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Abstract

We compare two broad types of empirically grounded random network models in terms of
their abilities to capture both network features and simulated Susceptible-Infected-Recov-
ered (SIR) epidemic dynamics. The types of network models are exponential random graph
models (ERGMs) and extensions of the configuration model. We use three kinds of empiri-
cal contact networks, chosen to provide both variety and realistic patterns of human contact:
a highly clustered network, a bipartite network and a snowball sampled network of a “hidden
population”. In the case of the snowball sampled network we present a novel method for fit-
ting an edge-triangle model. In our results, ERGMs consistently capture clustering as well
or better than configuration-type models, but the latter models better capture the node
degree distribution. Despite the additional computational requirements to fit ERGMs to
empirical networks, the use of ERGMs provides only a slight improvement in the ability of
the models to recreate epidemic features of the empirical network in simulated SIR epidem-
ics. Generally, SIR epidemic results from using configuration-type models fall between
those from a random network model (i.e., an Erd&s-Rényi model) and an ERGM. The addi-
tion of subgraphs of size four to edge-triangle type models does improve agreement with
the empirical network for smaller densities in clustered networks. Additional subgraphs do
not make a noticeable difference in our example, although we would expect the ability to
model cliques to be helpful for contact networks exhibiting household structure.

Introduction

It is recognised that contact networks can play an important role in studying and understanding
epidemic dynamics [1]. For these purposes, network models are important for at least two rea-
sons. First, researchers may have an empirical network, but want to simulate additional, similar
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networks to avoid “over-fitting” to the particular observed network. Second, researchers may
have no data on empirical contact patterns, so use a model, possibly informed by an empirical or
textbook distribution, for example. One family of network models arises from a collection of net-
work research expanding on the standard “configuration model” [2, 3]. An alternative approach
uses the family of Exponential Random Graph models [4], combined with simulation of disease
transmission. In this paper we try to make some progress in bridging these two network model-
ling domains in the context of network epidemiology. We do not try to investigate the effects of
node degree variation or clustering on epidemic dynamics, per se. (Welch et al. [1] has a nice
summary of current results.) Nor do we study the suitability of theoretical solutions, that are
asymptotically correct, to finite empirical network sizes. (We recognise some researchers use var-
iations of the configuration model, but then simulate a disease transmission process.) Rather, we
are trying to make some progress in understanding which subgraphs are relevant to the study of
epidemic dynamics and how the strengths and shortcomings of each modelling domain affect
conclusions on epidemic dynamics. A key feature of our work is a focus on empirical contact net-
works, which therefore have realistic patterns of human contact.

We can list several desirable properties of network models for the study of epidemic dynam-
ics. 1) Key network features (e.g., giant component size, location of phase transitions) can be
found without Monte Carlo simulation of an ensemble of networks. 2) They capture “relevant”
features of networks (e.g., clustering, homophily), although a sufficient list of such features to
study epidemic dynamics is unknown, and which network features are relevant probably varies
depending on disease features such as infectivity. 3) Epidemic dynamics are solvable. Key
quantities of interest like final size, epidemic duration, and the infectivity threshold for epidem-
ics, are solvable without explicit stochastic simulation of the epidemic (e.g., using a system of
ODEs or bond percolation results). 4) Variability in quantities of interest are also solvable.
While deterministic models of the infection process provide average (in some sense) values,
probabilistic models can provide the variability, and maybe even a distribution.

Configuration-Type Models

Research based on the configuration model [2, 3] attempts to create a model with these desir-
able properties. The “standard configuration model” creates networks with a specified degree
sequence. In short, a node i with degree d; is allocated d; “stubs”. Network ties are formed by
connecting pairs of stubs at random, thus achieving a network with desired degree sequence.
The standard configuration model has proven to be amenable to the study of Susceptible-
Infected-Recovered (SIR) epidemics (e.g, [5-7]). For example, a reproduction ratio, Ry, and
epidemic threshold analogous to those of compartmental models can be expressed. Define
transmissibility [5], T, in a homogeneous population with a constant infectious period to be
the probability an infected node infects a susceptible neighbour along a single edge. In the early
stages of an outbreak on a configuration model network, the expected number of infections
caused by a newly infected single node is

E(d?) — E(d)

Bo= T )

(1)
where E(d) is the mean node degree and E(d) is the mean of the squared node degree (closely
related to the variance). For heterogeneous populations and non-constant infectious periods
the expression can be generalized to

E(d?) — E(d)
E(d)
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where E(T) is the average transmissibility over all infectious and susceptible nodes [6, 8]. Using
bond percolation arguments, an epidemic is possible only when Ry > 1 (as for compartmental
models), or equivalently the transmissibility exceeds a critical transmissibility [9], T, given by

___ E@
"B - B@)

In more general configuration-type networks with triangles and other small-cycle sub-
graphs, Eq (1) no longer applies. Although the degree distribution will be the same, fewer sus-
ceptible nodes will be available for an infection in the early stages of an outbreak, and we would
expect the critical transmissibility to be higher, although the extent to which Eq (1) must be
modified is the subject of research. Miller [8] considers approximations of R, using additional
subgraphs, and suggests clustering affects the final epidemic size only if the typical node
degrees are small or clustering is very high. The expression for unclustered networks in Eq (1)
also serves as a useful guideline and bound.

The “edge-triangle” model is a generalisation of the configuration model that includes cluster-
ing [10, 11]. In short, single edges are counted separately from triangles. Each node i has s; single
edges (“stubs”) and f; triangle vertices (“corners”). Networks are formed by connecting pairs of
stubs at random and triples of corners at random. The joint distribution of stubs and corners is
the analogue to the degree distribution in this model. Volz et al. [12] derive a deterministic solu-
tion for an SIR epidemic process on edge-triangle configuration networks. They also derive a
solution for final epidemic size of clustered networks that is asymptotically exact for large net-
work sizes using bond percolation approximation methods. Importantly they also extend their
results on epidemic dynamics beyond edge-triangle configuration networks to a further generali-
sation that includes cliques (i.e., fully connected subgraphs) of size 4 and above to model house-
hold structure. Cliques of size n are included in the network model by analogy with triangles-
size n clique corners are counted in addition to stubs and triangle corners. We note two of their
key results. 1) The global clustering coefficient is not sufficient to determine the full epidemiolog-
ical impact of clustering. Comparing with a different model [13] such that the two models are cal-
ibrated to have the same degree distribution, the same global clustering coefficient and the same
disease parameters, epidemic dynamics can be quite different, especially when clustering is exten-
sive. Thus, the specific nature of the clustering appears relevant for epidemic dynamics. 2) Cluster-
ing slows epidemics and reduces final size, at least for a particular subclass of edge-triangle
networks considered (negative binomial degree distribution, tunable fraction of edges in trian-
gles, mean and variance of the degree distribution held constant).

Separately, a simulation study [14] has considered the situations when contact network mod-
els, not random mixing, are warranted. When the number of contacts per day is large, or the
transmissibility of the infection is high (e.g. mumps, measles, pertussis, chickenpox), random
mixing models produce adequate results. On the other hand, when numbers of contacts and
transmissibility are low (e.g. MRSA, possibly Ebola), network contact structure is important.

A key weakness of the edge-triangle networks [10, 12] is that triangles (and larger cliques)
share a node but not an edge (i.e., no overlapping “motifs”, referred to here as subgraphs). A
generalisation that allows arbitrary subgraphs beyond cliques has been proposed [15] for
which network features (and importantly, percolation results for epidemic dynamics) remain
solvable. For example, the necessary generating functions are provided for edges, triangles,
squares, diamonds (a square with diagonal, also known as a 2-triangle), and 4-cliques. The
joint distribution for node “roles” is the key distribution of interest. These five subgraphs
require six node roles (i.e., two for the diamond). Analogous to the degree sequence is the “role
sequence” which is a vector for each node, counting the number of each role in which that
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node participates. More general subgraphs could be treated similarly, although the necessary
generating function may be complicated or difficult to express. A key question is which sub-
graphs should be included in the network model for the study of epidemics?

Exponential Random Graph Models

Exponential Random Graph models (ERGMs) [4, 16] are a particular class of network models
that have proven useful in modelling social networks. As a class of network models, ERGMs
offer several advantages. 1) They allow general subgraphs, called “configurations”, without
additional machinery. 2) Configurations can share edges as well as nodes. 3) Importantly, they
are grounded in hypotheses about social processes underlying network formation. 4) They are
parameterised to capture network features relevant to human interaction (e.g., clustering,
homophily, social circuit dependence [17, 18]) in a manner that aids interpretation. 5) Very
parsimonious models can be shown to capture a large number of network features well. Under
a homogeneity assumption whereby all structurally identical subgraphs are equally probable,
these models have the form

Pr(Y =y) = exp <ZHCZC(Y>> /%, (2)

where Y = [Y}j] is an n X n binary matrix of variables denoting whether a tie is present (1) or
absent (0) and y = [y;] denotes a realisation of Y. Summation is over all possible subgraph con-
figurations C, O¢ is a parameter corresponding to the configuration C and is non-zero only if all
pairs of networks variables in C are conditionally dependent, z(y) = I1(;, jec ij is the network
statistic corresponding to the configuration C (indicating whether all ties in C are observed in
y), and « is a normalizing constant which ensures Eq (2) describes a proper distribution. The
homogeneity assumption means there can be one parameter for each configuration, thus
reducing the number of sufficient statistics to specify the model.

