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Abstract
Identifying and monitoring locally adaptive genetic variation can have direct utility for 
conserving species at risk, especially when management may include actions such as 
translocations for restoration, genetic rescue, or assisted gene flow. However, genomic 
studies of local adaptation require careful planning to be successful, and in some cases 
may not be a worthwhile use of resources. Here, we offer an adaptive management 
framework to help conservation biologists and managers decide when genomics is 
likely to be effective in detecting local adaptation, and how to plan assessment and 
monitoring of adaptive variation to address conservation objectives. Studies of adap-
tive variation using genomic tools will inform conservation actions in many cases, in-
cluding applications such as assisted gene flow and identifying conservation units. In 
others, assessing genetic diversity, inbreeding, and demographics using selectively 
neutral genetic markers may be most useful. And in some cases, local adaptation may 
be assessed more efficiently using alternative approaches such as common garden 
experiments. Here, we identify key considerations of genomics studies of locally adap-
tive variation, provide a road map for successful collaborations with genomics experts 
including key issues for study design and data analysis, and offer guidelines for inter-
preting and using results from genomic assessments to inform monitoring programs 
and conservation actions.
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1  | INTRODUCTION

Natural selection is a powerful force that can shift the genetic makeup 
of a population through time, increasing average fitness of individuals. 
Some adaptations, such as resistance to a widespread disease, will in-
crease fitness of individuals in most or all populations of a species, while 

other adaptations are advantageous only under certain local environ-
mental conditions, termed local adaptation (Box 1). Information on the 
extent and nature of local adaptation can be used by managers to inform 
conservation actions to improve the evolutionary potential and adaptive 
capacity of populations under the diverse stressors imposed by chang-
ing environments (Box 2). For example, the success rate of restoration 
and reintroduction efforts can be improved by matching genotypes to 
current or future environmental conditions. In reforestation efforts, †These authors contributed equally to this work.
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BOX 1 Definitions

Adaptive management: A structured decision-making framework for problems where decisions are recurrent and uncertainty is an impedi-
ment to action (Runge, 2011).
Bioinformatics: A scientific field at the intersection of mathematics, computer science, and statistics, which develops methods and software 
for analyzing and interpreting complex biological data. Bioinformatics is commonly used to analyze large next-generation sequencing 
datasets.
Common garden: An experimental approach in which organisms from two or more different environments are moved from their native 
environment into a common environment and reared through an entire life cycle under the same conditions. Traits are compared among 
individuals from different native environments to determine whether there is a genetic component to the differences among 
environments.
De novo assembly: Sequence reads are assembled without the aid of a reference genome. Instead, sequence reads are assembled into 
contigs (overlapping sequences that are nearly identical) and scaffolds (sets of contigs oriented approximately in relation to each other). 
Quality of de novo assemblies is assessed using metrics including the length of the contigs and the degree of sequence overlap. De novo 
assembly is common in studies of nonmodel organisms where reference genomes from the focal species or related species are not 
available.
Effective population size (Ne): The size of an ideal, randomly mating population that experiences genetic drift at the same rate as the census 
population (Nc). Typically, Ne is smaller than Nc due to processes that accelerate drift such as nonrandom mating, unequal reproductive 
success, and fluctuating population sizes. Ne/Nc is often 1/10 to 1/4, but sometimes much smaller. To simplify slightly, Ne is approximately 
the number of individuals in a population who contribute to offspring in the next generation.
Exome: The subset of the genome that is composed of exons, the parts of genes that are transcribed after RNA splicing occurs (i.e., se-
quence data not including introns or other noncoding regions of the genome).
Genetic drift: A change in allele frequencies over time due to stochastic processes (random transmission from generation to generation). 
Drift occurs in all populations but operates more quickly in small populations (Ne ≤ 1,000, although there is debate on the exact threshold). 
Drift decreases genetic variation and drives alleles toward fixation (frequency of 0 or 1).
Genetic markers: Any type of genetic sequence information that can be used to identify differences between individuals, populations, and/
or species. Examples include (but are not limited to) microsatellites, fragment length polymorphisms, single nucleotide polymorphisms, and 
gene sequences.
Genomic: A loosely defined term that can refer to the use of large numbers of anonymous genetic markers (thousands to millions), the use 
of targeted gene sequences, or analyses that account for genomic context such as linkage, recombination, or gene function (Allendorf et al., 
2010; Garner et al., 2016). The distinction between “genetic” and “genomic” studies varies across the literature. Here, we differentiate 
genetic studies as those using smaller sets of markers that can be treated as independent, whereas genomic studies use many markers that 
are no longer presumed to be independent loci. Most genetic studies address questions related to neutral processes (e.g., gene flow, ge-
netic drift), while genomic studies often address questions related to local adaptation, selection, and ecologically relevant traits. Due to the 
large number of markers produced by genomic studies, questions related to neutral processes are also frequently addressed, providing 
greater resolution than genetic studies.
Indicator variable: A variable that is being monitored, such as heterozygosity. When the indicator variable reaches a trigger point, a prede-
fined conservation action will be taken which aims to bring the indicator variable back below the threshold.
Linkage: A statistical association between two genetic markers that arises due to the markers being physically located near each other on 
a chromosome, close enough that recombination between the two markers is unlikely. Genetic markers may exhibit statistical linkage if 
they are inherited together (i.e., do not independently assort), even if they are not physically proximal.
Local adaptation: Due to the action of natural selection, resident genotypes have higher relative fitness in their local environment than 
genotypes from other environments.
Microsatellites: Anonymous markers whose alleles are defined by polymorphism in the length of the DNA sequence. Microsatellite markers 
have many different alleles (in comparison with biallelic SNPs), meaning that genetic variation can be captured by fewer microsatellite 
markers than would be captured by the equivalent number of SNPs. Therefore, most microsatellite studies have fewer than 30 markers, 
compared to more than 1,000 markers for studies using SNPs. However, this low number of markers does not provide sufficient genom-
ewide coverage for estimating genomewide parameters.
Reciprocal transplant: An experimental approach in which organisms from two different environments are raised in both environments. 
Traits are compared between environments to determine whether there is a genetic component to the differences between environments 
(adaptive differentiation).

(Continues)
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trees of local provenance outperform those from distant seed sources, 
with greater survival, health, and productivity due to local adaptation to 
climate (Aitken & Bemmels, 2016; Langlet, 1971). By contrast, if local 
adaptation exists but is not accounted for, restoration and reintroduc-
tion may be less successful because individuals fail to thrive under the 
local environmental conditions. This outcome wastes resources and 
may cause negative ecological impacts. For example, sowing poorly 
adapted seed from native plant species in the Great Basin has resulted 
in poor establishment despite a high price tag (Kulpa & Leger, 2013; 
Leger & Baughman, 2014; Rowe & Leger, 2012). Genetically based heat 
tolerance may be similarly crucial for restoring or managing fisheries and 
coral systems (Jensen et al., 2008; van Oppen, Oliver, Putnam, & Gates, 
2015). In situations like these, identifying geographic patterns of local 
adaptation informs and improves conservation actions.

While the traditional method for testing local adaptation is to assess 
the relative survival and fitness of populations in reciprocal transplant 
or common garden experiments, this is costly, time-consuming, and 
often not feasible for species at risk. Another complementary approach 
that can be used in any species is to screen large numbers of genetic 
markers to identify variation associated with environmental factors or 
adaptive traits. These analyses, made possible due to advances in ge-
netic sequencing technologies (i.e., next-generation sequencing, NGS), 
provide unprecedented opportunities to integrate genomic data into 
conservation management of nonmodel species (Harrisson, Pavlova, 
Telonis-Scott, & Sunnucks, 2014; Hoffmann et al., 2015). However, 
genomic studies of local adaptation are not appropriate, informative, 
or necessary in all cases (Allendorf, Hohenlohe, & Luikart, 2010). 
Additionally, despite falling costs, these studies still require significant 
financial and computational resources, as well bioinformatics expertise.

