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Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused
on adaptive T and B lymphocytes. However, in recent years there has been an increased
interest in the contribution of innate immune cells, amongst which the natural killer (NK)
cells. Apart from their canonical role of controlling viral infections, cell stress and
malignancies, NK cells are increasingly being recognized for their modulating effect on
the adaptive immune system, both in health and autoimmune disease. From different lines
of research there is now evidence that NK cells contribute to MS immunopathology. In this
review, we provide an overview of studies that have investigated the role of NK cells in the
pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE)
animal model, MS genetics or through ex vivo and in vitrowork into the immunology of MS
patients. With the advent of modern hypothesis-free technologies such as single-cell
transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly
blurring the boundaries between adaptive and innate immunity. We conclude that
unravelling this heterogeneity, as well as the mechanistic link between innate and
adaptive immune cell functions will lay the foundation for the use of NK cells as
prognostic tools and therapeutic targets in MS and a myriad of other currently
uncurable autoimmune disorders.

Keywords: multiple sclerosis, natural killer (NK) cells, autoimmune disorders, experimental autoimmune
encephalomyelitis (EAE), immune cell heterogeneity, multiple sclerosis genetics
INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS),
primarily affecting young adults (1). In this age group, it forms the most common cause of non-
traumatic disability (2). The first stages of the disease are characterized by transient inflammation of
the brain and spinal cord which damages the myelin and axons, resulting in episodes of neurological
dysfunction. As a result of the relatively young age at onset, the lifelong accumulation of disability,
the increasing worldwide prevalence and the lack of a curative treatment, MS continues to pose a
major socioeconomic burden (3, 4). Current disease-modifying therapies (DMTs) in MS and
autoimmune disorders in general are targeting primarily the adaptive immune system, i.e. T and B
cells (5–7). However, the contribution of innate immune cells such as natural killer (NK) cells is now
gaining increasing attention in a myriad of autoimmune disorders (8–12), including MS (13–16).
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NK cells are large granular lymphocytes best known for their
capacity to kill virally-infected, malignant and stressed cells (17).
They are generally divided into two main subsets, based on the
surface expression of CD56 and FcgRIII (CD16): the cytotoxic
CD56dimCD16+ (CD56dim) and the regulatory CD56brightCD16-

(CD56bright) NK cells (18). In peripheral blood (PB), the CD56dim

NK cells account for up to 90% of all NK cells. They are
considered the more mature effector subset with variable
expression of maturation markers such as CD57 and KLRG1
and high cytotoxic activity mainly through their production of
perforin and granzymes A and B (19–21). This subset fulfills the
canonical NK cell role of immune surveillance: scanning cells for
infection, stress or malignancy. The expression of CD16 allows
this subset to engage in antibody dependent cellular cytotoxicity
(ADCC) (17). The CD56bright NK cells in contrast constitute the
majority of NK cells in secondary lymphoid organs and
inflammatory sites (22, 23). These cells are considered less
mature and generally more immunoregulatory in nature in part
by virtue of their greater cytokine production, most importantly
interferon (IFN)-g (22). The distinct functionalities and
distribution of NK cell subsets, both in health and in
autoimmune disease, are the result of distinct repertoires of
both activating and inhibitory NK cell receptors as well as
chemokine receptors (18, 24, 25). For example, whereas
CD56dim NK cells express CXCR1, CXCR2, CX3CR1 and S1P5,
CD56bright NK cells express CCR7 and CXCR3. In addition,
CD56bright NK cells show higher expression of inhibitory major
histocompatibility complex (MHC) class 1-binding receptor
NKG2A as well as activating receptor NKp46, while CD56dim

NK cells are mainly characterized by higher levels of killer
immunoglobulin-like receptors (KIR). Activation of NK cells is
mediated by a balance of signals received through their inhibitory
and activating receptors which are triggered by various ligands
present on potential target cells (19). Interestingly, an expanding
amount of literature is now describing various NK cell subsets
portraying adaptive-like immunological memory and long-lived
antigen specificity (26, 27). Three main types of such adaptive NK
cells have been described to date: (i) NK cells found in the murine
liver displaying long-lived memory to haptens and viral antigens;
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(ii) human NKG2C+ and murine Ly49H+ NK cells displaying
cytomegalovirus (CMV) antigen-specificity and enhanced recall
responses; (iii) human and murine cytokine-activated NK cells
showing memory-like “trained” features such as enhanced
cytotoxicity and production of IFN-g upon restimulation (28).
A more detailed description of all NK cell subtypes and their
distinct characteristics falls outside the scope of this review and
can be consulted elsewhere (19).