As has been pointed out (e.g., [15]), in practice ERGMs are difficult to analyse and can dis-
play pathological behaviours that limit their usefulness. The former concern is certainly true in
the general case, although there has been some progress [19]. Realistically, the study of both
ERGM networks and epidemic dynamics on ERGM networks must rely on stochastic simula-
tion of both the networks and epidemics on the networks. Pathological behaviours, which
often make model fitting difficult for the earlier Markov models, are less serious with new social
circuit specifications for ERGMs [16, 20]. In addition, several other concerns might be raised.
1) Model fitting currently requires Markov Chain Monte Carlo maximum likelihood estima-
tion (MCMCMLE) techniques that become computationally intensive as the number of nodes
and edges grows. This imposes a practical constraint on the size of networks that can be mod-
elled with ERGMs (although the new snowball methods—see below—open possibilities for
parameter estimation of large networks). 2) Model fitting has generally assumed the entire net-
work has been observed, which is unrealistic for large networks. However, recent results [21]
have relaxed this “whole network” requirement such that a “snowball sample” [22] can be
used. An alternative approach for less than whole-network data has also been proposed [23]. 3)
Model fitting can be tricky, requiring the “right” collection of configurations to be included to
adequately capture network features.

One of the empirical networks used here is actually from a chain-referral sampling tech-
nique called “snowball sampling” [22]. It is a network of people who co-inject in Melbourne,
Australia [24], an example of a “hidden population” for which snowball sampling (and other
chain-referral techniques like “respondent-driven sampling” (RDS) [25]) are often used. There
are additional difficulties when fitting a network model to a network sample rather than a
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network census [26-28]. 1) High degree nodes are more likely to appear in the sample, so their
probability will be over-estimated. 2) The samples are sensitive to the initial seed nodes chosen,
which in practice may be a convenience sample rather than a random sample. 3) Homophily
within the population can lead to some sub-groups being over- or under-represented in the
sample, particularly if the set of seed nodes poorly represents the population. While there are
techniques to fit ERGMs to snowball sampled data [21], we are not aware of a technique to esti-
mate a network’s node role distribution from a snowball sample. For the purposes of this paper
we propose a method to estimate the joint distribution of stubs and corners, thus fitting an
edge-triangle model.

Methods

Our basic approach is to start with an empirical contact network and fit edge-triangle type and
ERGM type network models from which we simulate a number of networks. We then simulate
SIR epidemics on both the empirical network and simulated networks. We compare simulated
networks with the empirical network, and SIR results from using the simulated networks and
the empirical network. A schematic representation of the study method is shown in Fig 1.

Empirical Networks

We use three kinds of empirical contact networks which we further describe below. All net-
works are assumed symmetric.

High School Contact Networks. The high school data [29] describes the cumulative time
in close proximity between pairs of people over one day in a U.S. high school. Networks derived
from this data provide examples of contact networks relevant to infections where close proxim-
ity, but not necessarily physical contact, is important. Such SIR-type infections include corona
virus, influenza, norovirus, rhinovirus, varicella and measles. Pertussis (i.e., whooping cough)
is an example of a bacterial SIR-type infection (at least in time scales up to years) for which
close proximity is relevant.

In total, in this data there are 789 people, comprised of 656 students, 73 teachers, 55 staff,
and 5 other individuals. One person has no contacts. By specifying a lower bound ¢ for contact
duration we can define a network in which a tie represents total contact of at least ¢ time units.
For this study we consider networks given by 75, 60 and 6 minute durations (referred to as
HS75, HS60 and HS6 respectively), which give a range of densities. Clearly the network ties
from larger c are a subset of the ties from smaller c. We use these three networks to illustrate
the effects of increasing network density and connectivity. Details of the networks are provided
in Table 1. (To confine comparisons of simulated epidemics to similarly sized networks, iso-
lates have been removed from HS75 and HS60 networks.) Mean node degree increases from
2.5to 57.5 as shorter duration contacts are included. We also show maximal clique sizes. A
maximal clique is a clique that cannot be made larger by including an adjacent node (i.e., not a
subset of a larger clique). Maximal clique sizes range from 1 to 4 nodes for HS75, to between 1
and 25 nodes for HS6. Loosely, HS75 is a sparse network with small cliques while HS6 is dense
with high mean numbers of contacts and large cliques.

Relationships Network. The relationships network of Bearman et al. [30] is based on data
collected from a U.S. high school in 1994, as part of wave 1 of the Add Health study. If a stu-
dent reported having a special romantic relationship in the last 18 months, they were asked to
describe their three most recent relationships (including any current ones) and up to three
individuals with whom they had a non-romantic sexual relationship in the previous 18 months.
A network tie represents a romantic, or a non-romantic sexual, relationship between students
of the high school or between a student of the high school and another of the feeder middle
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Fig 1. Schematic representation of the study method. For each empirical network we fit a number of network models. For each network model we
simulate 100 networks and then simulate 1000 Susceptible-Infected-Recovered (SIR) epidemics per simulated network. Simulated networks are compared
with the empirical network in terms of network features and simulated epidemic features.

doi:10.1371/journal.pone.0142181.g001
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Table 1. Summary of High School Contact Networks.

Network Num. Nodes Num. Isolates Tie Duration (min.) Density Mean Node Degree Max. Clique Sizes
HS75 538 0 75 0.005 2.48 1-4
HS60 688 0 60 0.008 5.42 1-6
HS6 789 5 6 0.073 57.48 1-25

Property summary of empirical networks from high school data with contact durations at least 75 minutes (HS75), 60 minutes (HS60) and 6 minutes
(HS6).

doi:10.1371/journal.pone.0142181.t001

school. Our version of the network, shown in Fig 2, was manually recoded starting from Fig 2
of Bearman et al. [30] so we have an attribute for gender, but not the additional attributes col-
lected in the study. This contact network is relevant for infections where transmission involves
intimate or sexual contact. Such SIR-type infections include cytomegalovirus (CMV) and
Epstein-Barr virus (EBV).

In the relationships network there are 573 nodes and 477 edges, including one male-male
edge and one female-female edge. If one ignored those two same-sex edges the network would
be bipartite, although we illustrate more general models here. Notably, the network has only
one triangle, one 9-star and three overlapping 4-cycles. In particular, clustering is not a signifi-
cant feature of the network.

PWID Contact Network. For this study we use the same empirical PWID network
described previously [24] and shown in Fig 3. A tie represents two people have engaged in
injecting behaviour at the same place and time within three months prior to interview. The
population of interest are in three urban neighbourhoods in Melbourne, Australia. A number
of personal details are known for each respondent. Location, age (<25 years or >25 years),
gender and injecting frequency (less than daily, at least daily) have previously been included in
a contact network model [24] for this data. This contact network is relevant for infections
involving blood-to-blood contact. Hepatitis B is an example of an infection that can be approx-
imated as SIR-type.

Importantly, although the data collection used network-based methods, a complete network
census was not performed. Rather, we can think of the empirical network as a snowball sample,
consisting of seed nodes (“wave 07, “zone 0”) and nodes in waves i, i > 1. Assuming every node
“remembers” to nominate all its network neighbours, nodes in wave i, i > 1, are all the nodes
nominated by nodes in wave i — 1 that are not in wave i — 1 themselves. (See Rolls et al. [24] for
more details on addressing the effect of missing nominations on the zone structure.)

Network Models for the High School Networks

For the high school networks we consider several configuration-type models and an exponen-
tial random graph model (ERGM). For comparison purposes we also consider an Erdés-Rényi
model [31] (sometimes called the G(#, p) model for n nodes and edge probability p). For each
network model we generate a random sample of 100 networks.

Configuration-Type Models. We consider six configuration-type models: the standard
configuration model (CM), the edge-triangle model (ET), a variation of the edge-triangle
model that adds subgraphs of size four (+sub4), a variation that then adds 3-triangles and 4-tri-
angles to the first variation (+34tri), a variation that then adds a subgraph with three connected
triangles to the second variation (+truss), and a fourth variation that then adds maximal cliques
of size five and above to the third variation (+clqs5+). Some of the subgraphs have been
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Fig 2. High school relationships network based on the relationships network of Bearman et al. [30]. A network tie indicates a romantic or non-romantic
sexual relationship was reported by one of the incident nodes. Gender is denoted by node colour (blue-male, pink-female). This version of the network was

manually re-coded starting from Fig 2 of Bearman et al. [30].

doi:10.1371/journal.pone.0142181.g002

proposed elsewhere [12, 15], others help to mitigate the restriction that modelled triangles can-
not share edges, and others are motivated by hypotheses on human tie formation. Fig 4 shows
the subgraphs, with node colour used to denote the various node roles. The number of node

roles is shown in column three. Columns 4-9 show which subgraphs are included in each

model variation by the presence of an “X”.
The standard configuration model [2, 3] and the edge-triangle model [12, 15] have been
proposed previously. Our first variation of the edge-triangle model adds the subgraphs of four
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Fig 3. Snowball sample of PWID contact network used for model estimation. Waves are indicated by shade, from wave 0 (black) to wave 2 (light gray).

doi:10.1371/journal.pone.0142181.g003

nodes (square, diamond, 4-clique) are described in [15] which also provides the relevant gener-
ating functions. The node role sequence is a 6-tuple for each node.