Several reviews already exist on the potential of using genomic 
data to detect adaptive variation for conservation purposes (Allendorf 
et al., 2010; Harrisson et al., 2014; Hoffmann & Sgro, 2011; Hoffmann 
et al., 2015; Sgro, Lowe, & Hoffmann, 2011; Stapley et al., 2010; 
Stillman & Armstrong, 2015). Here, we aim to provide a guide to help 

conservation biologists and managers decide whether using genom-
ics to detect local adaptation is an appropriate investment, as well as 
a road map for successful collaboration with genomics experts. We 
emphasize the iterative and challenging nature of studies of adaptive 
variation and the specific need for monitoring programs that are linked 
to conservation actions, which are often characterized by high uncer-
tainty. We also describe situations when identifying local adaptation 
using genomic approaches is not likely to be useful. We use a modified 
adaptive management framework (Runge, 2011; Williams & Brown, 
2016) to highlight the important steps in a genomic study of adap-
tive variation that includes both assessment and monitoring (Figure 1): 
Plan, Design and Implement, Evaluate and Act, and Adjust. A key dis-
tinction we make within this framework is between genomics-based 
assessment, which is a point-in-time evaluation to identify existing 
adaptive variation in the populations or species of interest, and pop-
ulation genetic or genomics-based monitoring, which has a temporal 
component to monitor change (Schwartz, Luikart, & Waples, 2007). 
In most cases, as reflected in Figure 1, monitoring protocols will be 
developed from the initial genomic assessment. The best results will 
come from team members (ecologists, geneticists, bioinformaticians, 
conservation managers) working together through the entire adaptive 
management cycle and sharing their expertise while communicating 
uncertainties, practicalities, and assumptions to other team members.

2  | PLAN: INCLUDING ADAPTIVE  
VARIATION

2.1 | Determine whether knowledge of local 
adaptation informs conservation objectives

Many projects with conservation goals can be informed by knowledge 
of local adaptation (Box 2). In some cases, such as assisted gene flow 
(Box 2), incorporating adaptive variation into the assessment plan is a 
primary objective (Aitken & Whitlock, 2013). Alternatively, conservation 

Recombination: The exchange of genetic material either between multiple chromosomes or between different regions of the same chro-
mosome. Recombination typically occurs during meiosis, when homologous chromosomes pair up to be passed on to the gametes (this 
process is also referred to as “crossover”).
Sensitivity analysis: The process of testing a variety of parameter settings using the same starting data (e.g., raw reads) to compare the 
results from different parameter combinations. If the results from different parameter settings are qualitatively similar, then the results are 
likely a real signal. If the data are highly sensitive to parameter settings, it might be worth investigating to see whether there is a major 
source of bias in the dataset.
Single nucleotide polymorphism (SNP): One base pair in a DNA sequence that shows variation among individuals. SNPs are typically bial-
lelic (have only two alleles) and occur frequently throughout genomes.
Transcriptome: The set of messenger RNA transcripts that are produced in a cell or tissue in response to factors such as the environment 
or developmental stage. To generate sequencing data for these messenger RNA transcripts, RNA from a particular tissue is converted to 
DNA and sequenced in short reads on high-throughput sequencing machines (e.g., Illumina machines). These short reads are then bioinfor-
matically assembled to create sequences for genes; these consensus gene sequences are the “transcriptome.”
Trigger point: A value for an indicator variable that is decided before monitoring begins. When the indicator variable reaches this point, a 
predefined conservation action will be implemented.

BOX 1 (Continued)
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Box 2 Conservation actions benefiting from knowledge of local adaptation

Identifying geographic patterns of local adaptation, the environmental drivers of divergent selection among populations, and genes and 
their variants involved in local adaptation can inform conservation strategies for species at risk (Allendorf et al., 2010; Shafer et al., 2015), 
especially in the context of changing environmental conditions (global changes in climate or local changes in land use, fire, hydrology, and 
other processes altering a species’ local habitat). Genetic variants that help individuals within populations survive or reproduce more under 
new environmental conditions would be considered adaptive. If adaptive genetic variants are identified, individuals with genotypes more 
likely to have higher fitness in local environments could be used in breeding, reinforcement, or reintroduction programs to help ensure 
success of those programs (He, Johansson, & Heath, 2016; Kelly & Phillips, 2016; Sgro et al., 2011). Managers could also monitor the fre-
quency of these genetic variants over time to gauge the genetic health of a population, or to assess changes in allele frequencies following 
management interventions (Schwartz et al., 2007; Shafer et al., 2015).
Although adaptive genetic variation is an important consideration for conservation actions, it is clear that managing for specific adaptive 
variants without regard to genetic variation across the rest of the genome should generally be avoided (Pearse, 2016), unless such variants 
are well verified by other evidence (e.g., aridity tolerance in eucalyptus; Steane et al., 2014) and the situation is urgent (e.g., disease progres-
sion). Even in cases where the evidence for genetic adaptation is strong, management interventions should strive to conserve adaptive vari-
ation without eroding genomewide variation (Giglio, Ivy, Jones, & Latch, 2016; Haig, Ballou, & Derrickson, 1990; Spielman, Brook, & 
Frankham, 2004). Conversely, management actions designed to preserve genomewide variation may either involve risks of disrupting local 
adaptation to nonclimatic factors (e.g., biotic interactions, soils) if local adaptation is not well understood, or could result in outbreeding 
depression if individuals from long-diverged populations are mixed and interbreed (see Frankham et al., 2011 for guidance on when this 
might occur). However, many conservationists argue that the benefits of introducing needed genetic variation for challenging environmen-
tal conditions may outweigh these risks (Aitken & Whitlock, 2013; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015).
Below we provide some specific conservation actions that would benefit from the inclusion of assessment and monitoring of adaptive 
variation.
Assisted gene flow: Assisted gene flow is the movement of individuals within the species range from an adaptively divergent source popula-
tion that has genetic variation predicted to be adaptive under future environmental conditions (Aitken & Whitlock, 2013; Prober et al., 2015). 
NGS can be used to characterize local adaptation based on environmental conditions. Then, “preadapted” genetic variants from a source 
population can be moved into a recipient population to improve evolutionary potential. While appropriate source and recipient populations 
could be selected based on climatic and other ecological data (a “best guess” approach), such efforts would be better informed by knowledge 
of adaptive variation and climatic drivers of local adaptation. Assisted gene flow is expected to be especially beneficial in dispersal-limited, 
long-lived species such as trees (Aitken & Bemmels, 2016; Gugger, Liang, Sork, Hodgskiss, & Wright, 2017; Steane et al., 2014). 
Defining conservation units: Starting in the 1990s, a few (5–25) selectively neutral markers (e.g., microsatellites and organellar DNA) were 
commonly used to delineate conservation units. NGS provides increased resolution, while also allowing for characterization of adaptive 
differentiation among populations. Funk, McKay, Hohenlohe, and Allendorf (2012) explain how to use both neutral and adaptive data in a 
complementary way to delineate conservation units that maximize adaptive capacity, while Ahrens et al. (2017), Guo, Li, and Merilä (2016), 
Lah et al. (2016), and Peters et al. (2016) provide empirical examples.
Environmental epidemiology and disease dynamics: NGS can be used to investigate the genetic basis of disease, parasite, and toxin resist-
ance. This is a relatively underutilized application of NGS in wild populations, although a few excellent examples exist, including identifying 
the genetic basis of adaptation to harmful algal blooms in coastal and estuarine common bottlenose dolphins (Cammen, Schultz, Rosel, 
Wells, & Read, 2015), and identifying a rapid evolutionary response to transmissible cancer in multiple populations of Tasmanian devils 
(Epstein et al., 2016).
Genetic rescue: The aim of genetic rescue is to improve the fitness of small populations by increasing (neutral) genetic diversity by moving 
individuals between populations (Whiteley et al., 2015). The main concern with genetic rescue is outbreeding depression, a reduction in 
fitness due to the mixing of divergently adapted genotypes and/or the disruption of co-adapted gene complexes. Adaptive markers identi-
fied with NGS can characterize adaptive differences among source and target populations, while neutral markers can be used to estimate 
the extent of gene flow between these populations. This information can then be used to minimize the risk of outbreeding depression. See 
Weeks et al. (2011) for a definitive discussion.
Identifying hybridization: Although not strictly a conservation action, identifying hybrids has direct relevance for conservation managers, 
because hybridization can be both a conservation problem, threatening species identity and genetic integrity (Bohling, 2016; Wayne & 
Shaffer, 2016), and a conservation opportunity, enhancing evolutionary potential in changing environments through adaptive introgression 
(Hamilton & Miller, 2016). In both cases, NGS provides both improved resolution to identify hybridization and the data needed to develop 
monitoring panels (Hohenlohe et al., 2011).

