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Phenotypic heterogeneity within malignant cells of a tumor is emerging as a key property of tumorigenesis. Recent work

using single-cell transcriptomics has led to the identification of distinct cancer cell states across a range of cancer types, but

their functional relevance and the advantage that they provide to the tumor as a system remain elusive. We present here a

definition of cancer cell states in terms of coherently and differentially expressed gene modules and review the origins, dy-

namics, and impact of states on the tumor system as a whole. The spectrum of cell states taken on by a malignant population

may depend on cellular lineage, epigenetic history, genetic mutations, or environmental cues, which has implications for the

relative stability or plasticity of individual states. Finally, evidence has emerged that malignant cells in different states may

cooperate or compete within a tumor niche, thereby providing an evolutionary advantage to the tumor through increased

immune evasion, drug resistance, or invasiveness. Uncovering the mechanisms that govern the origin and dynamics of can-

cer cell states in tumorigenesis may shed light on how heterogeneity contributes to tumor fitness and highlight vulnerabil-

ities that can be exploited for therapy.

Advances in single-cell technologies have revealed the extensive
heterogeneity that exists within solid tumors (Suvà and Tirosh
2019). In addition to the range of nonmalignant cell types that
make up the tumor microenvironment—most notably fibroblasts,
macrophages, and lymphocytes—a variety of malignant cell sub-
populations have been observed and characterized molecularly
and phenotypically (Runa et al. 2017). Single-cell RNA sequencing
(scRNA-seq) has enabled the unbiased profiling of tumors and the
identification of sets of transcriptionally similar cells, leading to an
inventory of cancer cell subpopulations (Table 1). The recurrence
of these subpopulations across cancer types suggests that their
emergence in tumors is a key component of tumor progression
(Marusyk et al. 2012). Indeed, studies have shown that heterogene-
ity increases with tumor progression and predicts poor prognosis,
supporting the hypothesis that cancer cell state diversity is advan-
tageous to the tumor (Oh et al. 2019; Marjanovic et al. 2020;
Ramón y Cajal et al. 2020). In particular, phenotypic heterogene-
ity caused by transcriptional variability may favor certain cellular
states under specific environmental pressures, such as better sur-
vival during drug treatment (Frank and Rosner 2012; Lim and
Ma 2019). Selective pressures may thus promote multifarious phe-
notypes within the tumor resulting in growth and therapeutic
resistance.

Although transcriptional heterogeneity appears to be recur-
rent in many cancers, its sources can be genetic or nongenetic
(Marusyk et al. 2012). Genetic intra-tumoral heterogeneity has
been extensively studied and is one of the prerequisites for tumor
evolution resulting in therapeutic failure (Hu et al. 2017;
McGranahan and Swanton 2017). However, recent work has re-
vealed the prevalence of nongenetic heterogeneity as a vital driver
of phenotypic variation during tumorigenesis as well as resistance
to treatment (Sharma et al. 2010; Tirosh et al. 2016b; Neftel et al.

2019). This nongenetic heterogeneity can be caused by epigenetic
differences, lineage determinants, or development hierarchies, or
can arise through interactions with the tumormicroenvironment.

Although the ability to characterize thousands of individual
cells in a tumor has revolutionized the study of intra-tumoral het-
erogeneity, we still lack a comprehensive picture of how these cells
function collectively to form the tumor system. The success of im-
munotherapy, for example, underscores the importance and ther-
apeutic potential of understanding how cells within the tumor
interact (Heinrich et al. 2021). To developmore effective therapies,
we require a more complete understanding of howmalignant cells
in different states interact to cooperate or compete, resulting in im-
proved tumor fitness. Here we review the emergence of cancer cell
states and their functional properties and outline the possible
sources of heterogeneity. Finally, we discuss the tumor as a system
of heterogeneous cells and postulate the occurrence of adaptive in-
teractions between diverse malignant cell states.

Delineating cancer cell states

Technological advances, and particularly scRNA-seq, have enabled
groups to systematically identify and characterize subpopulations
of cells in diverse cancer types, including melanoma, head and
neck cancer, glioblastoma, pancreatic adenocarcinoma, colon can-
cer, and others (Table 1). Although this review focuses on solid tu-
mors, patterns of intra-tumoral transcriptional heterogeneity have
also been observed in blood cancers (Granja et al. 2019; Jang et al.
2019; van Galen et al. 2019; Chen et al. 2020; Liu et al. 2021). The
observation of transcriptional variation across malignant cells in
many cancer types suggests that transcriptional heterogeneity is
a consistent property of tumors. Moreover, this transcriptional
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heterogeneity is rooted in coherent patterns of expression that un-
derpin phenotypic properties, constituting cell states (Table 1).