The second variation adds to our first variation the 3-triangles and 4-triangles, which are
generalisations of the diamond. They are specific cases of the more general k-triangles that
have proven useful for ERGM modelling [20]. Theoretically they can arise in connection with
social circuit dependence [17]. Loosely, social circuit dependence captures the idea that people
whose contacts are connected are themselves more likely to be connected.
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Model Variation
Num. of
Subegraph Node roles
CM | ET | +sub4 | +34tri | +truss | +clgs5+
Edge o&—0 1 X X X X X X
Triangle A 1 X X X X X
—0
Square 1 X X X X
o0——O
Diamond E 2 X X X X
4-clique % 1 X X X X
3-triangle > 2 X X X
4-triangle » 2 X X X
Truss W 3 X X
Cligue of 1 (for each X
size25 clique size)

Fig 4. Subgraphs for edge-triangle models. For each subgraph, node roles are distinguished by node colour. The number of node roles for each subgraph
is shown in column 3. Inclusion of a subgraph is shown (X) for each of the model variations: standard configuration model (CM), edge-triangle model (ET),
variation one with subgraphs of four nodes (+sub4), variation two with 3-triangles and 4-triangles (+34tri), variation three with a “truss”, and variation four with

maximal cliques of five or more nodes (+clgs5+).

doi:10.1371/journal.pone.0142181.9004
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Our third variation adds to our second variation a subgraph we call a “truss”. This is a five
node subgraph with three triangles, a maximum of two sharing any given edge. This experi-
mental subgraph is intended to capture additional clustering where several triangles share
edges in a manner not captured by the other subgraphs composed of multiple triangles (i.e., the
3-triangle, the 4-triangle, and the 4-clique). Note that since the diamond is a subgraph of the
truss, the node roles for truss membership are assigned with priority over the node roles for
diamond membership.

Our fourth variation adds to our third variation maximal cliques of size five and above. Cli-
ques are useful for modelling household structure (e.g., [12]) where close contact between all
individuals is assumed. The general assumption of homogeneous mixing between # people can
be regarded as contact happening in a size n clique. Of course, as network density increases,
large maximal cliques arise as a consequence of the network having many edges. Since the
edge-triangle type configuration models do not allow subgraphs to share edges, high density
graphs without explicitly modelled cliques would count many edges as stubs, and a typical net-
work from the model would lack much of this structure.

To model cliques, the maximal cliques of each size # are counted in the empirical network.
Associated with each size clique is a single node role. That is, in a maximal clique of size #, each
and every node is connected to n — 1 other nodes to form the clique. So if the network has only
one occurrence of a size n clique, using the node role sequence the same nodes will appear in a
size n clique in the simulated network. But if there is more than one occurrence of a size n cli-
que, size n random samples are taken from the collection of all nodes in size n cliques.

Earlier work on the edge-triangle [10] and subgraph [15] models describe how to generate
networks starting from the node role sequence (or its distribution). They do not say how to
count the subgraphs to create the role sequence or estimate its distribution. To model an empiri-
cal network this is most critical. Here we describe our method to form the node role sequence by
decomposing the empirical network. For example, to fit an edge-triangle model we first count tri-
angle corners at each node, subject to the condition that two triangles cannot share an edge.
Thus, once an edge is identified for a triangle, it is removed from use in future triangles. In this
sense we “decompose” the empirical network by removing edges as node roles are assigned.
Edges not counted as part of a triangle are counted as stubs at their incidence nodes and account
for all remaining edges. This approach can be generalised when additional subgraphs are
included in the model, as described in S1 Appendix for the decomposition for the model with the
largest number of subgraphs (i.e., our fourth variation). Finally we note that how one decomposes
the empirical network into non-overlapping subgraphs is not unique. In this study the decompo-
sition generally occurs in decreasing size/complexity, starting with the cliques of at least five
nodes (most nodes to fewest nodes) and ending with stubs, as shown in S1 Appendix. Note that
node roles for triangles are assigned before node roles for 4-cycles to give the most favourable
opportunity to capture clustering. Node roles for the truss are assigned after 3-triangles and 4-cli-
ques, but before diamonds, which are a subgraph of the truss.

To simulate an edge-triangle network, for example, we take the node role sequence and ran-
domly join pairs of stubs and triples of triangle corners as described elsewhere [10, 15]. In par-
ticular, we use the observed role sequence instead of fitting a bivariate probability distribution
to the number of stubs and corners. Since the quality of that fit would affect our results, using
the observed node role sequence provides more controlled comparisons. Joining random stubs
and corners can create self-loops and multiple edges. It has been suggested to maintain these
ties [15] since excluding them makes theoretical calculations more difficult. Asymptotically, as
the number of nodes grows the density of self-loops and multiple edges goes to zero, so they
are not such a concern for larger networks. As in [12], we choose to delete them. Self-loops do
not add to epidemic dynamics. Multiple edges do not fit within the framework of a binary
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incidence matrix, and are inconsistent with decomposing the empirical network into subgraphs
that do not share edges.

Exponential Random Graph Models. To specify an ERGM one provides a parameter for
each configuration included in the model. When combined in a model, ERGM parameters rep-
resent a balance of competing effects whereby positive (negative) values indicate a tendency to
increase (decrease) occurrences of that configuration in the model. The general approach to fit-
ting an ERGM is to select a collection of configurations and use MCMCMLE to estimate
parameters while MCMC simulation is used to evaluate model fit and simulate from models.
All ERGMs for the high school networks in this study contain five configurations for structure
and one configuration for homophily based on person type. The edge configuration controls
network density. An “isolates” term controls the number of isolates produced by the model.
Where the number of isolates in the empirical network is zero, this parameter helps keep the
number of isolates small. Note that in the special case where there are no isolates in an empiri-
cal network, more negative values of the isolates parameter would work equally well.

Three additional parameters are based on a parsimonious specification of Snijders et al.
[20]. These are the alternating k-star, alternating two-path and alternating k-triangle statistics,
respectively (see S2 Appendix for definitions). In an equivalent formulation [32], analogous
statistics are called the “geometrically weighted degree”, the “geometrically weighted dyadic
shared partner” and the “geometrically weighted edgewise shared partner” statistics, respec-
tively. Alternating k-stars provide a way to model the node degree distribution. When occur-
ring together in a model, alternating k-triangles model triadic closure and alternating two-
paths model the prerequisite for triadic closure. They are also useful for modelling social circuit
dependence [17, 18]. While it is not clear a priori that the simplifying assumptions underlying
these statistics should hold for any network, these statistics have proven extremely effective in
providing good model fits for many empirical networks.

Network Models for the Relationships Network

Because the relationships network has 475 male-female edges and just one male-male and one
female-female edge, the male-female bipartite network is an important part of the network struc-
ture. We consider a bipartite version of the configuration model that maintains the node degree
distribution and gender structure of ties (i.e., male-female, male-male, female-female). We also
consider an ERGM and a multilevel ERGM which both explicitly capture the gender structure of
ties. For comparison purposes only, we also consider two models that ignore the gender structure
of ties: the edge-triangle model and a random network model that randomly rearranges the net-
work ties. For each network model we generate a random sample of 100 networks.
Configuration-Type Models. For a configuration-type model that considers the gender
structure of ties we form the node role sequence for the male-female network and form new
networks by taking pairs of stubs with the restriction that each edge is formed by one female
and one male stub. This fixes the degree sequence for both the male and female groups, and is
analogous to the approach of extending the configuration model to include assortativity by
type [33]. Note there are no triangles in the bipartite network so triangle corners are not
needed. For the purposes of comparing with other models we explicitly put the two same-sex
edges into the simulated networks, at the same incident nodes as in the observed network, but
acknowledge these two edges will have a negligible impact on the SIR disease simulations.
Exponential Random Graph Models. For the ERGM, instead of using an homophily
parameter to force most edges into the bipartite structure, we explicitly fix the presence and
absence of same-sex ties so that the bipartite network is the network that is modelled. The latter
approach is more computationally efficient and recognises the lack of same-sex ties makes
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model fitting more difficult. To obtain a model with satisfactory goodness-of-fit, the edges of
the 9-star were explicitly fixed also. For this network, the 9-star is not typical of the network
and violates the homogeneity assumption that is key to ERGM modelling.

An alternative approach to modelling this network would start with a bipartite ERGM [34-
36] and explicitly include (or ignore) the two same-sex edges. Instead, we treat the network as
an example of a multilevel network and use a multilevel ERGM [37] to model the male-female,
female-female and male-male networks together with interactions between the three networks.
(Note that the same-sex networks are characterised not just by the presence of one edge each,
but also by the absence of all other possible same-sex edges.) To simplify the modelling we fix
the two same-sex edges and model just the male-female bipartite network and any cross-level
interactions between the networks. To obtain a model with satisfactory goodness-of-fit, edges
of the 9-star, three overlapping 4-cycles and the one triangle were fixed. (Thus, 17 of 475 edges
were fixed.) Finally, we flatten the network to create a unipartite network with nodes that have
a binary gender attribute.