(Continues)
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goals may be adequately addressed using neutral genetic variation (e.g., 
to infer demographic parameters), and data on adaptive variation may 
be unnecessary or secondary to the project. For example, assessment 
and management of inbreeding through genetic rescue only requires 
knowledge of neutral variation, although an understanding of local ad-
aptation may reduce the risks of outbreeding depression by minimizing 
adaptive divergence between source and target populations (Box 2).

Several features of species and their populations should be consid-
ered when determining whether to use genomic approaches to study 
adaptive variation. Species where local adaptation is most likely to occur 
and be detected using genomics are characterized by strong environ-
mental variation among populations (producing divergent selection), and 
large effective population size (minimizing the effects of genetic drift). 
When divergent selection is strong, local adaptation is likely to develop, 
even in the face of high gene flow (Yeaman & Whitlock, 2013). Signatures 
of local adaptation are more likely to be detected in species with minimal 

neutral population structure, such as mobile species with high gene flow 
(common in marine systems), because strong population structure or 
complex evolutionary history can create many false positives (De Mita 
et al., 2013; Lotterhos & Whitlock, 2014; de Villemereuil, Frichot, Bazin, 
François, & Gaggiotti, 2014). By contrast, local adaptation is less likely 
in systems with homogenous environmental conditions or where envi-
ronmental conditions fluctuate over time. Local adaptation is also less 
likely in populations with small or highly variable effective sizes (where 
genetic drift has stronger effects). Very low levels of gene flow can lead 
to strong neutral population structure that can make it difficult to distin-
guish patterns due to selection from those resulting from demography. If 
managers are working with species that have characteristics making local 
adaptation less likely to develop or to be detectable, and where there is 
no prior evidence of local adaptation, managers might consider allocating 
scarce resources to other conservation activities, rather than investing in 
genomic methods that may produce ambiguous results.

F I G U R E   1  Adaptive management cycle 
for NGS-based assessment and monitoring 
of adaptive genetic variation. Cycle stages 
numbered to match sections in the text. 
Stage 2 outlines the initial planning phase, 
stages 3 and 4 are the genomic assessment, 
and stages 5 and 6 are the genomic 
monitoring phases. The red, un-numbered 
arrows highlight the need for adjusting the 
plan throughout the adaptive management 
cycle

Minimizing adaptation to captivity: Although no examples are published to date, adaptive NGS could be used in captive breeding programs 
to monitor for rapid changes in allele frequencies that could be indicative of adaptation to captive conditions (Allendorf et al., 2010), which 
can have severe fitness consequences for reintroduced populations (Black, Seears, Hollenbeck, & Samollow, 2017).
Site prioritization to maximize evolutionary potential: Site prioritization conventionally involves maximizing the amount of biodiversity 
protected (e.g., number of species) while minimizing financial costs. Under climate change, protecting populations with complementary sets 
of intraspecific adaptive genetic diversity has become increasingly important, as this adaptive variation is indicative of the evolutionary 
potential of populations under changing conditions (Bonin, Nicole, Pompanon, Miaud, & Taberlet, 2007). NGS can provide both the neutral 
and adaptive data needed for these analyses.

BOX 2 (Continued)
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2.2 | Decide how to evaluate local adaptation

If the project will benefit from understanding local adaptation, sev-
eral options exist. For species that are amenable to experimental 
approaches (e.g., plants), patterns of local adaptation can be reliably 
addressed by traditional methods such as common gardens and re-
ciprocal transplants (Blanquart, Kaltz, Nuismer, & Gandon, 2013; 
Endler, 1986; Hereford, 2009; Kawecki & Ebert, 2004). Longer-term 
field studies of wild populations can also be used to assess adaptive 
variation in some contexts (Charmantier, Doutrelant, Dubuc-Messier, 
Fargevielle, & Szulkin, 2016; Charmantier et al., 2008; Ozgul et al., 
2009). For example, in Mediterranean blue tits, egg laying date is her-
itable and differs between populations in deciduous and evergreen 
forests, and those differences are maintained in common garden 
conditions (Charmantier et al., 2016). These types of studies may be 
more affordable and can be just as effective as genomic approaches 
in providing necessary information on local adaptation. While trans-
plantation or long-term studies are not possible for all species of con-
servation concern, it will be an option for some, including many plants 
(McKay et al., 2001; Raabová, Münzbergová, & Fischer, 2007).

In many cases, however, phenotypic methods will not be feasible 
for the focal species, and genomics may be the preferred alternative. 
Many management issues related to local adaptation do not require a 
complete assessment of adaptive variation, nor the functional validation 
of candidate adaptive variants. Instead, managers may simply need to 
characterize geographic or environmental patterns of adaptive varia-
tion across populations, information which can be generated for spe-
cies without prior genomic information (Catchen et al., 2017). However, 
there are advantages to working with species that already have some 
genomic resources developed (sometimes called a “genome-enabled” 
species; Kohn, Murphy, Ostrander, & Wayne, 2006), such as an assem-
bled reference sequence or transcriptome. These resources maximize 
useable data and can help validate and interpret potentially adaptive 
variation (e.g., by comparing to genes with known function). Additionally, 
any genomic study is more difficult (e.g., laboratory protocols will re-
quire more troubleshooting and modification) and potentially costlier 
in species with large genomes (e.g., conifers, salamanders). Overall, be-
fore deciding to embark on a genomic study of adaptive variation, we 
recommend clearly defining the biological or management questions, 
identifying how genomic data will help address these questions, eval-
uating alternative nongenomic approaches, researching any existing ge-
netic resources for the focal or a closely related species (or identifying 
whether those resources need to be developed), considering biological 
and genomic characteristics of study species, and evaluating budgetary 
constraints for both assessment and management.

3  | DESIGN AND IMPLEMENT:  
ASSESSMENT

3.1 | Design the sampling and genotyping protocols

In every genomics study, researchers make many small decisions 
about sampling, genotyping, bioinformatics, and analysis, all of which 

can have a substantial impact on downstream results. Managers 
should not be expected to know every detail, but some decisions, 
which we highlight in this section and in Figure 2, should be discussed 
carefully among the team members as they can impact the interpreta-
tion of the study.

