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Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors
(GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors.
Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are
expressed in liver resident cells and play a critical role in maintaining liver function. In the
normal physiology, these receptors regulate hepatic metabolic processes such as insulin
responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP
and other nucleotides serve as danger signals and modulate purinergic responses in the
cells. Recent studies have demonstrated that purinergic receptors play a significant role in
the development of metabolic syndrome associated non-alcoholic fatty liver disease
(NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC)
and liver inflammation. In this concise review, we dissect the role of purinergic signaling in
different liver resident cells involved in maintaining healthy liver function and in the
development of the above-mentioned liver pathologies. Moreover, we discuss potential
therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
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INTRODUCTION

The action of adenosine triphosphate (ATP) as an extracellular signaling molecule was initially
proposed by Burnstock in 1972 (1, 2). ATP and its hydrolytic products (ADP and adenosine) along
with other nucleotides and nucleotide sugars (UTP, UDP, UDP-glucose) act as extracellular signals
to regulate various physiological and pathophysiological processes (3–7). These signaling molecules
activate two families of purinoceptors: Adenosine receptors (also designated as P1) are activated
principally by adenosine and consist of four subtypes shown as rodent gene name (subtype name):
Adora1 (A1AR), Adora2a (A2AAR), Adora2b (A2BAR), Adora3 (A3AR). The adenosine receptors
differ in their affinity for adenosine, with A1AR and A2AAR exhibiting high affinity and A3AR and
A2BAR having lower affinity (8). A1AR and A3AR couple to Gi/o proteins, whereas A2AAR and
A2BAR couple to Gs/olf proteins causing a decrease or increase in intracellular cAMP levels upon
receptor activation respectively. P2 receptors are divided into ionotropic ligand-gated ion channel
P2X (P2X1-7, gene name P2rx#), principally activated by ATP, and metabotropic G protein-
coupled P2Y (P2Y1,2,4,6,11,12,13,14, gene name P2ry#) receptors. P2Y1,2,4,6,11 receptors belong to the
P2Y1-like subfamily and couple to Gq/11, Go, G12/13, Gs protein, whereas P2Y12,13,14 receptors are
classified as P2Y12-like and couple to Gi/o protein, thereby activating different intracellular
signaling pathways.
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The liver is the largest internal organ in the body with a diverse
range of functions including metabolism of glucose and other
carbohydrates along with lipids, protein synthesis, detoxification,
and bile secretion (9). The liver is a major site for nucleotide
synthesis (salvage or de novo synthesis), and the release of these
nucleotides into extracellular space may result in autocrine and
paracrine activation of purinergic receptors on different cells,
regulating various biological processes (10–12). ATP release can
be mediated by various mechanisms such as exocytosis from
lysosomes, unregulated release from necrotic cells, co-release with
hormones, controlled release through connexin and pannexin
hemichannels, and P2X7 ion channels (13–18). In this concise
review, we will discuss the understanding of purinergic signaling
in liver physiological and pathophysiological processes. We will
also briefly describe potential clinical applications of purinergic
signaling-based drugs for the therapeutics of liver disorders.
SOURCES OF EXTRACELLULAR
NUCLEOTIDES AND ADENOSINE IN LIVER