Up until the last decade, NK cells have largely been ignored in
the MS field and remain as of today in the shadows of the more
studied adaptive T and B cells (Figure 1A). Apart from some
exploratory studies in the 1980s (29–34), literature on the
contribution of NK cells to MS immunopathogenesis is only
recently starting to accumulate (Figure 1B). New methodologies
and state-of-the art technologies have allowed for clear evidence
being found in different lines of research. In this review, we
provide a non-exhaustive overview of such findings from animal
models, genetics, ex vivo and in vitro work. We point out the
implications of these findings for the use of NK cells as
prognostic tools and therapeutic targets in MS and we
summarize what work remains and highlight the most pressing
open questions that need answering before we can hope to
include NK cells in standard clinical practice.
A REGULATORY ROLE FOR NK CELLS IN
ANIMAL MODELS OF MS

A commonly studied animal model is experimental autoimmune
encephalomyelitis (EAE), in which susceptible rodents develop
CNS autoimmunity upon immunization with myelin-derived
self-antigens emulsified in complete Freund’s adjuvant (CFA)
(35). The majority of EAE studies have reported a regulatory role
for NK cells. The mechanisms attributed to such regulatory
action of NK cells in EAE include general T cell suppression
(36–38), killing of autologous autoreactive T cells (39, 40),
inhibition of the differentiation of myelin-reactive T helper
type 1 (Th1) or 17 (Th17) cells in the CNS (41, 42) and
secretion of neurotrophic factors (43).
A B

FIGURE 1 | NK cells in MS literature. A systematic literature search in PubMed (NCBI) was performed using the terms “T cells”, “B cells”, or “natural killer cells” +
“multiple sclerosis”. Results are shown for all three cell types from 1975 to 2020 (A) as well as a close-up for the NK cell results (B). NK, natural killer; MS, multiple sclerosis.
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In contrast to these studies, some work has been more
suggestive of a detrimental role for NK cells. Researchers have
postulated that the presence of NK cells, and more specifically
NK cell-derived IFN-g, is a prerequisite for development of EAE
pathology (44–46). However, this concept is in strong contrast
with the numerous findings that mice in which IFN-g is depleted
(using neutralizing antibodies or through genetic modification)
exhibit an exacerbated form of EAE or develop the disease in
strains that are normally not susceptible to develop EAE, such as
the BALB/c strain (47, 48).

The contradictory reports on the role of NK cells in EAE may
be attributed to the use of different animal backgrounds,
divergent immunization procedures or NK cell depletion
performed at different time points during development of the
disease as reported by Winkler-Pickett et al. (46). Moreover, an
explanation for these discrepancies might be found in the long-
standing underappreciation of NK cell heterogeneity, as has been
suggested by Gandhi et al. already in 2010 (49). Yet today, the
independent and discrete functions of different NK cell subsets in
different physiological compartments remain largely ignored in
animal studies (50).
MS GENETICS ALLUDES A
ROLE FOR NK CELLS

In the last decade, the field has seen an expansion in the knowledge
on the genetic basis of MS, mainly by virtue of the collaborative
efforts of the International Multiple Sclerosis Genetics Consortium
(IMSGC) (51–54). The most recent genomic map comprises 200
common genetic risk factors for MS on autosomes, the first one on
the X-chromosome and 32 independent effects in the MHC region
(55). For the first time, a systematic analysis of these risk factors
showed significant enrichment for MS susceptibility loci not only
in genes relating to cells of the adaptive immune system, but also
in those relating to cells of the innate immune system, including
NK cells. In line with this finding, several individual risk genes that
appear associated with NK cell activity have been identified in MS.
An example is CD226 (55–59) which encodes for DNAX accessory
molecule (DNAM)-1, a cell surface glycoprotein expressed on
cytotoxic lymphocytes such as NK cells and CD8+ T cells,
mediating their activation and killing of target cells (60, 61). The
risk haplotype is associated with lower CD226 cell surface
expression and MS patients have shown lower CD226 levels
than healthy controls (59, 62). Interestingly, CD226 is known to
be crucial for the NK cell-mediated elimination of activated
T cells (63).

