surface Tension of the Interface.DFT is particularly

suited for computing thermodynamic quantities that can be
expressed in terms of grand potential differences, such as the
surface tension of the wall−liquid interface or the fluid-induced
depletion potential between the walls, as the grand potentialΩ is
readily available from equilibrium density profiles. Therefore, in
what follows we compare the results from CG-DFT and MR-
DFT at different bulk polymer densities ρbp for both ring and
linear polymer solutions. In this section, we will focus on the
surface tension of the interface between a hard wall and a
polymer fluid, γ, whereas in the following one we will return to
the determination of depletion potentials.
Let us consider a hard wall in contact with a fluid at one side of

it, so the total system volume is V = A × L with A as the area of
the interface and L as the system length in the direction
orthogonal to the wall. Then, γ can be obtained as the difference
between the grand potential of the system per unit area with and
without the wall:39

L V

A
lim

( ) ( )
L

1 b bpγ
ω ρ

=
Ω −

→∞ (54)

where Ω1(L) is the grand potential of the fluid in contact with a
hard wall, and ωb is the grand potential density of the bulk fluid,
ωb ≡ Ωb/V (note that ωb = −p with p being the pressure of the
bulk fluid). In the case of CG-DFT, we have computed the
equilibrium density profiles using an integral equation similar to

eq 53 but without the contribution of the second wall located at
z = d (more specifically, without the terms −β Veff

wall(d − z) +
ρbp∫ d−z

+∞ dz′ β V̅eff(|z′|) on the right-hand side of eq 53) and used
them to evaluate the corresponding grand potential difference
(eq 54). A more elaborate discussion on the determination of γ
for the given mean-field CG-DFT is available in ref 19.
The surface tension of the interface for ring and linear

polymers both from CG-DFT and MR-DFT is shown in Figure
8 and compared to earlier MD results. We find good agreement

between all methods for ρp≲ ρp*. Interestingly, when the surface
tension for the two architectures considered is expressed in
terms of the volume fraction of the polymer component, the
trend found in Figure 3 is reversed, and the rings appear as
stronger depletants.

6.3. Polymer-Induced Depletion Potentials between
the Walls. We finally consider the polymer-induced depletion
potentials between the two confining walls. The depletion
potential Vdep(d) in this case is caused by the reduced entropy of
the polymer fluid confined between two impenetrable walls as
compared to the bulk. Let us consider two hard walls immersed
in a polymer solution at a distance d in a system of total volumeV
= A × L, where A is the cross-sectional area of the box and L is
the box length. The depletion potential Vdep(d) is defined as the
difference between the grand potential Ω(d) of the system for a
given separation d and the value of the grand potential when the
walls are far away from each other, Ω(d → ∞), given that the
system volume V is constant:63

V d d d( ) ( ) ( )dep = Ω − Ω → ∞ (55)

For a given value of d, we can write Ω(d) = Ω2(d) + Ωrest(d),
whereΩ2(d) in the grand potential contribution arising from the
fluid in the region within the two walls and Ωrest(d) is the grand
potential of the fluid outside. The latter term contains the cost of
forming two interfaces, 2γA, and the grand potential of the bulk
fluid in the remaining volume, ωb(ρbp) A(L − d), i.e. Ωrest(d) =
2γA + ωb(ρbp) A(L − d). Here, ωb(ρbp) ≡ Ωb/V is the grand
potential density, which equals ωb(ρbp) ≡ −p, with p being the
pressure of the bulk fluid. In the case of the mean-field CG-DFT
employed here, we evaluated the equilibrium density profiles
that satisfy eq 53 and used them to compute the associated grand
potential difference as defined above. Amore detailed discussion
on the determination of Vdep(d) for the given mean-field CG-
DFT is available in ref 19.

Figure 7. Center-of-mass density profiles for ring polymers confined in
a slit of width d = 6Rg,0

ring from monomer-resolved MD (solid lines) and
CG-DFT (open circles) for different mean polymer densities ρp in the
slit.