Adenosine is produced in the extracellular space via
dephosphorylation of ATP by a two-step enzymatic reaction
sequence. First, CD39 (ecto-nucleoside triphosphate
diphosphohydrolase 1: ENTPD1, NTPDase1) and NTPases
convert ATP or ADP to AMP. In the second step, hydrolysis of
AMP by CD73 (ecto-5’-nucleotidase: NT5E) results in the
generation of the adenosine. The ectonucleotide pyrophosphatase/
phosphodiesterase (ENPP) family is also responsible for hydrolysis
of extracellular nucleotides. The CD39-CD73-adenosine axis has
been implicated in liver immune responses and inflammation related
to various diseases (19). Intracellularly generated adenosine can
also be transported across cell membranes by ENTs (equilibrative
nucleoside transporters) and CNTs (concentrative nucleoside
transporters). Vesicular nucleotide transporter (VNUT, SLC17A9)
expressed by mouse hepatocytes has been shown to promote
vesicular release of ATP and other nucleotides (20). VNUT-
dependent ATP release from the hepatocytes triggered
postprandial triglyceride release and aggravated steatohepatitis
in the liver (20). The authors also demonstrated that high blood
glucose stimulated the release of ATP from hepatocytes, and this
phenomenon was inhibited in mice lacking VNUT (20). Treatment
of a mouse model of NASH with VNUT inhibitor (clodronate)
reduced hepatic inflammation, fibrosis, and triglyceride
accumulation (21). Another study demonstrated that human
hepatocytes can release ATP in response to cell swelling or
osmotic stress (22). Autocrine purinergic signaling mediated by
ATP led to Cl- secretion that helped to recover the cell volume
(22). Intrahepatic mechanical stress induced during hepatectomy
resulted in the robust release of ATP from a lysosomal compartment
of hepatocytes and Kupffer cells (23). This increased extracellular
ATP levels promoted liver regeneration in the rat post-surgery (23).
Connexin hemichannels required for the release of ATP have been
implicated in steatohepatitis (24). Treatment of mice with connexin
inhibitors (TAT-Gap24 and TAT-Gap19) decreased inflammatory
markers and liver lipid levels while increasing superoxide dismutase
levels (24). Another study demonstrated the role of pannexin1
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(PANX1) in the pathogenesis of liver diseases (25). The mice
lacking PANX1 displayed reduced inflammation compared to the
control mice when induced with steatohepatitis (25). Selective
deletion of CD39 has been studied by Robson and others (26).
CD39 is beneficial during liver regeneration and for hepatic glucose
metabolism. However, CD39 deletion in natural killer (NK) cells
reduces interferon-g production to attenuate ischemia/reperfusion
injury inmouse liver. Hence, extracellular nucleotides and purinergic
signaling have been implicated in the regulation of various hepatic
processes (26–29).
LIVER - A METABOLIC ORGAN

The liver is a key organ for the regulation of glucose homeostasis in
both fed and fasted conditions (30, 31). During fasting, stored
glycogen in the liver is broken down by the process of glycogenolysis
to maintain normoglycemia. The liver also contributes to fasting
glucose production by the process of gluconeogenesis. The net
hepatic glucose output helps to provide an energy source to
extrahepatic tissues during starvation (30, 31). Starvation also
promotes the accumulation of lipids (triacylglycerol (TAG) and
diacylglycerol (DAG)) in the liver. These key liver functions are
mainly performed by parenchymal cells termed hepatocytes (30).
Hepatocytes make up to roughly 80% of the total hepatic mass. In
addition to the parenchymal cells, the liver contains non-
parenchymal cells, i.e. hepatic stellate cells (HSC, fat-storing
pericytes located between a sinusoidal capillary and hepatocytes),
cholangiocytes (bile duct epithelial cells) and Kupffer (resident
macrophages), vascular endothelial and smooth muscle cells, that
through crosstalk with hepatocytes and with each other regulate
liver functions (31, 32). Many non-resident cells infiltrating into the
liver such as macrophages, neutrophils, dendritic cells, natural killer
cells, and T and B lymphocytes regulate cytokine production
affecting liver metabolic activity in pathophysiological conditions
(32). Most of the liver cell types (both resident and infiltrating)
express multiple purinergic receptor subtypes (32).
HEPATIC CARBOHYDRATE AND
LIPID METABOLISM