3.1.1 | Sampling

Sample size and the number and location of populations sampled are 
primary considerations that can dramatically facilitate or impede detec-
tion of local adaptation. All methods for detecting local adaptation will 
benefit from sampling that is stratified across environmental gradients 
likely driving selection and replicated across those gradients (Lotterhos 
& Whitlock, 2015; Schoville et al., 2012). How individual samples are 
specifically arrayed (e.g., individual-  or population-based sampling, 
number of individuals per population, transects, or paired designs) is 
less generalizable and depends on the analytical approaches to be used 
and the biology and distribution of the species. For example, many 
genotype–environment association (GEA) methods for detecting local 
adaptation can be used on either individual or pooled population sam-
ples, while differentiation-based approaches require population-based 
sampling (see below). Researchers will often try to accomplish multiple 
goals when collecting genomic data (e.g., estimate effective population 
size, inbreeding, gene flow, and adaptive differentiation), and charac-
terizing adaptive variation may be only one of several objectives. One 
sampling plan may not fit all objectives; it is therefore important to 
plan ahead and target sampling to meet primary objectives, while con-
sulting with collaborators on how data may be used to meet second-
ary goals. For this reason, sampling will involve trade-offs, including 
accommodating multiple analytical goals, achieving sufficient geo-
graphic coverage to sample known or suspected genetically differenti-
ated populations, sufficiently sampling the environmental conditions 
thought to be driving selection, sufficiently replicating sampling along 
environmental gradients, and sampling sufficient numbers of locations 
and individuals per location. For example, De Mita et al. (2013) showed 
via simulation that relatively good performance could be achieved with 
at least eight sampled populations, using a strategy that samples the 
extreme ends of the environmental gradient, but the best sampling in 
real situations is not fully known.

Most genomics protocols (Etter, Bassham, Hohenlohe, Johnson, 
& Cresko, 2011; Peterson, Weber, Kay, Fisher, & Hoekstra, 2012; 
see below) require 50–300 ng of high-quality DNA, taken from small 
(often nonlethal) tissue samples. Recent studies have successfully used 
NGS on as little as 1 ng of DNA extracted from noninvasively collected 
samples (i.e., hair snags) and museum samples, indicating that even 
low-quality samples can be used, but do require additional precautions 
and genomic resources because DNA degrades over time (Bi et al., 
2013; Russello, Waterhouse, Etter, & Johnson, 2015). These advances 
have the potential to extend local adaptation studies to species that 
are difficult to sample, and allow for the retrospective study of genetic 
variation.

For analyses that incorporate environmental variation, such as 
GEA, environmental sampling will also be required. Key environmental 
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factors will depend on the focal species, and experts with in-depth 
knowledge of species biology can suggest potentially important hab-
itat (e.g., soil type, plant community, water quality, pollution) or cli-
matic factors (e.g., seasonal and annual temperature and precipitation 
averages and extremes). Environmental characterization may be as 
simple as collecting weather station data or relevant GIS layers from 
online databases (see Daly 2006 for guidance on assessing the suit-
ability of spatial climate datasets). In these cases, the temporal scale 
of environmental data should be considered in relation to the gener-
ation time of the species, such that environmental covariates include 
multiple generations of selective pressures. Researchers should also 
consider selection pressures that occur at specific life history stages, 
such as seedling establishment in long-lived trees, which may experi-
ence different selective pressures than those observed in fully grown 
trees. When covariates such as environmental contaminants need to 
be measured directly in the field, additional planning is required (e.g., 
for instrument acquisition, deployment, maintenance, and data analy-
sis). When available, it is best to use proximal (e.g., temperature, pre-
cipitation) as opposed to distal (e.g., elevation, latitude) predictors, as 
proximal variables may decouple from their distal proxies, for example, 
under climate change (Lookingbill & Urban 2005). Finally, consider-
ation of environmental variability should be included with mean pre-
dictors, especially as temporal and spatial variability in climate may be 
magnified by climate change (Buckley & Huey, 2016; Reusch, Ehlers, 
Hammerli, & Worm, 2005; Schoepf, Stat, Falter, & McCulloch, 2015). 
Detailed genetic and environmental sampling guidelines are reviewed 
elsewhere (Balkenhol & Fortin, 2016; De Mita et al., 2013; Hoban 

et al., 2016; Lotterhos & Whitlock, 2015; Manel et al., 2010; Prunier 
et al., 2013; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015; 
Schoville et al., 2012).

3.1.2 | Genotyping methods

Genomic data are most often produced using NGS technologies 
that can sequence millions of DNA fragments across the genome 
(Davey et al., 2011; Goodwin, McPherson, & McCombie, 2016). In 
most cases, only a subset of the genome is sequenced. Two primary 
methods are used to reduce the amount of the genome sequenced: 
anonymous sequencing methods that sequence DNA adjacent to 
restriction enzyme cut sites, and targeted sequencing methods that 
focus on known genes or sequences. The most commonly used anon-
ymous approaches in ecological and evolutionary studies are the fam-
ily of restriction-site-associated DNA sequencing (RADseq) protocols, 
which include a diversity of library preparation methods (Andrews, 
Good, Miller, Luikart, & Hohenlohe, 2016). By contrast, targeted se-
quencing focuses on capturing specific genomic regions, ranging from 
specific neutral markers, to candidate genes to entire exomes (Grover, 
Salmon, & Wendel, 2012). Of the targeted sequencing methods, se-
quence capture is the most scalable to whole-genome applications 
(Grover et al., 2012; Jones & Good, 2016) and is particularly useful for 
species with large genomes (Suren et al., 2016).

Anonymous and targeted sequencing methods have trade-offs 
in cost, accuracy, and bias. Anonymous sequencing methods require 
no prior genomic information and less starting DNA and are usually 

F I G U R E   2  Key questions to ask when conducting a genomic assessment of adaptive variation. The steps here correspond to stage 3 in 
Figure 1. As in Figure 1, the red, un-numbered arrows identify potential points where adjusting the planned assessment is required
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considerably less expensive than targeted sequencing. However, 
depending on the protocol used, they are subject to problems with 
error, bias, and missing data. These issues include genotyping biases 
(e.g., false homozygosity) due to sources of error such as PCR bias 
(Davey et al., 2011), PCR duplicates (Davey et al., 2011), polymorphic 
restriction sites (i.e., allele dropout; Arnold, Corbett-Detig, Hartl, & 
Bomblies, 2013; Cariou, Duret, & Charlat, 2016; Gautier et al., 2013), 
and shearing bias (Davey et al., 2013). Many of these issues are spe-
cific to particular RADseq protocols and can be addressed with appro-
priate planning and study design (for a review of problems, solutions, 
and RADseq study design, see Andrews et al., 2016; Catchen et al., 
2017; Lowry et al., 2017a,b; McKinney, Larson, Seeb, & Seeb, 2017). 
Because RADseq genotypes a subsample of regions across the ge-
nome, it will include both selectively neutral and adaptive markers.

Targeted sequencing requires prior sequence resources (e.g., a 
transcriptome assembled from RNA sequencing, reference genome, or 
anonymous sequences) for the design of capture probes (Grover et al., 
2012; Jones & Good, 2016). The success rate of sequence capture 
probes increases with the use of a reference genome for identifying 
intron–exon boundaries. If targets are designed based on a reference 
genome from another species, the suite of loci may be biased when 
applied to the focal species (a form of ascertainment bias), although 
aligning to a congener should reduce bias.