Network Models for the PWID Network

For the PWID network we consider an edge-triangle model, an ERGM, and an Erdés-Rényi
model (strictly for comparison). For each network model we generate a random sample of 100
networks. Because the empirical PWID network is really a snowball sample, fitting a network
requires some care. Techniques that assume the entire network was observed will be biased.
Since a whole network census may be infeasible, fitting to snowball sample data is not an
uncommon problem.

Note that when starting from a snowball sample, the size of the population is unknown so
this must be determined before networks can be simulated. Previously, an ERGM-based,
model-dependent estimate of the size was reported as 524 people [24] and shown to be plausi-
ble using independent sources of data. To facilitate comparisons we simulate networks from all
three models using 524 nodes.

Configuration-Type Models. The edge-triangle model is fit to the data using the tech-
nique described in S3 Appendix. In short, we consider six estimators for the node degree distri-
bution, form an estimate for a node’s number of triangle corners conditional on it’s degree,
simulate networks and form snowball samples to identify which estimated node degree distri-
bution produces snowball samples most like the observed sample. The choice of an estimator
for the node degree distribution is not straightforward and balances effects such as bias from
the higher likelihood of including nodes of high degree in a snowball sample, reduced data
from excluding particular waves of the snowball, and deviations from simplifying assumptions
and approximations. S3 Appendix includes results of a simulation sub-study to assess the node
degree estimators.

Exponential Random Graph Models. Details on fitting an ERGM to this snowball sample
network have appeared elsewhere [24] and use a technique called “conditional estimation”
[21]. Note that for the PWID network, only waves 0—2 were used in model fitting. In addition,
for technical reasons related to hypotheses about how people limit their risk of infection, only
components of size three and above in the empirical network were used in Rolls et al. [24] but
we ignore that restriction in simulated networks here to simplify the comparisons. Fig 6 of
Rolls et al. [24] shows the largest component from one simulated network using the ERGM.

SIR Simulations

All outbreak simulations proceed in the same way and are based on nodes being in one of three
states: susceptible, infected, or recovered. Parameters for the simulations are shown in Table 2.
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Table 2. Parameters for SIR Simulations.

HS75 HS60 HS6 Relationships PWID
Probability of Transmission experimental variable
Number of seeds 1 1 1 10 10
Duration of infection 1 1 1 1 1
“Epidemic” min. size (Rin) 12 15 18 40 20

Parameters for SIR simulations.

doi:10.1371/journal.pone.0142181.1002

At time 0 some initial number of seed nodes are explicitly infected. At each time epoch, trans-
mission only occurs along network edges, independently for each infected-susceptible pair,
according to a Bernoulli distribution with probability of infection that is fixed for each simula-
tion. Infections are one time unit in duration. Simulations continue until there are no infectious
nodes remaining. For each network, 1000 outbreak simulations are performed. As is usual, we
choose a minimum outbreak size to define an “epidemic”. Across the three high school net-
works the minimum outbreak size is about 2.2%, up to rounding. We report the final size, epi-
demic durations and proportion of simulations yielding epidemics.

Analysis

ERGM parameter estimates, goodness-of-fit and network simulation were performed using
PNet [38] (high school networks) or MPNet [35-37] (relationships network). Estimation and
simulation for configuration-model type networks was performed using Matlab [39]. Maximal
cliques were found using the c1ique . census command of the SNA package of statnet [40].
All SIR simulations and boxplots were completed using Matlab [39]. Confidence intervals use a
Gaussian approximation.

Results
High School Contact Networks

Configuration-type models and ERGMs were successfully fit to the HS75 network. Edge-trian-
gle type models here use the node role sequence, which is not parsimonious, so we do not list

the counts for the various node roles of each node here. On the other hand, ERGMs often have
only a few parameters so the model is easily expressed. Table 3 shows the ERGM specification

Table 3. HS75 Network ERGM Specification.

Statistic Estimates

Edge -7.954149

Isolates -10.994985

Alt. k-star (A = 1.50) 0.828329
Alt. k-triangle (A = 3.00) 1.392038
Alt. k-2-path (A = 3.00) -0.099633
Homophily: person type 0.259939

ERGM specification for a model of the HS75 network.

doi:10.1371/journal.pone.0142181.t003
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Table 4. HS75 Network ERGM Goodness-of-fit.

Observed Statistic Sample Mean Std. Dev. t-ratio Goodness-of-Fit Interval
Edge 666 665.497 25.841 0.019 (662.91, 668.08)
2-star 1615 1598.32 161.321 0.103 (1275.68, 1920.96)
3-star 1483 1420.114 262.421 0.24 (895.27, 1944.96)
4-star 1093 990.192 313.791 0.328 (362.61, 1617.77)
5-star 649 566.198 311.516 0.266 (-56.83, 1189.23)
Triangles 80 78.913 14.606 0.074 (49.70, 108.13)
Isolates 0 0.005 0.069 -0.069 (0.00, 0.01)
2-Triangle 65 55.432 29.701 0.322 (-3.97, 114.83)
Bow tie 57 62.922 42.339 -0.14 (-21.76, 147.60)
4-Cycle 64 43.681 20.232 1.004 (3.22, 84.15)
Alt. k-star (A = 1.50) 967.347 965.926 69.811 0.02 (958.94, 972.91)
Alt. k-triangle (A = 3.00) 219.741 219.328 36.8 0.011 (215.65, 223.01)
Alt. k-2-path (A = 3.00) 1574.074 1570.435 153.481 0.024 (1555.09, 1585.78)
Homophily: person type 507 506.628 23.016 0.016 (504.33, 508.93)
Std. Dev. degree dist. 1.534 1.511 0.082 0.282 (1.35, 1.68)
Skewness degree dist. 1.217 1.114 0.141 0.731 (0.83, 1.40)
Global Clustering Coefficient 0.149 0.147 0.017 0.074 (0.11,0.18)
Mean Local Clustering 0.11 0.1 0.014 0.723 (0.07, 0.13)
Variance Local Clustering 0.06 0.051 0.008 1.116 (0.04, 0.07)

Goodness-of-fit result for the HS75 network ERGM. Each row shows a different network feature considered. Statistics explicitly modelled are shown in
boldface. Empirical values are shown along with the sample mean (“Mean”) and sample standard deviation (“Std. Dev.”) across 4000 simulations. The
sample mean and standard deviation are expressed as a t-ratio in column five and a goodness-of-fit interval in column six. For all parameters the absolute
t-ratio is always smaller than 0.1 for parameters explicitly modelled, and smaller than 2 otherwise. Equivalently, the observed statistic always lies within it's
goodness-of-fit interval. Based on standard methodology, the network model re-creates all these features of the empirical network to an acceptable
standard.

doi:10.1371/journal.pone.0142181.1004

for a model of the HS75 network. Table 4 shows the goodness-of-fit results (burn-in 10® itera-
tions, 20 000 iterations per network, 4000 networks). Column 1 lists the various statistics that
are observed. Column 2 shows the value of the statistic for the empirical network (“Sample”).
Columns 3 and 4 show the mean (“Mean”) and sample standard deviation (“Std. Dev.”),
respectively, of the statistic over simulated networks. Column 5 shows the “¢-ratio”, defined as
(X — m)/s where X is the observed value, and m and s are the sample mean and sample standard
deviation across the simulated networks, respectively. For each parameter, using standard
methodology, the model is considered to be a good fit for the empirical network if the ¢-ratio
has absolute value less than 0.1 for parameters explicitly in the model (shown in boldface) and
less than 2 otherwise. Under a Gaussian distribution approximation these roughly correspond
to the middle 8% and 95% of a parameter’s distribution, respectively. Column six shows this
requirement expressed as an interval (“Goodness-of-Fit Interval”) given by (m — c¢s, m + cs)
where ¢ = 0.1 for statistics explicitly fit in the model and ¢ = 2 otherwise. For each parameter,
the model is a good fit if the observed statistic lies within it’s goodness-of-fit interval. The
model itself is a good fit if all the parameters have good fit. The ability of this model specifica-
tion to closely capture all these features of the empirical network, including ones not explicitly
modelled, is strong evidence that a useful model has been specified.
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Fig 5. Graph statistics for HS75 network models. Various network statistics shown as boxplots from 100 simulated networks. AKS is alternating k-star,
GCC is global clustering coefficient, AKT is alternating k-triangle, and “node max. geo. dist.” is the mean over all nodes in the largest component of the
nodewise maximum geodesic distance. Results are reported for an Erdés-Rényi model (“ER”), the configuration model (“CM”), the edge-triangle model (“ET”)
and the four variations which include size four subgraphs (“+sub4”), 3- and 4-triangles (“+34 tri”), trusses (“+truss”), and cliques of size 5 and above (“+clgs5
+"), respectively, and an ERGM (“ERGM”). Values from the observed network shown by horizontal dotted lines.

doi:10.1371/journal.pone.0142181.9005

Fig 5 illustrates how well the various models capture various features of the empirical net-
work as boxplots across the simulated networks for each model. As is common in social net-
work analysis, we allow subgraphs to overlap when counting, recognising the idea that a
person can be a member of several different groups at once. Boxes show the interquartile
range. The central line denotes the median, the whiskers show the range of data not considered
outliers, and outliers are shown individually. Where there is no variability the box collapses
down to the median. The corresponding value for the empirical network is shown by the
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horizontal line. Results are reported for an Erdés-Rényi model (“ER”) with the same mean
node degree as the empirical network, the standard configuration model (“CM”), an edge-tri-
angle model (“ET”), and the four variations which include size four subgraphs (“+sub4”), 3-
and 4-triangles (“+34 tri”), trusses (“+truss”), and cliques of size 5 and above (“+clqs5+”). Each
variation listed includes the subgraphs of the models listed before it. Since the largest maximal
clique in the HS75 network has only four nodes, the final variation should not show any differ-
ences. Finally, we also show results for the ERGM (“ERGM”). (Results for a a random network
model that simply randomly rearranges edges [41], sometimes called the G(n, m) model for n
nodes and m edges and referred to hereafter as “ER fix” are indistinguishable from the Erd6s-
Rényi model and not shown for brevity.)