Purinergic signaling plays a role in various processes related to
carbohydrate and lipid metabolism in the liver. Mechanical
stimulation, stress such as hypoxia, or cell lysis may cause the
release of nucleotides, such as ATP and UTP, by hepatocytes (and
consequently elevated adenosine) that induce Ca2+-mediated
glycogenolysis in neighboring hepatocytes (11). Extracellular ATP
stimulates glycogenolysis in hepatocytes and perfused livers
(33–36). Treatment of human hepatocytes with BzATP, a P2XR
agonist, decreases glycogen content (37). Mechanistically,
stimulation of P2X resulted in Ca2+-mediated activation of
glycogen phosphorylase, a rate-limiting enzyme in the
glycogenolysis pathway (37–39). In the perfused liver, UTP
induces glycogenolysis more potently than ATP due to its robust
effect on thromboxane secretion from the non-parenchymal cell
(40). ATP also enhances Ca2+-mediated gluconeogenesis in
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hepatocytes (41, 42). However, high concentrations of ATP inhibit
gluconeogenesis from sources such as pyruvate and lactate (43).
Stimulation of cultured hepatocytes by ATP attenuates glycolysis,
through inhibition of phosphofructokinase-2 (44). Activation of
A1AR enhanced Ca2+-mediated glycogenolysis in isolated rat
hepatocytes (45). The authors also showed that activation of
A2AR with a selective agonist (CGS21680) also promoted glucose
release via gluconeogenesis in rat hepatocytes (45).

Nucleotides also regulate liver lipidmetabolism. Extracellular ATP
inhibits acetyl-CoA carboxylase (ACC) by elevating intracellular
calcium levels in rat hepatocytes (46). ATP treatment also
simultaneously inhibited carnitine O-palmitoyltransferase I (CPT-1)
activity through a PKC-dependent mechanism (46). A2AR deficiency
enhanced expression and activity of lipogenic gene-sterol regulatory
element-binding protein 1c (SREBP1c) in mouse hepatocytes (47).
Extracellular nucleotides were also reported to play a key role in
reverse cholesterol transport. Chronic activation of P2Y13R by a
partial agonist (AR-C69931MX) increased liver uptake of cholesterol
(48). Further, a study on P2Y13R deficient mice displayed impaired
features of reverse cholesterol transport, independent of plasma HDL
levels (49, 50).
PURINERGIC SIGNALING IN LIVER
METABOLIC DISORDERS

Non-Alcoholic Fatty Liver Disease and
Non-Alcoholic Steatohepatitis
Metabolic syndrome and non-alcoholic fatty liver disease
(NAFLD) have a bidirectional mutual relationship, suggesting
that the occurrence of one can enhance the severity of the other.
The effect of metabolic syndrome on NAFLD may be greater than
the effects of NAFLD on metabolic syndrome (51, 52). Metabolic
syndromecharacterizedbyobesity, insulin resistance, dyslipidemia,
and glucose tolerance can initiate ectopic deposition of lipids in the
liver causing NAFLD (52). NAFLD can progress to non-alcoholic
steatohepatitis (NASH), a severe form of NAFLD associated with
liver inflammation (53). Studies have been conducted showing the
effects of purinergic receptors directly on liver dysfunction or
indirectly via improving features of metabolic syndrome. The
liver of streptozotocin (STZ)-induced diabetic rats showed
increased adenosine A1AR expression (54). However, a different
study claimednochange inA1ARexpression,whereas expressionof
A2AAR and A3AR receptors was significantly upregulated in STZ-
treated rat liver (55). P2X7R expression was increased in
hepatocytes, Kupffer cells, and liver sinusoidal endothelial cells in
the NASH disease model (56). Lack of P2X7R ameliorates
hepatocyte apoptosis and decreases inflammation and fibrosis in
mice treated with carbon tetrachloride (CCl4) with a high fat diet
(HFD) (56, 57). Activation of P2X7R on Kupffer cells enhances
the production of TNF-a and monocyte chemotactic protein-2
(MCP-2) production in HFD mice treated with CCl4 (57). These
studies suggest that P2X7R antagonists may prove useful for the
treatment of NASH.