Regardless of the genome complexity reduction method used 
prior to sequencing, in most cases multiple individuals will be indi-
vidually barcoded, then pooled in a lane of sequencing. Because of 
error and bias that can arise from library preparation and sequenc-
ing, randomizing samples throughout the process is instrumental in 
reducing bias (Meirmans 2015). Individuals from the same populations 
or from nearby locations should be distributed among sample plates 
and sequencing libraries. Otherwise, estimates of population genetic 
statistics may be biased.

Decisions on whether to use anonymous or targeted sequencing 
should be based on the overall study goals and the availability of prior 
genomic resources. As total gene content does not vary as much as 
genome size, anonymous sequencing will be relatively poorer for de-
tecting adaptive variation in species with larger genomes, as fewer se-
quences will contain coding regions, and more missing data will result 
from sequencing efforts scattered over a larger number of sequences 
(Lowry et al., 2017a,b). Prior to choosing a sequencing method, re-
searchers and managers should discuss and be aware of biases and 
sources of error that will impact the downstream analyses.

3.1.3 | Assembly and alignment of sequence reads

Next-generation sequencing generates many short sequence reads 
that need to be assembled into groups of similar, homologous se-
quences and then aligned to a genomic location within a reference 
genome (if one is available). Polymorphic loci are then identified and 
the genotypes of individuals inferred from their reads for these loci 
(described in Section 3.1.4). In targeted sequence capture, probes are 
often designed for exons of known genes. In anonymous sequenc-
ing methods, sequenced regions are scattered across the genome in 

introns and exons within genes, but also in intergenic regions, and so 
are more vaguely referred to as “loci.” Here, we will use the term “loci” 
to refer to sequenced regions used in the analyses for simplicity.

For anonymous sequencing approaches, an important decision is 
whether to use a reference genome to guide the assembly of loci or 
to conduct a de novo assembly with the sequence data. This choice 
will determine the appropriate type of assembly program to use (e.g., 
GATK: McKenna et al., 2010; dePristo et al., 2011; Van der Auwera 
et al., 2013 with a reference genome; Stacks: Catchen, Amores, 
Hohenlohe, Cresko, & Postlethwait, 2011; Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013; Paris, Stevens, & Catchen, 2017; 
or dDocent: Puritz, Hollenbeck, & Gold, 2014 for a de novo assembly). 
Using a high-quality and well-annotated reference genome facilitates 
the identification of candidate genes and gene regions and allows for 
a truly genomic approach (e.g., considering physical linkage between 
regions with adaptive variation; Manel et al., 2016). However, using a 
reference genome from another species can also result in confirmation 
bias, because the focal species may have divergent gene sequences or 
different structural features of the genome that may result in infor-
mative loci being removed from the analysis (Tamazian et al., 2016). 
Developing a high-quality reference genome for the focal species 
would ameliorate some of these issues, but is not always necessary, 
depending on objectives. Managers should be aware of whether a ref-
erence genome is available, and whether it is for the focal species or 
a congener.

A major decision that will determine which loci are included in 
the dataset is choosing the parameters determining how closely 
the sequences must match (either match the reference sequence or 
match other sequences in de novo approaches; Catchen et al., 2011; 
McKenna et al., 2010; dePristo et al., 2011; Van der Auwera et al., 
2013) and how often the sequences occur in individuals (i.e., cover-
age). If the sensitivity of these parameters is too low, sequences will 
be combined that are not from the same genomic region (i.e., paral-
ogs; McKinney, Waples, Seeb, & Seeb, 2017). Alternatively, if settings 
are too stringent, few loci will be included. To help identify the best 
parameters and understand the limitations of the dataset, sensitivity 
analysis should be performed (Andrews & Luikart, 2014; Escudero, 
Eaton, Hahn, & Hipp, 2014; Mastretta-Yanes et al., 2015; Paris et al., 
2017). Biases identified by sensitivity analysis, such as a large num-
ber of PCR duplicates or excessive missing data, may be addressed 
through more stringent filtering, or it may be necessary to collect more 
data (resequencing, sampling more individuals, or considering another 
sequencing approach). For anonymous methods, including technical 
replicates (i.e., using the same DNA but barcoding and processing the 
replicate independently) in the genotyping library is recommended to 
improve quality control (e.g., estimating error rates) and parameter op-
timization (Mastretta-Yanes et al., 2015).

3.1.4 | Calling genotypes and SNPs

Once loci are selected for analysis, sequence reads spanning each 
locus from each individual are used to call genotypes (i.e., infer the 
genotype at a locus for each individual; Nielsen, Paul, Albrechtsen, 
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& Song, 2011). Genotype-calling software programs use either 
maximum-likelihood (e.g., Stacks; Catchen et al., 2011) or Bayesian 
models (e.g., GATK; McKenna et al., 2010; dePristo et al., 2011; Van 
der Auwera et al., 2013) to assign individuals with genotypes. These 
models often incorporate some element of sequencing error, but the 
primary determinant of whether individuals are accurately genotyped 
as heterozygous or homozygous is the number of reads assigned to 
each individual. While most polymorphisms will be SNPs, one major 
consideration when grouping reads into exon regions (applicable 
when a reference is available) is identifying and correctly aligning in-
sertion and deletion mutations (INDELs). The importance of correct-
ing for INDELs in accurate SNP calling depends on the mapping and 
calling programs used (O’Rawe et al., 2013).

Similar to filtering polymorphic loci for analysis in the dataset, the 
thresholds set for SNP calling for individuals influence the quality of 
the data (Nielsen et al., 2011). For example, if the dataset contains 
too few sequences for an individual across a given SNP, an individual 
that is a heterozygote may be wrongly genotyped as a homozygote if 
only one of the two alleles is sequenced. Software programs typically 
allow the user to specify coverage cutoffs and other parameters de-
termining SNP calling stringency. Changing the parameters of these 
models, especially the number of reads required to call heterozygotes, 
can affect genotypic frequencies in the populations and alter popula-
tion genetics statistics estimated in the analyses. Depending on the 
depth of coverage, this threshold can also reduce the size of the data-
set (Huang & Knowles, 2014). In exome capture studies, quality con-
trol that is too stringent can lead to a loss of power if causal variants 
are removed (Auer, Wang, & Leal, 2013). An additional consideration is 
whether the phased haplotype within a locus can be analyzed instead 
of single SNPs (Benestan et al., 2016; Manching et al., 2017). Many 
loci have multiple SNPs within an exon or locus, and those SNPs can 
be combined to infer a haplotype (Helyar et al., 2011). Additionally, if 
a reference genome is available, the position of the SNPs in a broader 
genomic region can be used to infer haplotypes (Andolfatto et al., 
2011; Andrews et al., 2016). However, many of the common and user-
friendly downstream analytical programs only consider independent 
SNPs.

To summarize, we encourage conservation managers to become 
familiar with the primary steps that can influence data quality and 
interpretation of results. When planning a project, based on the ob-
jectives of the project, the team must decide (i) which NGS method 
will be used; (ii) whether a reference genome is available; (iii) how the 
genotype-calling coverage and mismatch thresholds will be set, and 
whether the sensitivity of the data to those parameters will be eval-
uated; and (iv) what coverage cutoffs will be used to select loci and 
assign genotypes to individuals (Figure 2).

