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Abstract

Segmentation of prostate Cone Beam CT (CBCT) images is an essential step towards real-time 

adaptive radiotherapy (ART). It is challenging for Calypso patients, as more artifacts generated by 

the beacon transponders are present on the images. We herein propose a novel wavelet-based 

segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso 

transponders. For a given CBCT, a Moving Window-Based Double Haar (MWDH) transformation 

is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of 

interest, a cluster algorithm based adaptive thresholding is applied to the low frequency 

components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is 

applied on the high frequency components. For the next step, the wavelet reconstruction is applied 

to the thresholded wavelet coefficients. A binary (segmented) image of the object of interest is 

therefore obtained. 5 hypofractionated Calypso prostate patients with daily CBCT were studied. 

DICE, Sensitivity, Inclusiveness and ΔV were used to evaluate the segmentation result.
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1. Introduction

One important step of the Adaptive Radiation Therapy (ART) is the segmentation of the 

CBCT images—a step required for the adaptive planning. This is specially important for 

hypofractionated treatments. Many studies have been published on automatic segmentation 

of prostate CBCT [1]–[9]. Accurate segmentation of CBCT is challenging due to the daily 

variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. 

In our institution, some hypofractionated prostate patients are treated by Calypso tracking 

system (Varian, Palo Alto, CA). Three beacon transponders are implanted to the prostate, so 

that the target motion during the treatment delivery can be tracked in real time. However, the 

metal transponders introduce artifacts to the CBCT imaging, which makes segmentation 

more challenging. Based on our knowledge, no study was published yet on the segmentation 

of prostate CBCT with implanted Calypso transponders.
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We propose to segment prostate and surrounding structures in the wavelet domain. The 

major advantage of wavelets is the ability to perform local analysis, i.e. trends, breakdown 

points, discontinuities, etc. The Double Haar wavelet transform can make the image edge 

detection more effective. The moving window implementation can protect the details and 

smooth the noise [10]. Therefore, we use a combination of these two—the Moving window-

based Double Haar (MWDH) transformation for our prostate segmentation.

Adapted thresholds are assigned to different frequency components after MWDH. In low 

frequency component, cluster algorithm is employed to obtain a threshold TL to classify the 

region of interest. In high frequency components, Lee filter theory is used to calculate the 

adaptive threshold TH after de-noising. The segmented result is obtained by wavelet 

reconstruction of the thresholded components. Physician contoured the structures, and these 

served as ground truth.

The rest of this paper is organized as follows: in section 2, we will present the wavelet based 

segmentation algorithm in more details. The experimental results are shown in section3 and 

followed by discussion. The last section will conclude this study.

2. Materials and Methods

The flow chart of the proposed algorithm is shown in Figure 1.

2.1. Moving Window Based Double Haar Wavelet Transform

Different than the conventional two-channel wavelet transform, the Double Haar wavelet 

transform (DHWT) has three channels. As shown in Figure 2, the input signal x(n) is filtered 

by one low pass filter H0(z) and two high pass filters H1(z) and H2(z). x0(n) (low frequency 

component/sub-band) and x1(n) and x2(n) (high frequency components/sub-bands) are the 

outputs. Then, sub-sampling is applied on each component to keep image size the same. For 

reconstruction, the interpolation needs to be applied first, followed by the reconstruction 

filters G0(z), G1(z), and G2(z).

2.2. The Adaptive Thresholding

In wavelet domain, low frequency components usually represent the main characteristics or 

identity of an image. The high frequency components, on another hand, are the nuance or 

details of an image. Considering these differences, different thresholding methods were 

applied on high and low components.

For low frequency component, the goal of thresholding is to group pixels of similar 

properties to a same group. Cluster algorithm [11] was designed to achieve this goal and was 

applied for low frequency component thresholding.

LEE filter can yield a local linear minimum mean-square error estimate of the original and 

give a better edge protective effect. Therefore, it was utilized for high frequency components 

thresholding.
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For both cluster algorithm and LEE filter, image pixel statistics is needed to calculate the 

thresholding value. This is achieved by having user manually select a point in the structure 

of interest before the segmentation. Then a window is applied to collect the statistics.