A2AAR activation has an anti-inflammatory effect (58, 59),
whereas its deficiency increases pro-inflammatory responses
Frontiers in Endocrinology | www.frontiersin.org 3
(60). Further, the lack of whole-body A2AAR in mice enhanced
HFD-induced NAFLD and liver inflammation (47). Accordingly,
deficiency of A2AAR in hepatocytes and macrophages contributed
to enhanced inflammation (47). The effect of A2AAR on
inflammation was also demonstrated in the methionine- and
choline-deficient (MCD)-induced NASH mouse model. The
MCD-NASH mouse model combined with A2AAR knockout
(KO) exhibited higher body weight, enhanced liver inflammation,
and severe hepatic steatosis than the control group (61). The
A2AAR’s role in reducing inflammation caused by lipotoxicity
substantially imparted protection against the development of
NASH (62, 63). These studies suggest the therapeutic potential of
A2AAR agonists in decreasing inflammation associated with
NAFLD/NASH and metabolic syndrome (Figure 1).

A2BAR was also demonstrated to play a critical role in
regulating fatty liver disease. Deficiency of A2BAR protected
mice from hepatic steatosis and development of fatty liver (64).
Inhibition of A2BAR by selective antagonist ATL-801 in diabetic
KKA(Y) mice reduced glucose output during hyperinsulinemic-
euglycemic clamp studies (65). Some of the contrasting studies
showed that A2BAR activation inhibited lipogenic genes such as
sterol regulatory element-binding protein-1 (SREBP-1). HFD
mice lacking A2BAR displayed hepatic steatosis with enhanced
plasma triglyceride and cholesterol levels (66). Furthermore,
overexpression and activation of hepatic A2BAR reduced lipid
synthesis in the liver and improved whole-body metabolism (66).
A2BAR KO mice on regular diet showed reduced weight and
increased de novo lipogenesis resulting in elevated liver
triglyceride levels. Increased mRNA levels of glucokinase and
fatty acid synthase confirmed impaired lipid metabolism in the
liver of A2BAR KO mice (67). HFD A2BAR KO mice exhibited
impaired glucose tolerance and insulin sensitivity (68). Wild type
(WT) mice treated with A2BAR agonist/partial agonist (BAY60-
6553) displayed improved glucose and insulin tolerance and
decreased fasting blood glucose levels (68). These observations
render A2BAR a good drug target for the treatment of liver
diseases (Figure 1).

Recent studies have highlighted the importance of the A3AR
in NAFLD/NASH. A3AR expression in livers from NAFLD
patients was decreased by 1.9-fold compared to controls,
highlighting a plausible role of the receptor in NAFLD
pathophysiology (69). Global deficiency of A3AR in mice fed a
HFD enhanced expression of genes involved in hepatic
inflammation and steatosis (69) (Figure 1). The authors
showed that administration of an A3AR agonist prodrug
(MRS7476, 5 mg/kg, p.o., b.i.d.) protected the STAM mouse
model against the development of NASH (69). The two succinyl
ester groups of MRS7476 greatly increase its water solubility and
are likely cleaved in the gut, rather than the site of action.
Another study showed the efficacy of A3AR agonist Cl-IB-
MECA (namodenoson) in the treatment of NASH in mice
(70). The drug namodenoson is currently in Phase 2 clinical
trials for NASH therapeutics (ClinicalTrials.gov Identifiers:
NCT02927314 and NCT04697810, accessed 05-31-2021).

Obesity is a key risk factor for the development of NAFLD,
and hence the mainstay treatment for NAFLD and NASH is
August 2021 | Volume 12 | Article 718429
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weight loss. Recent studies have demonstrated the role of P2Y
receptors in regulating obesity and its impact on liver steatosis
and inflammation. Mice lacking P2Y6R selectively in adipocytes
were protected from diet-induced obesity (without a significant
change in food intake) and systemic inflammation (71). Reduced
obesity in adipocyte-P2Y6R KO resulted in lower liver weight and
hepatic steatosis (71). Further, mRNA levels of inflammatory
markers were reduced in the liver of adipocyte P2Y6R KO mice
(71). Another study revealed that mice lacking P2Y14R selectively
in adipocytes were protected from obesity and displayed reduced
liver weight compared to HFD control mice (72). Liver
triglyceride levels were significantly reduced in adipocyte
P2Y14R KO mice, protecting mice from the development of
liver steatosis (72). Reduced obesity and hepatic steatosis
further contributed to improved insulin sensitivity in the liver
of adipocyte-P2Y14R KO mice (72). These studies highlight that
blocking P2Y6R and P2Y14R in adipocytes protects against diet-
induced obesity (DIO) and hence has the potential to treat
NAFLD/NASH (Figure 2).