Cell states have been identified primarily by clustering cells
with similar transcriptional profiles and performing differential
gene expression analysis to annotate their distinctive features
(Neftel et al. 2019; Ji et al. 2020). However, the separation between
clusters of malignant cells is not generally as clear-cut as the differ-
ences between distinct cell types. Rather, transcriptional profiles
appear to vary continuously along certain axes. This observation
has prompted the characterization of cancer cells based on gene
modules, where the genes of a particular module are coexpressed
and differentially expressed between the cells of a tumor (Fig.
1A; Patel et al. 2014). Computational approaches can be used to
identify those gene modules by searching for shared factors of var-
iation across cells, including gene–gene correlation, principal com-
ponent analysis (Patel et al. 2014; Tirosh et al. 2016b), and
nonnegative matrix factorization (Puram et al. 2017). Despite be-
ing agnostic to known pathways, these methods have recovered
many programs described in other contexts, including develop-
ment (e.g., epithelial-to-mesenchymal transition [EMT]) and
cell–cell interactions (e.g., antigen presentation). This suggests
that cancer cell states arise from the co-option of existing gene reg-
ulatorymodules rather than the de novo construction of amodule.
Recent methods also use the underlying gene regulatory frame-
work, adding the constraint that gene modules share a transcrip-
tion factor binding motif (Aibar et al. 2017; Rambow et al. 2018).
We expect that computational methods aimed at delineating cell
states—whether newly devised or adapted from existing tools—
will advance alongside our understanding of the nature and orga-
nization of cell states (Tanay and Regev 2017; Lähnemann et al.
2020).

Collectively, these approaches allow for the description of a
cancer cell state according to the expression of one or more gene
modules (Fig. 1B). Unlike the programs underlying cell types,
which are more stably defined by mutually exclusive differentia-

tion determinants, these modules can be expressed in combina-
tions, potentially explaining the continuous range of possible
states that can be adopted (Fig. 1C). This can be considered analo-
gous to developmental states that exist along a trajectory, or phys-
iological states in which cells of the same type can vary
continuously in their level of activation. Thus, cancer cell states
can be thought of as instantiations of the underlying gene regula-
tory network, depending on the interplay between intrinsic cell
plasticity and environmental cues.

Phenotypic properties of cancer cell states

Before scRNA-seq, extensive studies of inter-tumor transcriptional
heterogeneity using bulk RNA sequencing (RNA-seq) led to the
identification of molecular and histological subtypes with distinct
phenotypic properties and strong correlationwith clinical progno-
sis (Koboldt et al. 2012; Kandoth et al. 2013; Hoadley et al. 2018).
With the high-resolution view of scRNA-seq, it is now clear that
cells within a tumor vary along several of these same dimensions
(Patel et al. 2014; Tirosh et al. 2016a). For example, individual
breast tumors harbor cells with transcriptional profiles corre-
sponding to all fourmolecular subtypes: “basal,” “luminal A,” “lu-
minal B,” and “HER2” (Chung et al. 2017; Gao et al. 2017),
highlighting the importance of studying tumors at cellular
resolution.

Although tumors are typically characterized by rapid growth
and dedifferentiation, individual malignant cells differ in their de-
gree of proliferative and stem-like behavior (Jögi et al. 2012). In
many cancer types, including adenocarcinoma (Dalerba et al.
2011), melanoma (Rambow et al. 2018; Baron et al. 2020), and gli-
oma (Tirosh et al. 2016b), studies have used scRNA-seq to show
that fully differentiated cells coexist with more undifferentiated
cells. This is consistent with the notion that tumor maintenance
may follow principles of normal adult tissue homeostasis, in
which slow-cycling stem cells give rise to rapidly-cycling

Table 1. Studies identifying cancer cell states in human solid tumors using single-cell transcriptomics

Cancer type Cancer cell states References

IDH-wild type glioma High oncogenic signaling Dirkse et al. 2019
Proliferative, complement/immune response, hypoxic Patel et al. 2014
Neural progenitor cell-like, oligodendrocyte progenitor-like, astrocyte-like,

mesenchymal-like
Neftel et al. 2019

IDH-mutated glioma Stem cell–like, oligodendrocyte-like, astrocyte-like Venteicher et al.
2017