3.2 | Analyze the genomic assessment and identify 
adaptive variation

The first step in analyzing genotypic data collected during the assess-
ment is quality control filtering. Data filtering is a multistep process, 
with specific criteria dependent on the analyses to be performed (see 

Benestan et al., 2016 for a recent overview). Quality control filters 
are used to ensure that uninformative markers and statistical artifacts 
are removed prior to analyses. These filters consider sequencing error, 
locus coverage, genotyping level (across loci, individuals, and popula-
tions), number of alleles per marker, and linkage (e.g., number of SNPs 
per genomic contig or exon). Filters may also be applied based on 
minor allele frequency and deviations from Hardy–Weinberg propor-
tions. These filters can reduce the size of the dataset, but increase the 
quality of the analysis (Huang & Knowles, 2014). Patterns of missing 
data across samples should also be evaluated both before and after fil-
ters are applied to reduce the risk of detecting spurious (nonbiological) 
signals in downstream analyses. This includes visualizing relationships 
between missingness and factors such as sequencing lane, sample 
site, population, and heterozygosity (Gosselin & Bernatchez, 2016). 
These visualizations can help determine if populations or individuals 
should be excluded, for example, if they have both high missing data 
and elevated homozygosity, suggesting allele dropout (i.e., one allele 
is not being sequenced). In some cases, populations may need to be 
resampled or samples resequenced to compensate for missing data 
(Figure 2).

Many methods for identifying local adaptation require a dataset 
without missing values, so missing data must either be pruned (e.g., 
removing loci or individuals) or imputed. The impact of these different 
strategies on downstream analyses is an area of active investigation 
(e.g., Chattopadhyay, Garg, & Ramakrishnan, 2014). Research in re-
lated fields indicates that strict filtering of missing data can reduce 
statistical power (Nakagawa & Freckleton, 2008), undermine inferen-
tial accuracy (Dai, Ruczinski, LeBlanc, & Kooperberg, 2006), and intro-
duce bias (Huang & Knowles, 2014). With a lack of firm guidelines for 
anonymous sequencing data, which tends to have relatively high levels 
of missing data, the best current approach is to perform a sensitivity 
analysis using different filtering and imputation strategies. Gosselin 
and Bernatchez (2016) provide a large (and growing) set of imputation 
methods for anonymous sequencing data.

Methods for identifying candidate adaptive loci from genomic data 
can be divided into two main approaches, those based on population 
genetic differentiation (e.g., FST outlier methods) and genotype–en-
vironment associations (GEAs). These approaches, recently reviewed 
in Hoban et al. (2016) and Rellstab et al. (2015), differ in their data 
requirements and assumptions, and also in the information they gen-
erate for conservation planning. A third method associates genotypes 
with phenotypic traits involved in local adaptation to identify adaptive 
SNPs (i.e., genomewide association studies; reviewed in Savolainen, 
Lascoux, & Merilä, 2013), but we do not cover this method as suf-
ficient phenotypic data are often unavailable for species of conser-
vation concern. Differentiation-based methods identify loci with 
extreme allele frequency differences among populations relative to 
overall population structure, a pattern consistent with divergent se-
lection. These studies can be performed without prior knowledge of 
the environmental factors driving local adaptation and for species that 
exist in discrete populations, but often lack a specific hypothesis and 
will not identify environmental drivers of selection. Results are depen-
dent on assumptions about the underlying distribution of selectively 
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neutral differentiation (e.g., FST) across loci. Some commonly used 
methods include tests based on the island model of migration as pro-
posed by Beaumont and Nichols (1996) and implemented in LOSITAN 
(Antao, Lopes, Lopes, Beja-Pereira, & Luikart, 2008), Mcheza/DFDIST 
(Antao & Beaumont, 2011), Arlequin (Excoffier & Lischer, 2010), 
and BayeScan (Foll & Gaggiotti, 2008). However, these methods are 
sensitive to deviations from the assumptions of the infinite island 
model (Flanagan & Jones, 2017; Hohenlohe, Phillips, & Cresko, 2010; 
Lotterhos & Whitlock, 2015) and are increasingly discouraged for em-
pirical studies. Alternative approaches test other population genetic 
models (e.g., deviation from random genetic drift; Vitalis, Glemin, & 
Olivieri, 2004), relax the assumptions of a specific model (Lotterhos 
& Whitlock, 2015), or use methods that do not rely on population 
genetic models, such as principal components analysis (e.g., pcadapt; 
Luu, Bazin, & Blum, 2017).

By contrast, GEA methods identify potentially adaptive loci 
based on associations between allele frequencies and environmental 
variables hypothesized to drive selection, a pattern that is consis-
tent with a selective advantage of certain alleles in certain environ-
ments (Joost et al., 2007). Unlike differentiation-based approaches, 
these methods do not use an underlying population genetic model, 
and most can use either individual genotype or population allele 
frequency data. These methods generally have higher power than 
differentiation-based methods, and can detect divergent selection 
even when it does not produce strong differentiation among popula-
tions (De Mita et al., 2013; Rellstab et al., 2015; de Villemereuil et al., 
2014). Most GEA methods use some form of statistical control for 
population structure and demography, which, when unaccounted for, 
can produce high false-positive signals (Hoban et al., 2016; Rellstab 
et al., 2015), although adjustments for population structure, espe-
cially when it is concordant with environmental gradients, can pro-
duce false negatives (e.g., Yeaman et al., 2016). Additionally, because 
most commonly used GEA methods (e.g., Bayenv2: Coop, Witonsky, 
DiRenzo, & Pritchard, 2010; Gunther & Coop, 2013; latent factor 
mixed models (LFMM): Frichot, Schoville, Bouchard, & François, 
2013) use a univariate statistical framework in which one locus and 
one environmental predictor are tested at a time, these methods re-
quire corrections for multiple tests to prevent elevated false-positive 
rates (François, Martins, Caye, & Schoville, 2016). Multivariate GEAs 
(e.g., redundancy analysis), which analyze many loci and environmen-
tal predictors simultaneously, identify how groups of loci covary in 
response to environmental predictors and may reduce or eliminate 
the need for multiple testing while potentially identifying polygenic 
selection (Rellstab et al., 2015). In simulations, multivariate GEAs 
are more effective than univariate methods at detecting important 
adaptive processes that result in weak multilocus signatures (e.g., 
selection on standing genetic variation) and are robust to multiple 
sampling designs and sample sizes (Forester, Lasky, Wagner, & Urban, 
2017). Brauer, Hammer, and Beheregaray (2016) provide a clear ex-
ample of local adaptation in a threatened fish species that is mediated 
by both divergent selection (detected through differentiation-based 
methods) and polygenic selection from standing genetic variation 
(detected with a multivariate GEA).

For all of these methods of detecting locally adaptive variation, 
we recommend considering four key points: (i) Do the data meet the 
model assumptions? (ii) How is neutral genetic structure incorporated 
into the model? (iii) Are univariate approaches corrected for multiple 
testing? And (iv) what are the thresholds for detection? Thresholds 
for differentiating loci potentially under selection are generally arbi-
trary (e.g., FDR = 0.1) and should be tested and modified based on the 
study goals (François et al. 2016, de Villemereuil et al., 2014; Figure 2).

Conservation managers also must evaluate the risks of acting 
based on type 1 errors (concluding populations are not locally adapted 
when they actually are) from the risk of type 2 errors (concluding 
they are locally adapted when they are not), as different sequencing 
and analytical approaches carry different type 1 and type 2 risks. For 
example, if the proposed conservation action is genetic rescue, then 
acting on type 1 error increases the risk of outbreeding depression, 
whereas acting on type 2 error would minimize the number of avail-
able source populations. The conservation team can evaluate the risks 
of each type of error through sensitivity analysis. While to our knowl-
edge, sensitivity analyses have not yet been used in applications of 
adaptive genomics in management, the benefit of these analyses is 
clearly evident in other aspects of conservation planning, including 
climate change vulnerability assessments (Wade et al., 2017), system-
atic conservation network planning (Levin, Mazor, Brokovich, Jablon, 
& Kark, 2015), and population viability analysis (Naujokaitis-Lewis, 
Curtis, Arcese, & Rosenfeld, 2009). Testing the sensitivity of down-
stream management choices to upstream parameters will be an area 
for development in applied adaptive genomics.