The three statistics of the first column (2-star, 3-star, alternating k-star (AKS)) show how the
models are able to capture aspects of the node degree distribution. A different way to assess the
agreement of node degree distributions with the empirical network is to use a y* goodness-of-fit
test with 5% significance. With that test, the degree distributions of 38 simulated ERGM net-
works are rejected. Similarly, 66 networks from the “ER” model and 78 networks from the “ER
fix” model are rejected. On the other hand, the configuration-type models maintain the degree
sequence. As expected, none of the simulated networks from any of these models are rejected.

Clustering is an important aspect of social networks. The second and third columns of Fig 5
show different aspects of clustering. The second column shows the number of triangles (the
key feature of clustering), along with the global clustering coefficient and the alternating k-tri-
angle statistic. The third column shows graph statistics for 2-triangles (i.e., diamonds), 3-trian-
gles, and 4-triangles.

The three statistics of the fourth column (number of isolates, size of the largest component,
diameter of the largest component (i.e., the maximum geodesic length between any two nodes
in the largest component) show aspects of the connectivity of the networks. The diameter of
the large component is relevant because when the probability of disease transmission is near
one, the disease will propagate one hop per time unit. Thus, the large component diameter is
an upper bound on the epidemic duration when the probability of disease transmission is near
one and nodes are infected and infectious for one time unit. (If there were more than one seed
node per component the epidemic duration would typically be less, but the large component
diameter would still be indicative.) There is a large difference between the diameter of the large
component in the observed network (31) and all the network models. This diameter arises
from a connected core and two chains branching out of the core with 8 and 14 nodes each.
None of the network models include two of these long chains, so their diameters are smaller.

We can understand the difference in epidemic duration more precisely by noting that every
node has a maximum geodesic distance to some other node(s). For probabilities of transmis-
sion near one, the distribution of those maxima will govern the distribution of the epidemic
duration. Indeed, if nodes are infected and infectious for one time unit the epidemic duration
from a randomly chosen seed node will be its maximum geodesic distance, plus one for the
seed node infection. For the HS75 network, the mean of the nodewise maximum geodesic dis-
tances in the large component is 22.8. For the 468 nodes in the large component, 70 have their
maximum to the end of the 8 node chain, and 385 have their maximum to the end of the 14
node chain, 13 are equidistant to both end nodes and three are additional nodes. Thus, these
two long chains, especially the 14 node chain, are responsible for the large nodewise maximum
geometric distances. Without these large chains, the networks generated by the network mod-
els have smaller nodewise maximum geometric distances in general.

The size of a network’s large component is relevant because theoretical bond percolation
results for epidemic final size arise from a related large component in which the probability of
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Fig 6. Final size of SIR epidemics using HS75 network models. For each network model, shown are the
mean (with 95% confidence intervals) over 100 simulated networks of the mean over all outbreaks from 1000

SIR simulations. For the observed network, shown are the mean (with 95% confidence interval) over all
outbreaks from 1000 SIR simulations.

doi:10.1371/journal.pone.0142181.g006

edge formation includes disease transmissibility. A tendency for a model to produce a bigger
large component suggests bond percolation results will also predict larger epidemic final size.

Fig 6 shows results for the estimated final size in the simulated SIR epidemics. For each
probability of transmission and network model, results are reported as the mean and 95% con-
fidence interval (across 100 networks) of the mean final size (across 1000 SIR simulations). The
similarity in final size across models when the probability of transmission is near one reflects
the similarity in large component size.

Fig 7 shows similar results for epidemic duration. Note that large (or missing) confidence
intervals for small probabilities of transmission arise from small numbers of observed epidem-
ics. (Recall that an epidemic requires a minimum number of infected nodes (R,,,;,,) as shown in
Table 2.) The results for probability of transmission larger than 0.7 (empirical network notably
larger than all network models) reflect similar results in large component diameter. More pre-
cisely, for the observed network the epidemic duration when the probability of transmission is
one is 23.7 (95% CI: 23.5-23.9), which can be understood as 1 time unit for the seed node and
then one for each new infection. (Recall the mean of the nodewise maximum geodesic distances
in the large component is 22.8.)

Epidemics can vary in how long they take to get started. Miller [8] suggests time shifts to
account for these differences before temporal averaging. To further investigate differences
across network models, we aligned the start of epidemics by accounting for the variable times
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Fig 7. Epidemic duration of SIR epidemics using HS75 network models. For each network model, shown
are the mean (with 95% confidence intervals) over 100 simulated networks of the mean over all outbreaks
from 1000 SIR simulations. For the observed network, shown are the mean (with 95% confidence interval)
over all outbreaks from 1000 SIR simulations. Large (or missing) confidence intervals for small probabilities of
transmission arise from a small number of observed outbreaks (typically less than five). The large difference
between observed network and the network models for probabilities of transmission larger than 0.7 reflects
differences in the large component diameters.

doi:10.1371/journal.pone.0142181.g007

to achieve R,,,;,,. For each simulation we record the time until just before R,,,;, is achieved, and
the durations from that time until the peak incidence of the epidemic and until the epidemic is
over. We find that across the network models, the mean times until R,,,;,, is achieved are indis-
tinguishable from each other and from results for the observed network (not shown for brev-
ity). Further, graphs of the time from R,,;,, to both the epidemic peak and the end of the
epidemic resemble Fig 7 but rescaled in the vertical direction (not shown for brevity). Impor-
tantly, even after accounting for the variability in the time for an epidemic to get started, epi-
demics still last longer (on average) on the observed network for probabilities of transmission
larger than 0.7. Another quantity of interest, the proportion of simulations with epidemic out-
breaks is similar to final size across the network models (not shown for brevity). In particular,
it illustrates that for configuration-type networks, outbreaks are less likely to occur when addi-
tional clustering is present.

A similar study was performed for the HS60 network which has more clustering. Table 5
shows the model specification for the ERGM. Goodness-of-fit results show excellent agreement
with the empirical network, but are not shown for brevity. In * goodness-of-fit tests with 5%
significance, the degree distribution of 52 simulated ERGM networks are rejected. All 100
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Table 5. HS60 Network ERGM Specification.

Statistic Estimates
Edge -8.62622
Isolates -11.891
Alt. k-star (A = 1.50) 1.137897
Alt. k-triangle (A = 3.00) 1.250777
Alt. k-2-path (A = 3.00) -0.047
Homophily: person type 0.092378

ERGM specification for a model of the HS60 network.

doi:10.1371/journal.pone.0142181.t005

networks from the “ER” model are rejected. As expected, no degree distributions from configu-
ration-type networks are rejected.

Fig 8 shows results for various graph statistics, and are qualitatively similar to those for the
HS75 network. Fig 9 shows results for the final size from the SIR simulations. In contrast to the
HS?75 results, there is little difference between the configuration-type models, the ERGM and
the empirical network. As with the HS75 network, the random networks (“ER”) overestimate
the final size for larger probabilities of transmission. The maximum difference in the mean
final size is about 8%.

In results for the epidemic duration (not shown for brevity) the configuration-type models
are indistinguishable, but do have shorter epidemics than the observed network for probabili-
ties of transmission above 0.2 (e.g., 20.1 vs. 23.3 when the probability of transmission is 0.25).
Results for the ERGM are similar, but the differences with the observed network are smaller
(e.g., 20.7 vs. 23.3 when the probability of transmission is 0.25). Results for the “ER” model are
quite different qualitatively, and show the largest differences with the observed network over a
range of probabilities of transmission. Conclusions on the time to R,,,;,, and the times from
R,.in to epidemic peak and epidemic end are qualitatively similar to those for the HS75 net-
work, with the exception of the “ER” model which shows notable differences with the other
models for probabilities of transmission below 0.5.