Liver Fibrosis
Repetitive injury or inflammation due to NAFLD/NASH causes
scarring of liver tissue or fibrosis (73, 74). Untreated fibrosis can
lead to irreversible liver damage and progress to liver cirrhosis.
Hepatic fibrosis is characterized by the accumulation of
extracellular matrix due to activation and differentiation of
hepatic stellate cells (HSC) into fibrogenic myofibroblasts (74).
Purinergic receptors have been implicated in the regulation of
HSC activation. Activation of A2AAR induced proliferation and
reduced apoptosis and senescence of rat primary HSC and the
human HSC cell line LX-2 (Figure 3). Mechanistically, A2AAR
activation down-regulates p53 and retinoblastoma (Rb) protein
levels (both tumor suppressors), enhancing HSC survival and
Frontiers in Endocrinology | www.frontiersin.org 4
contributing to liver fibrosis (75). An A2AR antagonist may prove
useful in the treatment of ethanol-induced liver fibrosis and HSC
activation (76). An A2BAR antagonist (MRS1754) has shown
promising results in mitigating collagen deposition during
hepatic fibrosis progression (77).

Quiescent HSCs with low levels of proliferation and decreased
extracellular matrix deposition express P2Y2R and P2Y4R,
whereas activated HSCs expressed P2Y6R (78). Treatment of
activated HSCs with UDP (native P2Y6R agonist) tripled the
mRNA levels of procollagen-1, indicating that P2Y6R may play a
role in liver fibrosis (78) (Figure 3). P2X7R expression levels also
increased significantly in activated HSCs, promoting
proliferation and collagen production (79). P2X7R expression
is enhanced in mouse models of liver fibrosis treated with CCl4
and treatment with a P2X7R antagonist (A438079) decreased
liver inflammation and collagen accumulation (80). P2X4R
expression was increased in the MCDD liver fibrosis mouse
model (81). Deficiency of P2X4 or treatment with the 5-BDBD (a
P2X4R antagonist) protected mice from MCDD-induced liver
fibrosis (81).

Activity of CD73, ecto-5′-nucleotidase, was higher in
quiescent HSCs than the activated HSCs, indicating that
adenosine may play a key role in maintaining the quiescent
phenotype of HSCs (82). However, a recent study showed that
CD73 expression increased in differentiated myofibroblast and
may be targeted for fibrosis treatment (83). Lack of CD73
protected mice against CCl4- and thioacetamide (TAA)-
induced liver fibrosis (84).