Figure 8. Surface tension for ring and linear solutions in contact with a
hard repulsive wall as extracted from MR-DFT (solid lines) and CG-
DFT (dashed lines) for different bulk polymer densities ρbp and MD
(open circles) at different average polymer densities ρp.
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The resulting depletion potentials per unit area from CG-
DFT and MR-DFT are shown in Figure 9. Both CG-DFT and

MR-DFT predict a considerably different form of the depletion
potential for rings as compared to linear chains. In particular, at
the highest density considered here, ρbp/ρp* = 0.8, we find an
oscillatory structure of the depletion potential in the case of
rings, a feature not seen for the linear counterparts, as well as a
much higher peak of Vdep(d). Evidently, such differences arise
from a higher propensity of rings to structure in confinement, as
already seen from the equilibrium density profiles in Figure 2
when the two architectures are compared. While MR-DFT
qualitatively confirms the results fromCG-DFT for rings and the
oscillatory structure of the depletion potential, certain differ-
ences are found. More specifically, for ρbp/ρp* = 0.8, we find a
lower amplitude of he repulsive part of Vdep(d), which is about
0.3kBT for MR-DFT and 0.5kBT for CG-DFT, as well as a
somewhat different location of its peaks. Such differences likely
stem from the breakdown of the mean-field CG-DFT at
densities approaching the overlap concentration ρp*, when non-
negligible polymer deformations and interchain correlations
change the character of the effective inter-ring interaction.
Finally, at comparable volume fractions of the polymer
component we find a lower depth of the depletion potential
limd→0 Vdep(d) = −2γ for rings.

7. DISCUSSION AND CONCLUSIONS
In summary, we have considered confined ring and linear
polymer solutions, with the emphasis put on the case of ring
architecture, using a series of multiscale modeling approaches.
First, we have developed MR-DFT for ring polymer chains of
finite length N, as given by the equilibrium segment density (eq
26) with the corresponding propagators (eqs 27 and 28). MR-
DFT yields very good agreement with MD simulations both in

terms of the monomer density profiles (Figure 1) as well as the
surface tension at the solution−wall interface (Figure 3). Some
discrepancy in the surface tension results is observed at higher
densities, which might be attributed to the approximations
employed in the EOS. We then compared mean-field CG-DFT,
which models polymer coils as soft colloids, developed in ref 19,
to explicit MD results. CG-DFT provides a good description for
the structure of ring polymer solutions within slits of variable
width up to ρp/ρp* ≲ 0.6−0.8 (Figure 6), despite polymer
deformations in the vicinity of the walls found inMD (Figure 2).
A rather small impact of the latter on the final density profiles
fromCG-DFT (eq 40) is likely due to the fact that the profiles at
close polymer−wall separations mainly depend on the effective
polymer−wall potential, which implicitly includes the conforma-
tional rearrangements.19 In addition, the surface tension
obtained in CG-DFT is, within the range of applicable densities,
in good agreement with those obtained in theMR-DFT andMD
(Figure 8). The rings feature a more pronounced tendency to
structure at the walls as compared to linear chains, as shown here
withMD andCG-DFT results. The latter feature strongly affects
the form of the depletion potential between two walls immersed
in a ring polymer solution that we computed using the
monomer-resolved and coarse-grained versions of DFT (Figure
9). The depletion potentials from CG-DFT compare quite well
to the ones from the MR-DFT. Finally, we clarified the
comparison between the values of Vdep(d) at d = 0, i.e., the
strength of the depletion attraction between the walls, for the
linear and ring polymer architectures. At a fixed monomer
density ρ, we find that linear chains appear as stronger depletants
than do rings due to their enhanced surface tension at the
interface (Figure 3). In contrast, when the results are compared
at a fixed polymer concentration in terms of the overlap one, i.e.,
at comparable volume fractions of the polymer component, the
rings turn out to be stronger depletants than do the linear chains
(Figure 8), in full agreement with previous results.19 The latter
difference can be important in the interpretation of potential
experimental findings for the polymer-induced depletion effects
in colloidal mixtures. In practical terms, our results suggest that
colloidal gels with ring polymer additives should feature
enhanced values of the storage modulus when compared to
the ones with linear polymer additives at a similar volume
fraction of polymers. Future work should focus on the
generalization of these considerations to mixtures of ring
polymers and spherical colloids with an arbitrary size ratio
between the two components to gain a better understanding of
the stability and elasticity of such systems.
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