The HS6 network is the densest network modelled here, and has mean node degree of 57.
Because edge-triangle type models cannot have overlapping subgraphs, we would expect diffi-
culty for these models to capture network features. In > goodness-of-fit tests with 5% signifi-
cance, the degree distribution of all simulated edge-triangle type networks is rejected. A key
reason is surely the number of multiple edges deleted. While the network has 22675 edges,
approximately 1100 to 1200 edges are removed because they are multiple edges. A number of
graph statistics show little variation across networks. Because of the large density, the edge-tri-
angle type networks are all composed of five isolates and one large component with all the
remaining nodes and there is little variation in this large component.

For the ERGM, which is computationally intensive, the large numbers of nodes and edges
also make model fitting difficult. In fact, attempts to fit ERGMs were not successful. While fit-
ting a model with a few configurations (e.g., edge + alternating star (4 = 1.2) + homophily) was
successful in capturing some network features, such models did not sufficiently capture a num-
ber of network features not explicitly modelled to a standard common in social network analy-
sis. Fitting models with additional configurations, to improve model fit, appears
computationally infeasible. Thus, we cannot report results for an ERGM. Fig 10 shows results
for various graph statistics for the edge-triangle type models. We do not report alternating
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Fig 8. Graph statistics for HS60 network models. Various network statistics shown as boxplots from 100 simulated networks. AKS is alternating k-star,
GCC is global clustering coefficient, AKT is alternating k-triangle, and “node max. geo. dist.” is the mean over all nodes in the largest component of the
nodewise maximum geodesic distance. Results are reported for an Erdés-Rényi model (“ER”), the configuration model (“CM”), the edge-triangle model (‘ET”)
and the four variations which include size four subgraphs (“+sub4”), 3- and 4-triangles (“+34 tri”), trusses (“+truss”), and cliques of size 5 and above (“+clgs5
+”), respectively, and an ERGM (“‘ERGM”). Values from the observed network shown by horizontal dotted lines.

doi:10.1371/journal.pone.0142181.9008

statistics; in the absence of ERGMs with acceptable goodness-of-fit there are no meaningful
values of 1;, i, =1, 2, 3.

SIR epidemic results for the HS6 models (not shown for brevity) are qualitatively similar to
those for HS60. For example, the final size results are indistinguishable between the configura-
tion-type models, and closely follow those of the empirical network. Results from the random
network models (“ER” and “ER fix”) are similar to the empirical network for final sizes between
0% and 65%. Beyond that, these two models overestimate the final size by 5-7%. The epidemic
duration results are similar. The maximum difference for the mean epidemic duration between
the empirical network and the various edge-triangle models is small (about 2 weeks) when the
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doi:10.1371/journal.pone.0142181.g009

empirical network predicts 16 weeks duration. On the other hand, between the empirical net-
work and the random networks the difference is about 5 weeks when the empirical network
predicts 16 weeks. As with the HS75 and HS60 networks, with the exception of the “ER”
model, accounting for the differences in the time to R,,;, does not reveal any meaningful differ-
ences between the models.

Relationships Network

Table 6 shows the ERGM specification for a model of the relationships network where the
9-star ties and same-sex network structure are fixed. Goodness-of-fit results show excellent
agreement with the empirical network, but are not shown for brevity. The positive alternating
k-star parameter shows a tendency to create stars in the network, and helps capture the degree
distribution. The positive isolated edges parameter “IsolateEdges” creates the components of
size two. The (relatively) large triangle parameter creates triangles around one of the two same-
sex edges. As with the HS75 network, there are no isolates in the empirical network so the iso-
lates parameter serves to keep the number of isolates produced by the model near zero.

Table 7 shows the multilevel ERGM specification for a model of the relationships network
where the 9-star edges, three overlapping 4-cycle edges, same-sex networks and one triangle
are fixed. Of the seven parameters, five are used for modelling the bipartite network. The two
alternating k-star parameters assist in modelling the degree distributions of male and female
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Fig 10. Graph statistics for HS6 network models. Various network statistics shown as boxplots from 100 simulated networks. GCC is global clustering
coefficient, and “node max. geo. dist.” is the mean over all nodes in the largest component of the nodewise maximum geodesic distance. Results are reported
for an Erdés-Rényi model (“ER”), the configuration model (“CM”), the edge-triangle model (“ET”) and the four variations which include size four subgraphs
(“+sub4”), 3- and 4-triangles (“+34 tri"), trusses (“+truss”), and cliques of size 5 and above (“+clgs5+”), respectively. Values from the observed network shown
by horizontal dotted lines.

doi:10.1371/journal.pone.0142181.g010

nodes separately, while the isolates parameters serve to keep the numbers of male and female
isolates near zero. The final two parameters control the interactions between the bipartite net-
work and either the female-female network (2-star FFM) or the male-male network (2-star
MMEF). These positive 2-star parameters show a tendency for a node in a same-sex relationship
to also appear in male-female relationships. Goodness-of-fit results are presented in S4 Appen-
dix and illustrate both the additional degree of modelling detail that is possible, and also the
amount of similarity that can be demonstrated, between the empirical and simulated networks
when taking a multilevel view.

PLOS ONE | DOI:10.1371/journal.pone.0142181 November 10, 2015 23/36



@’PLOS ‘ ONE

Comparing Epidemics on ERGMs and Configuration Type Network Models

Table 6. Relationships Network ERGM Specification.

Statistic Estimates
Edge -7.4839
Triangle 4.5806
Isolates -11.5927
IsolateEdges 0.175
Alt. k-star (A = 2) 0.5882

ERGM specification for a model of the relationships network.

doi:10.1371/journal.pone.0142181.t006

Table 7. Relationships Network Multilevel ERGM Specification.

Statistic Estimates

Bipartite Edge -7.4549

Bipartite Isolates (female) -11.3222
Bipartite Isolates (male) -10.2588
Bipartite Alt. k-star (female; A = 2) 0.9782
Bipartite Alt. k-star (male; A = 2) 0.0703
2-Star(FFM) 0.3454
2-Star(MMF) 1.0056

Multilevel ERGM specification for a model of the relationships network. The 2-star effects including same-
sex edges show a tendency for a node in a same-sex relationship to also appear in male-female
relationships.

doi:10.1371/journal.pone.0142181.t007

Fig 11 shows results for various graph statistics obtained from simulations from the five
models: random network with fixed number of edges (“ERfix”), edge-triangle (“ET”), bipartite
configuration (“bip CM”), ERGM, and multilevel ERGM (“mERGM?”). Because the large num-
ber of components is a clear feature of the empirical network, and clustering is not, we focus on
quantities related to the degree distribution and connectivity. The numbers of 4-cycles and tri-
angles are also shown for the special role they play in the empirical network to illustrate the
ability of the network models to capture these features.

In general, heterogeneity in the genders of relationship pairs (MM,FF,FM) could play a role
in the transmission of some diseases, so capturing the numbers of same-sex edges might be
important. For the two models that do not respect the gender structure of edges the number of
same-sex edges is large (“ERfix”: 239, 95% CI: 237-241; “bip CM™: 235, 95% CI: 232-237). The
other three models all have two same-sex edges. In addition, we again used y* goodness-of-fit
tests to check the agreement between the degree distributions of the simulated networks and
the empirical network. None of the 100 degree distributions from the two stub models (“ET”
and “bip CM”) were rejected at 5% significance while some of the ERGM (24) and multilevel
ERGM (37) distributions were rejected. Again, this is despite their seemingly close agreement
with the alternating k-star statistic. On the other hand, while the 2-stars play the largest role in
that statistic, there are clearly important differences in the 3-star statistics (and presumably
higher order stars too). While the differences may be acceptable in terms of the t-ratio, those
differences can still be sufficient for the y* test to reject. Unsurprisingly, all 100 degree distribu-
tions from the “ERfix” model were rejected.
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Fig 11. Graph statistics for the high school relationships network models. Various network statistics. AKS is alternating k-star and “node max. geo.
dist.” is the mean over all nodes in the largest component of the nodewise maximum geodesic distance. Results are reported for a random network model
with fixed number of edges (“ER fix”), the edge-triangle model (“ET”) without respecting gender, a bipartite version of the configuration model (“bip CM”), an
ERGM (“ERGM”) and a multilevel ERGM (“mERGM”). The last three models include the gender of both nodes of each edge, so they have only two same-sex
edges. For the ERGM, the 9-star and the same-sex network tie structure are fixed, exogenous effects. For the multilevel ERGM, the 9-star, the sole triangle,
the three overlapping 4-cycles and the same-sex network structure are all fixed. All models use 573 nodes.

doi:10.1371/journal.pone.0142181.g011

Fig 12 (left panel) shows results for the final size from simulated SIR epidemics across the
five models. To maintain general applicability, the SIR epidemics simulated here do not distin-
guish between the genders of the two incident nodes, or the direction of transmission. Thus,
our SIR results understate the role that nodal attribute heterogeneity might play. So, while
results for the edge-triangle and bipartite edge-triangle models are indistinguishable, it is not
hard to imagine a more complex disease process for which these two models would give differ-
ent results. The dotted horizontal line shows the fraction of nodes in the large component of
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Fig 12. Final size and duration of SIR epidemics using the high school relationships network models. For each network model, shown are the mean
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doi:10.1371/journal.pone.0142181.9012

the empirical network. As a result of the large numbers of components, the size of the large
component effectively limits the size of an epidemic starting from a limited number of seed
nodes. An ordering of the empirical network and network models by decreasing large compo-
nent size (e.g., “ERfix”, the empirical network, the other four) looks essentially the same as an
ordering of the final size when the probability of transmission is one (e.g., “ERfix”, the empiri-
cal network, the other four).