4  | EVALUATE AND ACT: ASSESSMENT

4.1 | Evaluate the assessment

Next, the assessment should be interpreted in light of the conserva-
tion objectives and analytical limitations to determine whether the 
information is sufficient to inform conservation actions or whether 
further study is needed (Figure 1). Conclusions from the assessment 
may be equivocal, so a manager may decide to collect more data (i.e., 
sample more individuals, compare more populations, and sequence 
targeted genes; Figure 1). Alternatively, the assessment may clearly 
identify patterns of local adaptation and adaptive variants, providing 
the groundwork for initiating monitoring or conservation actions (e.g., 
identifying source populations for restoration, genetic rescue, or as-
sisted gene flow). This will depend on the overall conservation plan 
and predefined thresholds for action.

In anonymous NGS studies, the number of candidate adaptive 
markers will be determined by the detection threshold, so this num-
ber is not reflective of the underlying processes but rather the cho-
sen cutoff. While these methods are useful in detecting patterns of 
local adaptation, we caution against putting too much emphasis on 
any particular locus or set of loci identified (Pearse, 2016). Instead, 
broadscale patterns of geographic variation and relationships between 
genotypes and environmental drivers will be more informative, as 
will seeing if effects are localized on particular genomic regions (e.g., 
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sex chromosomes). Another potential challenge for these studies is 
parallel evolution of adaptive traits via different genes and genetic 
architectures (Bernatchez, 2016; Ralph & Coop, 2015). This can con-
found sampling designs that are intended to improve the strength of 
inference by detecting local adaptation along replicated environmen-
tal gradients. In this case, the lack of a replicated signal of SNP–en-
vironment correlations does not necessarily mean that the detected 
signals are spurious, but may instead point to “imperfect” parallelism 
(Bernatchez, 2016). Finally, the differences in phenotypes underly-
ing local adaptation are often the product of small changes in allele 
frequency across many genes, as well as the correlations among and 
interactions between these loci (Boyle, Yang, & Pritchard, 2017; Le 
Corre & Kremer, 2012). While different approaches may identify some 
of the same “core” genes involved (sensu Boyle et al., 2017), different 
subsets of the many “peripheral” genes will be detected with different 
sampling approaches and analytical methods. However, the patterns 
of variation identified will nonetheless provide important information 
for conservation actions.

Incorporating environmental data in GEA methods is a useful 
way to identify links between genetic mechanisms and environmen-
tal factors driving adaptation. However, it is important to remember 
that these studies cannot pinpoint causative relationships, as they 
are inherently correlative (Gunther & Coop, 2013). If it is necessary 
to identify a causative relationship before any management decisions 
can be made, then conducting experiments such as common gardens, 
genetic crosses, or genetic manipulations (e.g., gene editing or gene 
knockouts) will be required. Confirming causal relationships is very 
challenging, and to our knowledge has not been done for locally adap-
tive variants; nor is it necessary to inform conservation strategies for 
species in rapidly changing environments.

5  | DESIGN AND IMPLEMENT:  
MONITORING

5.1 | Design monitoring plan

Evaluating changes in genetic variation over time (e.g., detecting 
loss of genetic variability or changes in the frequencies of adaptive 
variants) requires a monitoring program. In an adaptive manage-
ment context, monitoring is a means for both learning more about 
the system and evaluating the effectiveness of management actions 
once they are initiated (Lyons, Runge, Laskowski, & Kendall, 2008). 
While monitoring can include genetic or demographic assessments, in 
all cases effective monitoring programs identify threshold criteria for 
detecting biologically significant changes and spell out management 
interventions to be triggered by changes prior to initiating monitoring 
(Schwartz et al., 2007). Identifying trigger points can be challenging as 
threshold values are case-dependent and likely differ among species 
(Atkinson et al., 2004). An effective approach is to set trigger points 
throughout the range of the indicator variable to ensure that manage-
ment action is initiated before a crisis point is reached. Management 
interventions should be closely tied to the indicator variables, such 
that a triggered management action will directly affect the indicator 

and increase its value above the trigger point. For example, a con-
tinuous decline in allelic richness at putatively adaptive loci, or an ob-
servation of low survival or fecundity over multiple sampling periods 
may trigger a management intervention such as genetic rescue (Box 2) 
to increase allelic richness or fitness. By contrast, upgrading the spe-
cies’ listing status would not directly impact the genetic indicator. 
Unfortunately, best practices for designing sampling protocols and 
interpreting genetic and other indicators for monitoring are sparse 
(more below). However, like other steps in the adaptive management 
framework, it is expected that monitoring plans will be adjusted to 
reflect new information (Section 6.1). This learning approach in the 
face of uncertainty best ensures that monitoring will trigger effective 
and timely management intervention, rather than simply document-
ing decline and “monitoring to extinction” (Lindenmayer, Piggott, & 
Wintle, 2013).

Monitoring panels of neutral and candidate adaptive markers can 
be developed from the initial genomic assessment using sequence 
capture or SNP arrays (Ali et al., 2015; Hoffberg et al., 2016; Jones 
& Good, 2016). These methods allow for consistent, efficient, and 
inexpensive genotyping of many individuals over time to inform di-
verse management objectives (Amish et al., 2012; Aykanat, Lindqvist, 
Pritchard, & Primmer, 2016; Hohenlohe, Amish, Catchen, Allendorf, & 
Luikart, 2011; Houston et al., 2014; Wright et al., 2015). This targeted 
approach to monitoring is preferred over repeated anonymous se-
quencing runs, as stochasticity inherent in that process will yield over-
lapping but distinct sets of loci. Targeted genotyping, by contrast, will 
optimize efforts by ensuring coverage of the same neutral and adap-
tive loci across multiple time points. Hess et al. (2015) provide a par-
ticularly good example of how a genomic assessment was effectively 
transitioned into a monitoring program for declining Pacific lamprey. 
Based on a genomic assessment (Hess, Campbell, Close, Docker, & 
Narum, 2013), they developed a SNP panel consisting of 96 neutral 
and candidate adaptive markers that were diagnostic for parentage 
analysis, cryptic species identification, and characterization of neutral 
and adaptive genetic variation. These SNPs were chosen to monitor 
the effectiveness of a diverse set of management actions including 
translocations, artificial propagation, and habitat restoration, as well 
as to track population size and facilitate species identification at early 
life stages. Adaptive markers linked to lamprey phenotypes (body size 
and migration timing) were included in the SNP panel to monitor the 
genetic basis of fitness-related traits across different habitat types. 
Using one modest set of SNPs, the managers were therefore able to 
track fitness, population size, and individual movements to identify 
the success of conservation actions, which would have required much 
more intensive sampling and experimental work without the aid of ge-
nomics. However, because the number of adaptive markers (9) was 
very small in the monitoring panel, the authors warned against using 
these markers as an indication of overall adaptation, an important cau-
tionary note when managing populations based on subsets of adaptive 
genetic variation.

Once the monitoring panel has been developed, the sampling 
design (number and distribution of samples) and temporal frequency 
of sampling must be designed to detect significant changes in allele 
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frequencies or loss of adaptive variants in key populations (Allendorf, 
England, Luikart, Ritchie, & Ryman, 2008; Hoban et al., 2014; 
Schwartz et al., 2007). Because variation at neutral and adaptive loci is 
usually not correlated (Grueber, Hogg, Ivy, & Belov, 2015; Hartmann, 
Schaefer, & Segelbacher, 2014; Holderegger, Kamm, & Gugerli, 2006; 
Kremer et al., 2002), the appropriate number of loci and individuals 
monitored will depend on conservation objectives, biology of the or-
ganism, recent demographic history, and power of the genetic markers 
to detect change. While broad guidelines for demonstrating adaptive 
genetic changes have been outlined (Hansen, Sato, & Ruedy, 2012), lit-
tle specific advice exists on temporal monitoring of adaptive variation 
(but see Landguth & Balkenhol, 2012). As a general rule, if the goal is 
to monitor change in allele frequency at a single locus, 30 individuals 
per population is often considered a sufficient sample size to detect an 
allele at a frequency of 5%; however, we suggest using simulations to 
determine a best sample size (Hale, Burg, & Steeves, 2012).