A genome-wide screen for low-frequency risk variants
identified three novel associations with MS, including
rs35947132 (p.Ala91Val) in the PRF1 gene (54). This variant
was previously reported in an Italian candidate-gene study (64),
and has been confirmed in an independent cohort in Sardinia
(65). PRF1 encodes perforin, a key component of the cytotoxic
pathway used by, although not exclusively, NK cells (54, 66). The
p.Ala91Val variant is thought to predispose to late-onset familial
hemophagocytic lymphohistiocytosis type 2 (FHLH2), a disease
Frontiers in Immunology | www.frontiersin.org 3
resulting from genetic cytotoxic defects in NK cells and CD8+ T
cells and involving a massive cytokine storm, including release of
IFN-g (67, 68). Approximately 10% of Europeans carry this
variant, which results in protein misfolding, reduced stability
and, consequently, partial loss of perforin lytic activity (69). In
healthy individuals, it is associated with a 35% reduction in NK
cell cytotoxicity, increased overall lymphocyte count and specific
augmentation of the cytotoxic memory T-cell compartment
(65, 70).

Large-scale genetic studies have shown that genetic risk for
MS is dominated by a series of MHC class II risk alleles, while
protective effects have been attributed to a number of MHC class
I alleles (53). The underlying mechanisms of action of these
findings remain elusive. Apart from the classically considered T-
cell receptors on CD8+ T cells, NK cells also express receptors
that enable them to respond to MHC class I molecules, with the
most important ones being the KIRs, C-type lectin-like CD94/
NKG2 family and the leukocyte immunoglobulin-like receptors
(LILR), such interactions have been put forward as a possible
pathway for NK cell involvement in CNS disorders (24, 71).
These highly polymorphic genetic regions, including structural
variation, are not well captured by genotyping arrays but
powerful bioinformatic tools such as large-scale imputation
methods (72) and new technologies such as long-read
sequencing platforms (73) now enable interrogating their
contribution to MS.
IMMUNOREGULATORY CD56BRIGHT NK
CELLS IN MS PATIENTS

In accordance with findings from animal models and genetics,
studies analyzing the cellular composition of PB and
cerebrospinal fluid (CSF) in patients and healthy controls
mostly point towards an immunoregulatory role for NK cells
in MS. Several studies have revealed the presence of NK cells in
the CSF and CNS plaques of MS patients (74–79). One of these
observed NK cells expressing granzyme K, which is mainly
expressed by the CD56bright NK cells (80), in active MS lesions
in close proximity to T cells (81). Two studies (81, 82), together
investigating 152 MS patients and 42 non-inflammatory
controls, described a significant increase of CD56bright NK cells
and, to a lower extent, CD56dim NK cells in the CSF of MS
patients. This was recently confirmed in periventricular tissue of
MS patients versus controls and in periventricular lesions versus
normal appearing white matter (83). The first study also reported
a significant decrease of peripheral NK cells, predominantly the
CD56dim subset (81). As therapeutic modulation of IL-2 receptor
signaling in these patients significantly increased the peripheral
CD56bright subset but not the CD56dim subset, the authors
speculate that NK cell maturation is impaired in MS and NK
cells are stuck in the more immature CD56bright stage (81). Even
though a deeper mechanical understanding gained by further
functional studies is certainly needed, such efforts have put NK
cells, specifically the CD56bright subset, on the map of
MS immunopathology.
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APPRECIATING NK CELL
HETEROGENEITY IN MS

Apart from the classical CD56bright and CD56dim NK cells, more
recent work has identified several other distinct NK cells subsets in
MS (Figure 2). De Jager et al. described an NK cell subset, defined
as CD8dimCD56+CD3-CD4-, which was found to be reduced in PB
of untreated MS patients as well as patients with clinically isolated
syndrome (CIS) (84). More recently, McKinney et al. also
described a population of ‘NK8+ cells’ (CD3−CD56+CD8+) in
PB associated with a more favorable clinical outcome in MS
(85). Whether or not these two studies are referencing the same
NK cell subset is unclear. In another study, a CMV-driven
expansion of adaptive-like NKG2C+ NK cells in PB was
correlated with a decreased risk of disability progression (86).
Such findings are starting to blur the lines between adaptive and
innate immune subsets and stress the need for a better
appreciation of immune cell plasticity and heterogeneity.