Fig 12 (right panel) shows results for the epidemic duration from the simulated SIR epidem-
ics across the five models. An ordering of the empirical network and models by decreasing
large component size (e.g., empirical network, “ERGM” and “mERGM?”, then down to “ERfix”)
looks essentially the same as an ordering of the epidemic duration when the probability of
transmission is one (e.g., empirical graph, “mERGM”, “ERGM” then down to “ERfix”).

PWID Contact Network

Three networks models were fit to the snowball sample PWID network: an edge-triangle
model (“ET”), an ERGM (“ERGM”) and an Erdés-Rényi model (“ER”). All networks are simu-
lated with 524 nodes. The Erdds-Rényi model uses the edge probability (p = 0.0042) that gives
the same mean node degree as the edge-triangle model and empirical network.

Fig 13 shows boxplots for various graph statistics from 100 network simulations from each
of the models. Unsurprisingly, the edge-triangle networks show levels of clustering between the
Erdés-Rényi networks (fewest triangles, least clustering) and the ERGM networks (most trian-
gles, most clustering). Fig 14 (left panel) shows results on the final size of SIR epidemics using
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Fig 13. Graph statistics for the PWID contact network. Various network statistics. AKS is alternating k-star, AKT is alternating k-triangle, GCC is global
clustering coefficient, and “node max. geo. dist.” is the mean over all nodes in the largest component of the nodewise maximum geodesic distance. Results
are reported for an Erdés-Rényi model (“ER”), the edge-triangle model (“ET”) and an ERGM (“ERGM”). All models use 524 nodes. For snowball sampled

network data there is no complete network with which to compare.

doi:10.1371/journal.pone.0142181.9013

the PWID network models while Fig 14 (right panel) shows similar results for epidemic
duration.

Discussion

Degree Distribution

All configuration-type models are able to capture the degree distribution well. Since they are
based on the empirical node role sequence, they replicate the degree sequence, except for multi-
ple edges and loops. Looking at the graph statistics for 2-stars, 3-stars and the alternating k-star
statistic, the ERGM seems to provide a good fit to features of the degree distribution. Indeed, a
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Fig 14. Final size and epidemic duration of SIR epidemics using PWID network models. For each network model, shown are the mean (with 95%
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compare.

doi:10.1371/journal.pone.0142181.9014

small ¢-ratio for the alternating k-star statistic is often used within social network analysis to
argue the network model fits the empirical node degree distribution. Results from the y* good-
ness-of-fit tests for both HS75 and HS60 networks illustrate how a traditional statistical test
can lead to different results. Indeed, for HS60 there is little difference between the confidence
intervals for the alternating k-star statistic. Yet, the y* goodness-of-fit tests rejects none of the
networks from the configuration-type models, about half from the ERGM, and all the random
networks (“ER”).

The results are somewhat different for the highest density network, for which all the simu-
lated edge-triangle type networks are rejected by y* goodness-of-fit tests. A key reason is surely
the number of multiple edges deleted. While the empirical network has 22675 edges, approxi-
mately 1100 to 1200 edges are removed in simulated edge-triangle networks because they are
multiple edges. On the other hand, there is very little difference between the models for
“2-stars” and “3-stars”. More will be said about these similarities in connection with both clus-
tering and SIR epidemic results.

Clustering

The number of triangles (the key feature of clustering) illustrates important differences
between the models. Unsurprisingly, the random network model (“ER”) produces few trian-
gles. More interesting is that the edge-triangle model also does a poor job of capturing all the
triangles. Because of the restriction that triangles in the model cannot share an edge, the edge-
triangle model captures only a subset of triangles. Thus, triangles are consistently under-repre-
sented in the generated networks in comparison to the empirical network. Further, to capture
the node degree sequence, stubs must be used, which makes properties of these networks more
closely resemble those of Erdds-Rényi networks.

The addition of size four subgraphs makes a noticeable difference in the HS75 and HS60
networks, but not the HS6 network. This suggests the addition of size four subgraphs are an
important addition for capturing network features with edge-triangle type models when both
the density is not really large and clustering is not negligible. Additional subgraphs make little
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difference in the examples considered here. However, household structure is not really a part of
the high school network, where cliques might be expected to play an important role. More gen-
erally, for the high density HS6 network, as with the star configurations, there are few differ-
ences in triangles and clustering between the models. This demonstrates that high density is
the main explanation for features in that network.

In our examples, ERGMs do a much better job capturing the number of triangles. The
median number of triangles is close to the observed empirical values for both HS75 and HS60
networks, and the interquartile ranges cover the empirical values. (In addition, 95% confidence
intervals (not shown for brevity) also cover the empirical values.) Results for the global cluster-
ing coefficient are qualitatively similar to those for triangles which illustrates the close connec-
tion between those two quantities.

Results for 2-triangles (i.e., diamonds), 3-triangles, 4-triangles and alternating k-triangles
reflect different aspects of clustering. Since the ERGM:s here are parameterised to capture these
subgraphs it is not surprising they do a better job modelling these features. Since the edge-tri-
angle model has a restriction preventing triangles from sharing edges, it is not surprising how
few of these are captured by the model. It is also interesting to note that the addition of 3- and
4-triangles, and even the truss, to the model with size 4 subgraphs makes little change to the
network fit.

SIR Epidemic Results

Given these differences between configuration-type models and ERGMs (the former models
better capture the degree distribution, the latter models better capture clustering) it is unclear
which model should best capture epidemic dynamics. For the HS75, HS60 and relationships
networks, final size results for ERGMs show closer agreement than the configuration-type
models to those of the empirical network. On the other hand, the difference from using a con-
figuration-type model may be small. Results for the HS75 network illustrate some advantage to
including subgraphs of size 4, but no advantage for larger subgraphs. After including subgraphs
of size 4, differences with using an ERGM may be considered small enough that the configura-
tion-type models are sufficient. As the density increases, the differences in final size from using
those subgraphs becomes negligible. We must emphasize again the special role that cliques can
play. None of our networks exhibit household structure, whereby a separate network process
creates cliques within households which are then loosely connected to each other. We would
expect to observe a larger impact from including cliques in those networks.

By comparison, the random network models (“ER”, “ER fix”) show the worst agreement
with results from the empirical network. They are indistinguishable from each other in the
examples shown here. When the final size is very high (above 60%), final size is consistently
overestimated by these models. Below 60% they may either over- or under-estimate, although
they under-estimate when the density is not too high. Because these models are not effective in
capturing either the degree distribution or clustering, it remains unclear how to attribute differ-
ences in epidemic dynamics to these two features.

In the case of high density, highly clustered networks like HS6, there is little variation
between the models. Differences from using the empirical network are generally small. Cliques
are undoubtedly present, but because the edge density is so high, cliques arise naturally from
the large number of edges. This is a different mechanism for clique formation than the one
underlying household structure.

Our results are largely consistent with results of Miller [8] which argued in the context of
configuration models, that 1) for reasonable networks clustering is only important for final size
if node degrees are typically small, and 2) as a consequence, for moderately large
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transmissibility final size will be unaltered by clustering. Our HS75 network has the smallest
node degrees and illustrates some effect of clustering on SIR final size, while HS60 and HS6
have larger node degrees and more clustering but reveal no significant differences in SIR final
size across network models with varying amounts of clustering.

Miller [8] argues that although “clustering” is usually taken to mean triangles, it could also
refer to other short cycles such as squares and 2-triangles that can also impact the spread of
infectious diseases. Some of the network models considered here (especially the ERGM) are
parameterised to capture such network features. However, even in a network with mean node
degree of 2.5 we found only small differences arising from the ability of a network model to
capture such features. A much larger difference is apparent from what might be considered the
absence of clustering in our HS75 network due to long chains off a highly-connected core. The
results on epidemic duration show similarity between edge-triangle models and the ERGM,
and all show mean epidemic durations that are too short compared to the observed network.
Long chains can slow an epidemic by increasing the number of transmissions required to reach
nodes and might also increase the number of cutpoints in the network. Each cutpoint has the
potential to interrupt the epidemic by transmission failure. Overall, this suggests there may be
advantage in exploring subgraphs that promote longer chains in addition to ones that promote
increased clustering.

A common theme in our results is that results for edge-triangle models are between ERGMs
and Erd6s-Rényi models. This really is not surprising. Edge-triangle models capture some, but
not all, of the number of triangles captured by ERGMs, due to overlapping triangles that must
become stubs. In addition, edge-triangle models randomly rewire stubs in a manner that
removes structure, not unlike the random edges of Erdés-Rényi networks.

Another observation we can make arises from the fact the edge-triangle models have far
fewer 3- and 4-triangles than the ERGM, yet show comparable final size results. Our results
suggest that while they play an important role in fitting ERGMs, these subgraphs are not play-
ing an important role in determining epidemic dynamics.