2.3. Patient Information

Five hypofractionated prostate patients with prescription of 800 cGy × 3 and daily CBCT 

were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients 

were setup and treated with Calypso tracking system. Two sets of CBCT image from each 

patient were studied. 3 × 3 moving window was used. The MWDH based segmentation 

algorithm was applied to segment and prostate, bladder and rectum.

2.4. Evaluation of the Segmentation

The structures were also contoured by trained expert, and these served as ground truth. We 

validate the proposed segmentation algorithm using the following metrics.

Dice Similarity Coefficient (DSC)—DSC measures the spatial overlap between two 

segmentations [12], and is defined as:

(1)

where Vseg is the structure volume obtained by the proposed segmentation algorithm. 

Vground is the ground truth. DSC has a range of [0, 1], where 0 means no overlap, and 1 

means complete overlap.

Sensitivity—The sensitivity reflects the probability that the automatic segmentation 

contour match the ground truth contour [12]. It is defined as:

(2)

Inclusiveness (Incl)—The inclusiveness shows the inclusion of Vseg within Vground, it 

reflects the probability that a pixel of the Vseg also belongs to Vground. It is computed by:

(3)

ΔV: ΔV is the ratio of the difference between Vseg and Vground over Vground, it is defined as:

(4)
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3. Results

Table 1 lists the statistical results of the segmentation. Figure 3 displays examples of the 

segmentation results.

4. Discussion

Segmentation of prostate in important for adaptive radiation therapy [13]–[20]. One type of 

commonly used approach is deformable registration-based algorithm [4] [9]. Usually, a rigid 

registration is applied first to propagate the planning CT contours to the CBCT images. 

Then, iterative algorithm (i.e. Demons) is applied to calculate the pixel deformation flow/

vector, until the given constrain is met. This works for some cases. However, when a large 

fraction of the propagated rectum and bladder contours were unacceptable, it provided a sub-

optimal starting point for the deformable registration. This approach is difficult to 

generalize-the same measures and transformation constraints might not work for all the 

structures.

Another type is model/atlas based segmentation. As its name suggests, model needs to be 

built. The assumption of this approach is that structures of interest have a repetitive form of 

geometry. It involves expert manual segmentation of the structures of interest, and 

registration of the training examples to a common pose or model training to build the model 

[20] [21] [22]. This type involves significant amount of expert time. Expert contours usually 

involve human variations as well, which might be reflected in the built segmentation model.

Our proposed wavelet based prostate CBCT segmentation algorithm does not require 

deformable registration or model building. The moving window-based MWDH transfers the 

CBCT images to the wavelet domain, which contains high and low frequency components. 

We applied different thresholding technique to segment the different components. The final 

segmentation was achieved by the reconstruction of the thresholded wavelet coefficients. 

The algorithm is semi-automatic, as it requires user input to select a starting point. Our 

proposed algorithm achieved reasonable DICE index for all structures over all patients. 

However, it has challenges in two scenarios: 1) prostate with very low contrast; 2) rectum 

with significant amount of gas. The right hand side of Figure 3(b) illustrates the first 

scenario. The contrast of prostate was low, and the algorithm over-segmented the prostate. 

The right hand side of Figure 3(c) illustrates the second scenario, when the rectum was filled 

with significant amount of gas, the algorithm tended to segment the gas. We have tried to 

select the user point inside and outside of the gas, and did not observe noticeable 

improvement. Multiple user entered points might help these two kinds of situations, and we 

will include it in our future work.

Haar wavelet transform has many advantages. There is no need for multiplications. It 

requires only additions and therefore the computation time is short. Its input and output 

length are the same. Although the double Haar wavelet transform enhanced its ability to 

analyze the localized features of images, other more sophisticated wavelet transforms might 

analyze the high frequency components better and further improve the segmentation results.
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5. Conclusion

The proposed algorithm appeared effective segmenting prostate CBCT images with the 

present of the Calypso artifacts under most common clinical scenarios. However, when the 

prostate contrast is low or there is significant amount of gas in the rectum, the algorithm 

might have inferior segmentation result.
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Figure 1. 
The flow chart of the segmentation algorithm based on MWDH. TL and TH are the 

thresholds for low and high frequency components.
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Figure 2. 
The structure of DHWT.
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Figure 3. 
Contour comparison between the segmentation (red) and ground truth (blue). The ones with 

inferior segmentation results were plotted using thicker lines. (a) Bladder; (b) Prostate; (c) 

Rectum.
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