Recent technological advancements in the field of single-cell
transcriptomics will be pivotal therein as they exploit hypothesis-
free transcriptomic profiles instead of predefined cell marker
subsets (87, 88). Such technologies have been able to distinguish
up to 7 distinct NK cell subsets, questioning the classical two-
subset (CD56bright/dim) view (89–91). However, the available
single-cell RNA sequencing (scRNA-seq) studies in MS remain
scarce and due to the low number of samples and low resolution,
these studies often still limit their analyses of the NK cells to the
two main subsets (92–94). In general, scRNA-seq studies
confirm the lower abundance of total NK cells in CSF versus
PB, with a cluster most likely corresponding to CD56bright NK
cells being the predominant NK cell subset in CSF. Schafflick
et al. (92) observed an increase in the cluster abundance of two
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NK cell subsets, most likely corresponding to CD56bright and
CD56dim NK cells, in CSF of MS patients (n = 4) as compared to
controls (n = 4), in line with previous cytometric analyses
described above (81, 82). Ramesh et al. were unable to observe
a significant change in total NK cells in the CSF of MS patients
(n = 10) as compared to controls (n = 3) and had no further
resolution of NK cell subsets (94). More generally, these first
studies aptly illustrate the importance of going beyond the
canonical immune cell populations and recognizing the
potential of formerly unidentified/underappreciated subsets as
critical players in MS immunopathology.
MORE MECHANISTIC WORK IS NEEDED

The proposed mechanisms by which the aforementioned NK cell
subsets exert their immunoregulatory function in MS are
manifold. Several in vitro studies have shown that upon
activation, T cells upregulate NKG2D ligands, thus becoming
more susceptible to NK cell-mediated autologous killing (95–98).
In MS, Jiang and colleagues have described a pivotal role for
granzyme K in the immunomodulation by CD56bright NK cells
(99). These authors showed that eliminating granzyme K
profoundly inhibited the ability of CD56bright NK cells to lyse
activated syngeneic T cells, thus failing to control autoimmunity.
In addition, NK cells have been shown to kill other MS-relevant
cell types, such as microglial cells by use of the NKG2D as well as
the NKp46 receptor pathways (100), autologous immature
myeloid cells via NKp30, NKp46 and DNAM-1 (101–103) and
activatedmacrophages through NKG2D as well (104). Lastly, apart
from direct cell-mediated cytotoxicity, NK cells are known to
modulate adaptive immunity by cytokine production (105).
FIGURE 2 | NK cell subsets described in CSF and PB of MS patients. NK cell subsets with their characteristic cell surface markers described thus far in MS. The
subsets are placed in the compartment where their putative role in MS has predominantly been described. Of note: the mentioned markers are non-exhaustive, the
compartmentalization is not absolute and mutual exchange between CSF and PB is possible. NK, natural killer; CSF, cerebrospinal fluid; PB, peripheral blood; NKT, natural
killer T; CD, cluster of differentiation; DNAM-1, DNAX accessory molecule 1; IFN, interferon; CCR, CC-chemokine receptor; CXC, chemokine receptor; KLRG1, killer cell
lectin-like receptor G1; KIR, killer immunoglobulin-like receptor; S1P5, sphingosine-1-phosphate receptor 5; NK8+, CD8+ natural killer cell. Created with BioRender.com.
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Evidently, more functional assays will be needed to determine
which of these mechanisms is used by exactly which NK cell subset
to modulate adaptive immunity and control autoimmunity in MS.
NK CELLS IN THE MS CLINIC

Several MS treatments have been described to affect NK cell
populations. A systematic overview of the known effects of
currently approved DMTs for MS on the NK cell repertoire is
beyond the scope of this review and the authors refer to a recent
review of Laroni and Uccelli (16). From a historical perspective,
the effects of daclizumab, an anti-CD25 mAb that blocks the high-
affinity IL-2 receptor on activated T cells, have been particularly
interesting. Bielekova et al. showed that the beneficial effects of
daclizumab could in part be attributed to an expansion of the
CD56bright NK cells, as well as an enhancement of their cytotoxic
potential and regulatory capacity (106, 107). The concomitant
killing of T cells is mediated by the mechanisms described in
previous sections such as increased expression of granzyme K in
NK cells and reversal of the diminished expression of DNAM-1
ligand CD155 on T cells (81, 99). Subsequent studies revealed that
the expansion of CD56bright NK cells after daclizumab was most
likely due to the increased binding of IL-2 to the intermediate IL-2
receptor present on NK cells, which is not targeted by daclizumab
(108, 109). Despite the beneficial effects, some MS patients
developed autoimmune encephalitis after administration of
daclizumab, possibly in part caused by the depletion of
regulatory T cells, leading to withdrawal of the drug (110).
Fingolimod, a sphingosine-1-phosphate receptor modulator, is a
commonly used drug in current MS therapy. A recent study
described an expansion of a distinct NK cell subset characterized
by an aged phenotype (CD56dimCD16++KIR+/-NKG2A-CD94-

CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++

CD127+) upon fingolimod treatment (111). Although the authors
could not demonstrate an association of any particular NK cell
subset with treatment response in their pilot study, they do warn
that the observed expansion of a more exhausted and possibly less
functional NK cell subset might contribute to the observed adverse
events such as infections and malignancies upon long-term
fingolimod treatment (112). Cases such as daclizumab and
fingolimod stress the importance of isolating the exact immune
subsets propagating the established beneficial effects of the
treatment and averting the unsolicited effects.