Liver Cancer
Liver fibrosis and cirrhosis can progress to the development of
liver cancer associated with chronic inflammation, dysfunctional
metabolism and immune responses, and aberrant cell
FIGURE 1 | Purinergic signaling in hepatocytes. Hepatocytes are parenchymal cells of the liver and are involved in maintaining whole-body glucose and lipid
homeostasis. Hepatocytes express various purinergic receptors that play a key role in regulating glucose, lipid, cholesterol metabolism, and hepatocyte apoptosis.
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proliferation (85). ATP released from the necrotic cells acts
as a danger signal to activate immune cells during cancer
development and stimulate neighboring cells to die. Change in
the concentration of extracellular ATP from 1 mM to 2.5 mM
tipped the balance from mechanistic target of rapamycin
(mTOR)-mediated autophagy required for cell survival to
AMP-activated kinase (AMPK)-mediated apoptosis-induced
cell death in hepatoma cells (86). This study provides evidence
for the manipulation of extracellular ATP for cancer therapy.
Extracellular ATP causes increased expression of purinergic
receptors in hepatic tumor tissue compared to healthy liver
tissue (87–89). P2Y11R receptor is expressed at very high levels
in human hepatocellular carcinoma (HCC) tissues and was
scarcely detected in normal liver tissues (89). P2Y11R mediates
ATP-induced Ca2+ signaling and cell migration in human HCC
cells (89). Accordingly, treatment with a P2Y11R antagonist
(NF340) attenuated the effects of ATP on HCC cells (89).
ATP-induced activation of P2Y2R mediates the proliferation
and migration of human HCC cells (90). Knockdown of
P2Y2R expression by shRNA inhibited the action of ATP on
the cellular behavior of HCC cells (90). These studies indicate
that blocking P2Y11R and P2Y2R signaling may prevent the
proliferation and migration of cancerous cells and may be useful
for the treatment of liver cancer.
Frontiers in Endocrinology | www.frontiersin.org 5
CD39 (ectonucleoside triphosphate diphosphohydrolase-1,
ENTPD1) deficiency increases ATP levels activating AMPK
and mTOR pathways to stimulate hepatocyte proliferation
(91). CD73 is a prognostic marker of HCC as it is expressed
highly in around 50% of HCC samples compared to the healthy
tissues (92). CD73 activity increase HCC growth and metastasis
via promoting PI3K/AKT signaling in vivo (92, 93). Blocking
CD73 with a,b-methylene-ADP (AMPCP) or A2AAR with
istradefylline (KW6002, now FDA-approved for Parkinson’s
disease treatment) inhibited tumor growth (92). Co-treatment
with CD73 and A2AAR inhibitors displayed synergistic effects on
HCC cells (92). High expression of A3AR was also reported in
tumor tissues and peripheral blood mononuclear cells from
patients suffering from HCC (94, 95). Treatment with A3AR
agonist (CF102) promotes apoptosis and inhibits the growth of
HCC cells in a dose-dependent manner (94, 95).

CONCLUSIONS

This review has highlighted the developing role of purinergic
receptors in the regulation of hepatic disorders associated with
metabolic syndrome. Among adenosine receptors, preclinical
studies have highlighted the key role of A3AR agonists in
protecting against NASH. A3AR agonist may also be useful in
FIGURE 2 | Dysregulated purinergic signaling in adipocytes alleviates obesity and associated NAFLD. Lack of P2Y6R or P2Y14R specifically in adipocytes protects
against diet-induced obesity. Reduced fat mass prevented the ectopic deposition of lipids in the liver, decreasing hepatic steatosis. Hepatic inflammation was
reduced in mice lacking P2Y6R or P2Y14R in adipocytes. Antagonists of P2Y6R and P2Y14R may prove beneficial for the treatment of obesity-associated NAFLD.
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preventing the growth of liver cancer. A2AAR and A2BAR
antagonists may provide therapeutic benefits against liver
fibrosis. Among P2Y receptors, P2Y6R or P2Y14R antagonist
may prove beneficial in preventing NAFLD and hepatic
inflammation associated with obesity. P2X7R receptors
antagonist can be examined for the treatment of NASH and
liver fibrosis. Most of the previous studies have focused on
whole-body KO mouse models or pharmacological
manipulation for studying purinergic signaling effects on liver
metabolism. Studies on understanding the role of purinergic
receptors in the liver pathophysiology using liver cell-specific KO
mouse are lacking. Future studies using liver-specific KO mouse
models for understanding liver diseases are warranted.
Numerous potent ligands for purinergic receptors have been
synthesized that can be tested in preclinical mouse models of
liver diseases (96–103). Characterization of agonists and
Frontiers in Endocrinology | www.frontiersin.org 6
antagonists for purinergic receptors in preclinical mouse
models may foster the development of novel drugs for the
treatment of liver diseases.
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