While simulations have been used for decades to aid in the devel-
opment of genetic monitoring and the interpretation and evaluation of 
monitoring results (Palm, Laikre, Jorde, & Ryman, 2003; Waples, 2002; 
Waples & Teel, 1990), they have generally been underutilized for these 
purposes. Fortunately, user-friendly simulation programs can be used 
to optimize sampling design and frequency to detect varying degrees 
of change. These can be customized to the biology of the focal species, 
seeded with current allele frequencies (Balkenhol & Landguth, 2011; 
Hoban, 2014), and parameterized for different outcomes in terms 
of selective changes or bottlenecks (Hoban, Gaggiotti, & Bertorelle, 
2013a,b; Peery et al., 2012). Simulations can also be updated based 
on monitoring results to adjust trigger points and interventions and 
improve the effectiveness of management actions. Finally, simulations 
can be used to aid in the interpretation of genetic monitoring results. 
For example, Waples and Teel (1990) used simulations to test a set of 
potential drivers of substantial allele frequency changes in hatchery, 
but not wild, Pacific salmon populations. They were able to eliminate 
selection and admixture as potential causes and identify a low number 
of breeders per year as the driving factor.

5.2 | Analyze monitoring data to detect 
temporal changes

In the case of both demographic monitoring and genomic monitor-
ing, detecting temporal change depends on the frequency of sampling 
and the generation length of the organism. Monitoring data need to 
be analyzed regularly, on a timescale that is relevant to the indicator 
variable and the biology of the organism. For example, sampling allele 
frequencies multiple times within a single generation may confound 
changes in genetic structure across life history with changes across 
generations, whereas analyzing one age cohort in successive genera-
tions would be more informative. Monitoring data should be analyzed 
soon after collection to ensure the prompt detection of changes that 
might require conservation action. “Phase shifts,” sudden changes that 
occur with little warning (such as rapid declines in population status), 
are common aspects of biological changes, but some methods can help 
predict whether a phase shift is imminent (Dakos et al., 2012; Scheffer 

et al., 2009). Comparing change in adaptive markers to change in a 
reference set of selectively neutral markers can differentiate shifts 
due to genetic drift (which would affect all loci approximately equally) 
from those only occurring in candidate adaptive markers.

It may be necessary or useful in some cases to use museum or 
other historical ex situ samples (e.g., from a seed bank) to deter-
mine historical genetic variation conditions and compare those to 
contemporary and future changes (Bi et al., 2013; Hartmann et al., 
2014; Larsson, Jansman, Segelbacher, Hoglund, & Koelewijn, 2008; 
Mikheyev, Tin, Arora, & Seeley, 2015; Schwartz et al., 2007). A disad-
vantage is that historical samples may not have all been collected at 
the same time or locations and may not have adequate sample sizes 
(which can reduce power) or DNA quality (which can cause errors). 
Regardless, keeping sample sizes consistent between sampled time 
points or adjusting estimates for sample size (e.g., through rarefac-
tion) is important to maximize power to detect change (Dornelas et al., 
2013). Sampling in excess of the target number of samples for mon-
itoring is recommended (when feasible), as some samples may fail to 
be genotyped, and additional samples may be useful for some future 
objective (Schwartz et al., 2007).

6  | EVALUATE AND ACT: MONITORING

6.1 | Evaluate the monitoring results

Results from genetic monitoring should be evaluated in the context 
of the prespecified criteria for significant change: Have trigger points 
been met, and if so, when and how will management interventions 
be initiated? Do criteria indicate that a management intervention has 
been successful? If so, does the monitoring program need to be ad-
justed or discontinued? Do project objectives need to be revisited and 
updated? If the results are equivocal, what can be learned from the 
data to effectively adjust the monitoring plan (Figure 1)? For exam-
ple, consider a management intervention of assisted gene flow has 
been implemented with the goal of introduced genotypes surviving 
and reproducing at least 5% more than local genotypes. If monitoring 
identifies that this threshold has been met, then the intervention is 
likely successful and should be continued or successfully concluded, 
whereas the reverse pattern would indicate that the assisted gene 
flow program needs adjustment or termination. While examples of 
genetic monitoring of this sort are currently scant, monitoring of phe-
notypes and reproductive rates has been used successfully in wolves 
and panthers (Hedrick & Fredrickson, 2010), and monitoring whether 
translocated individuals have reproduced is increasingly common 
(Koelewijn et al., 2010; Mulder et al., 2017). So far, temporal genetic 
monitoring of conservation interventions has been most widely used 
to understand the extent and efficacy of genetic rescue, including in 
bighorn sheep (Miller, Poissant, Hogg, & Coltman, 2012) and Florida 
panthers (Johnson et al., 2010).

When monitoring adaptive variation, unexpected outcomes may 
arise. One possibility is that a follow-up study reveals some candidate 
loci are false positives or identifies additional adaptive markers. If this 
is the case, a revised set of adaptive markers will need to be included 



     |  1047FLANAGAN et al.

in genotyping and monitoring. Another possibility is that truly adaptive 
genetic variants are not changing in frequency, leading to the conclu-
sion that the environment is not changing. However, genome com-
plexity can constrain allele frequency changes in adaptive variants, 
even in changing environments, through antagonistic pleiotropy (one 
gene has multiple phenotypic effects, and positive effects of an allele 
on one trait are associated with negative effects on another), epistasis 
(a gene has a different phenotypic consequence when in a new genetic 
background due to interaction with another gene), or other evolution-
ary constraints (Hoffmann & Willi, 2008).

In all cases, data from genomic monitoring should be considered 
in the context of all available data for the species or population. For 
example, if demographic monitoring identifies population declines not 
reflected in the genetic data, the monitoring protocol and manage-
ment strategies should be adjusted accordingly. Genetic indicators 
assess one aspect of a population (e.g., loss of genetic diversity) that 
is influenced by multiple ecological (population size, dispersal, breed-
ing) and evolutionary processes (drift, migration, selection) that often 
interact. Therefore, interpreting causes of change (or lack thereof) in 
indicators over time may be challenging.

7  | CONCLUSION

In this study, we present a modified adaptive management framework 
to help managers better understand the process of collecting NGS 
data and the potential applications for assessment and monitoring of 
adaptive variation (Figure 1). This framework emphasizes the iterative 
nature of adaptive management and highlights the importance of key 
decisions, particularly in the experimental design phase prior to the 
bulk of data collection (Figure 2). Considering the entire assessment 
and monitoring cycle prior to developing a project plan will enable 
researchers and managers to identify the scope of the project, clearly 
state assumptions and limitations of the chosen approach, and ensure 
that resources for the monitoring and action are available.

Assessing and monitoring adaptive and neutral genetic variation 
can be a powerful tool for conservation biologists and wildlife man-
agers, but it has limitations. NGS is not a “silver bullet,” but it may 
be a useful tool, particularly when the entire adaptive management 
framework is considered prior to embarking upon a study, and with 
the understanding that implementation of management will be an it-
erative process that is likely to require adjustments and improvements 
over time.
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