Speed vs. Accuracy

In the networks considered here, SIR epidemic results for ERGMs are generally closer than
edge-triangle type models to those for an observed network, although the difference becomes
insignificant as density increases. (Of course, all networks become clique-like with high enough
density.) Clearly this difference must be balanced by the time spent to develop a model, elapsed
time to obtain the model and computational effort to work with a model. In the case of the rela-
tionships network for example, in developing the ERGM, 31 models were considered (10 with
fixed 9-star and same-sex edges) over the course of a week. Some modeller time was saved by
performing estimations overnight. Goodness-of-fit results reported here require 2.5 hours to
produce and are an essential step to ensure a useful network model has been found. Twelve ear-
lier goodness-of-fit results (2-3 hours each) ruled out earlier models. In a best case scenario,
one could anticipate the need to fix features of the network, and get lucky with the choice of
configurations in the model. It is still unlikely to develop the model in under two days. On the
other hand, fitting an edge-triangle model can be performed with less specialised expertise and
in a negligible amount of time. For the purposes of network epidemiology (not network-based
inference which is a separate, excellent domain for ERGMs) these issues must be carefully
weighed.

For fitting configuration-type models, the most computationally demanding step is decom-
posing the empirical network into non-overlapping subgraphs to create the node role sequence.
Yet, this is not nearly as demanding as fitting an ERGM. As an example, creating the largest
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node role sequence for the HS6 network (the largest, densest network used here, with many cli-
ques) required less than eight minutes on a PC. After some effort optimizing the counting algo-
rithms, it likely would perform faster. Because an edge is assigned to only one subgraph, a
feature of the decomposition is that once an edge is assigned it can be removed from further
consideration. Thus, decomposition of the network becomes less demanding as more edges are
assigned to subgraphs. All of this suggests the number of nodes and edges for which the the
configuration-type models are useful is at least several orders of magnitude larger than for
ERGMs, with the usual provisos on memory and storage limitations for big networks, which
are independent of the model.

The decomposition into subgraphs can easily accommodate additional subgraphs. An order
for the decomposition is clear when subgraphs are nested- do the larger one first. For sub-
graphs that have some overlap (e.g., a square and triangle with common edge compared with
two squares with common edge) the order for the decomposition is not clear and some kind of
choice must be made. It is clear one captures triangle clustering better than the other but that
may not be the most important consideration.

There may be an upper-bound on the size of subgraphs that are useful for configuration-
type models. As subgraphs increase in size by agglomeration of smaller subgraphs sharing
common edges, the number of perimeter edges increases. For example, a 7-node hexagon
structure formed from six triangles has six perimeter edges. Inclusion of the hexagon means
none of those perimeter edges can be a part of another hexagon, k-triangle or other subgraph.
The “cost” for including a hexagon might be to reduce the number of triangles in which some
nodes participate.

Snowball Sampled Data

The use of snowball sampled data instead of a whole network poses special challenges. A key
concern is a method to fit edge-triangle type models to such samples. We considered six esti-
mators for the degree distribution that might form the basis of technique to fit edge-triangle
type models to a snowball sample. In our example the sample degree distribution estimator
seems to produce an estimate for which simulated networks more closely resemble the network
sample. Clearly this is not enough to form a universal rule, but does suggest the naive estimator
should be considered in similar cases.

There are interesting similarities between the PWID and relationships networks. For exam-
ple, both have low mean node degree. ERGMs for both produce networks with large cycles and
smaller branching chains. There is a similarity to the SIR results too. That is, for fixed transmis-
sion probabilities we can form the ranking ERGM < edge-triangle < random network, for
both final size and epidemic duration. While this proves nothing, it may be a more common
feature of similar networks (low mean node degree, large cycle, branching chains).

Results from fitting the PWID contact network illustrate a general problem that with sam-
pled networks there is no complete empirical network to serve as “truth”. This makes under-
standing the biases of the various modelling approaches even more important.

Nodal Attributes

Exponential random graph modelling provides a rich structure to include the role of nodal
attributes in network structure and even model both bipartite and multilevel networks. The
role of nodal attributes on network structure (i.e., assortative mixing) and the disease transmis-
sion process has been developed for the configuration model [33, 42] but we are not aware of
similar results for extensions with additional subgraphs. Such results would be a useful
development.
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An Interesting Observation on the Relationships Network

We note that Bearman et al. [30] suggests a normative rule is in play to explain the small num-
ber of 4-cycles in that network. Further they say that when a 4-cycle term was included in an
ERGM, after explicitly accounting for the three 4-cycles occurring through the highly-unusual
9-star, the corresponding 4-cycle parameter was negative. In contrast, we find after explicitly
accounting for the 4-cycles and 9-star that small numbers of 4-cycles can be generated in a
model (without a need for additional nodal attributes) with acceptable goodness-of-fit that
does not explicitly prohibit connected structures larger than triangles. Key differences between
the approaches are the use of approximate maximum likelihood estimation and the newer
alternating k-star statistic here. Bearman et al. [30] used a pseudolikelihood approach and
explicitly included 2-stars and 3-stars, which were common approaches at the time.

Limitations and Future Work

The networks considered here are empirical static networks chosen as illustrative of human
contact networks. Our goal here is not to dwell on the particular choices made to create those
empirical networks from observational data. We note that Holme [43] studies optimal methods
for creating static networks for epidemiological studies from empirical temporal contact data.
We also acknowledge there are modes of contact (e.g., physical non-intimate contact, contact
within a household structure) not represented by our examples. Clearly the study described
here can be extended to such empirical networks in the future.

Advances in the use of technology (e.g., Wifi, Bluetooth, RFID tags) to collect high fre-
quency contact network data (e.g., [29, 44-47]) are creating new opportunities for network epi-
demiology (i.e., “digital epidemiology” [48]). Part of the opportunity this provides is the
exciting ability to study temporal network effects on disease transmission. On the other hand,
it is not clear that temporal, rather than static, models will always be necessary. The compari-
sons by Machens et al. [44] illustrate that a static network model that captures contact dura-
tions but not temporal ordering can give SEIR results similar to using full empirical data with a
time-varying, individual-based contact network with contact start and end events at 20 s reso-
lution. We adopt the view that the timescales for both epidemic dynamics and contact network
dynamics determine the extent to which a static network approximation is useful.

Because our focus is on fitting empirical networks we have not included mathematical net-
work models such as scale-free networks [49] and small-world networks [50]. These models
are not parameterised to simultaneously fit the degree distribution and clustering. In the case
of scale-free networks, the degree distribution is key to understanding epidemic dynamics [51].
Since the edge-triangle type models can use an empirical node degree sequence, or a node
degree distribution, we would expect epidemic dynamics of SIR-type infections would be simi-
lar. In the case of small-world networks, the key feature is “shortcuts” that make the typical
path lengths shorter than an Erdds-Rényi network. Because the edge-triangle type models ran-
domly re-attach stubs, we would not expect networks from these models to have these short-
cuts, and so epidemic dynamics should be more similar to an Erdds-Rényi network.

As a matter of model selection, we would expect better model fit when additional subgraphs
are used. We have not attempted to formalize a comparison of these models. We use the empir-
ical node role sequences. If multivariate node role distributions were instead fit to the node role
sequences, additional modelling parameters and an additional amount of modelling inaccuracy
would be introduced. Some trade-off between model complexity and accuracy would be neces-
sary, but this is beyond the scope of this paper. In many cases researchers will have access to
the empirical node roles.
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We have focussed on SIR-type infections, but recognise that other types of infections (e.g.,
SL, SIS) are also important. For the relationships network, most sexually-transmitted diseases
would not be modelled as SIR-type. For the PWID network, HIV and hepatitis C are very rele-
vant but would not be modelled as SIR-type. It would be interesting to extend our results to
more general infection parameters and types of infections. Edge-based compartmental model-
ling is a new technique that extends epidemiological results for configuration models to
dynamic network models and models where the population has additional heterogeneity
(demographic features, multiple types of risk behaviour) and the disease has more complicated
history [33, 42]. Unfortunately these methods are not appropriate for SIS-type infections,
where the risk of reinfection violates the assumptions underlying simplifications in the calcula-
tions. The need for direct simulation, possibly with ERGMs, has not been eliminated for SIS-
type infections. Our results could also be extended by looking for differences between the mod-
els when a vaccination or treatment is administered. These extensions are left for future work.

We have assumed constant infection duration and both homogeneous infectiousness and
susceptibility. Further investigation, in particular to the role of triangles and size four sub-
graphs in configuration-type models for clustered heterogeneous networks, is left for future
work. We note that using theoretical arguments (and demonstrated with a single EpiSim§ net-
work) Miller [8] states that heterogeneous infectivity and susceptibility allows short-cycle clus-
tering to play a more significant role in outbreak probability and final size for infections close
to the epidemic threshold, but less important for networks with sufficiently large average
degree. Certainly, as average degree increases we would expect epidemic results to more closely
resemble non-network mixing results.

Our approach to fitting an edge-triangle type model to a snowball sample is novel but ad
hoc. We leave as future work to develop this approach to modelling within a statistical frame-
work. In addition, it would be interesting to extend this idea to subgraphs of four nodes, which
may require sampling additional snowball waves.
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