Because of such studies, NK cells are now at last being recognized
as interesting targets for biomarker and therapy research in amyriad
of autoimmune diseases (113). In MS, studies trying to correlate NK
cell titers and functionality with prognosis and therapy outcome are
underway (114–118), but more validation work is needed to
establish a mechanistic basis for such correlations.
CONCLUSION AND FUTURE
PERSPECTIVES

From different lines of research, there is evidence that NK cells
are likely to play a role in the pathogenesis of MS. NK cells are
Frontiers in Immunology | www.frontiersin.org 5
present in the CSF of MS patients and although their absolute
numbers are relatively low, NK cells have strong cytotoxic
activity to target stressed cells which include autologous
activated immune cells. Genetic studies reveal polymorphisms
in genes important for target cell recognition and for the
cytotoxic activity of NK cells. NK cells are also important
sources of cytokines that further regulate the immune system.
Analysis of NK cells within successful MS treatments shows clear
associations with changes in NK cell numbers and phenotype.
Overall, the findings reviewed here are indicative of a more
regulatory action of NK cells in the pathogenesis of MS, but
further research is needed to validate this hypothesis. The
importance of NK cells in EAE is also emerging in animal
studies, but there is no consensus on their role.

The current state-of-the-art fails to uniformly capture and
characterize the complete and intricate heterogeneity of the NK
cell repertoire in MS, including both disease-promoting and
disease-protective mechanisms, thereby hampering their
successful application in the clinic. As current literature has
often limited itself to descriptive studies of major NK cell subset
frequencies with limited resolution and without many validated
functional inferences, our knowledge of the exact mechanistic
contribution of specific NK cell subsets to MS pathology remains
superficial. The use of more unbiased approaches such as single-
cell omics will allow for a more holistic understanding of the
immune cell repertoire in MS, uncovering previously
unidentified or underappreciated immune players.

As MS is a disease of the CNS, it will be crucial to assess
whether specific NK cell subsets infiltrate the CNS by passing the
blood-brain barrier from the periphery or whether a tissue-
resident innate lymphoid subset, as have been identified in a
myriad of other tissues (119), contributes to (the resolution of)
inflammatory processes in local MS lesions. Finally, the
discovery of clonal expansions of NK cells (120), reminiscent
of those described for T and B cells (94, 121), is bridging the gap
between the innate and adaptive immune system and merits
investigation in the context of MS. In this regard, it is interesting
to note that infection with Epstein-Barr virus (EBV) has recently
been confirmed as an important contributor to MS risk (122,
123), making it intriguing to speculate that EBV infection also
impacts the NK cell repertoire, possibly affecting MS
immunopathology, as has been postulated for CMV (124).

In conclusion, there is a clear rationale and need for further
investigation of NK cell subsets and their role in MS. As both MS
genetics and immunology have shown that this role is clearly
intertwined with the adaptive immune system, a fundamentally
holistic approach is warranted, integrating both innate and
adaptive immune players in MS. Such research will contribute
to a better understanding of the complex disease pathogenesis
and provide a platform for rational therapy design for this
chronic autoimmune disorder.
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der Pol SMA, Rodrıǵuez E, et al. Single-Cell Profiling Reveals Periventricular
CD56bright NK Cell Accumulation in Multiple Sclerosis. bioRxiv (2021).
doi: 10.1101/2021.09.17.460741

84. De Jager PL, Rossin E, Pyne S, Tamayo P, Ottoboni L, Viglietta V, et al.
Cytometric Profiling in Multiple Sclerosis Uncovers Patient Population
Structure and a Reduction of CD8low Cells. Brain (2008) 131(7):1701–11.
doi: 10.1093/brain/awn118

85. McKinney EF, Cuthbertson I, Harris KM, Smilek DE, Connor C, Manferrari
G, et al. A CD8+ NK Cell Transcriptomic Signature AssociatedWith Clinical
Outcome in Relapsing Remitting Multiple Sclerosis. Nat Commun (2021) 12
(1):1–9. doi: 10.1038/s41467-020-20594-2
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