H3K27M-mutated glioma Stem cell–like, oligodendrocyte-like, astrocyte-like Filbin et al. 2018

Oligodendroglioma Stem cell–like, oligodendrocyte-like, astrocyte-like Tirosh et al. 2016b

Breast adenocarcinoma Proliferative, angiogenic, mesenchymal/stem cell–like, EMT, recurring, high cancer
gene expression

Yeo et al. 2020

Mesenchymal/stem, nuclear/mitochondrial, cycling, antigen presentation, basal Savage et al. 2017
Stem-like, EMT, antigen presenting, TNFalpha Brady et al. 2017

Ovarian adenocarcinoma Cycling, stress activation, inflammatory cytokines, MHCII, interferon response Izar et al. 2020

Lung adenocarcinoma Ciliated, alveolar, tumor-specific Kim et al. 2020

Colorectal adenocarcinoma Progenitor-like, enterocyte-like, goblet-like Dalerba et al. 2011
Stem-like, enterocyte-like, goblet-like Li et al. 2017

Head and neck squamous cell
carcinoma

Cycling, stressed, hypoxic, EMT, partial-EMT Puram et al. 2017

Skin squamous cell carcinoma Cycling, basal, differentiated, tumor-specific keratinocyte Ji et al. 2020

Melanoma Neural crest stem cell, invasive, starved-like melanocytes, pigmented Rambow et al. 2018

Cycling, MITF-high, AXL-high Tirosh et al. 2016a

Barkley et al.

1720 Genome Research
www.genome.org



progenitors and finally to nondividing differentiated cells
(Pellettieri and Sánchez Alvarado 2007). In gliomas, this hierarchi-
cal model seems to hold true at least in part, with cancer cells in a
proliferative state giving rise to two differentiated states, oligoden-
drocyte-like and astrocyte-like, supporting a complex landscape of
differentiation within a single tumor (Tirosh et al. 2016b;
Venteicher et al. 2017; Filbin et al. 2018). Furthermore, the exis-
tence of a quiescent, stem-like transcriptional program has been

shown in several cancer types. Inmelanoma, for example, cells ex-
ist along a continuumbetween dormantAXL-high cells and prolif-
erative MITF-high cells, with the former being less sensitive to
MAPK inhibitors (Tirosh et al. 2016a). In a single-cell study of
breast cancer, early metastases contained dormant low-prolifera-
tive cells, whereas later metastases were highly proliferative, sug-
gesting a role for each of these properties at different stages of
tumor progression (Lawson et al. 2015). Thus, characterizing
how cells vary in their expression of quiescence, proliferation,
and differentiation programs is necessary for a comprehensive un-
derstanding of tumorigenesis.

The EMT is a well-established process occurring in epithelial
tumors that mimics normal development and wound healing
(Hay 1995; Kalluri and Weinberg 2009; Haensel and Dai 2018;
Ganesh et al. 2020; Laughney et al. 2020; Wouters et al. 2020).
Within an epithelial tumor, cells can be identified at varying stages
of this process, thus defining another axis of intra-tumoral hetero-
geneity (Pastushenko et al. 2018). Indeed, studies using scRNA-seq
in patient tumors have identified gene modules indicative of par-
tial (Puram et al. 2017) and complete (Aiello et al. 2018; Lin et al.
2020) mesenchymal phenotypes. Functional studies have impli-
cated the mesenchymal state in invasion (Puram et al. 2017) and
metastasis (Revenco et al. 2019) and shown that the reverse pro-
cess, mesenchymal-to-epithelial transition (MET), enables meta-
static cells to establish a secondary tumor with epithelial
characteristics (Rothenpieler and Dressler 1993; Lawson et al.
2015; Shibue and Weinberg 2017).

Intra-tumoral heterogeneity is a critical barrier to treatment
in oncology, as drug-naive tumors harbor a fraction of cells that
are not eliminated by treatment, enabling them to seed tumor re-
lapse. Increasing evidence has shown that drug tolerance is medi-
ated by broad reversible transcriptional changes, suggesting that
one or more states may underlie this phenotypic property
(Sharma et al. 2010; Kim et al. 2016; Shaffer et al. 2017). Early stud-
ies in lung cancer showed that drug-tolerant cells express high lev-
els of CD24 and PROM1 (also known as CD133), two markers
associated with stemness and quiescence (Sharma et al. 2010).
More recent work has also established higher drug tolerance in
slow-cycling cells in many cancer types, including breast cancer
(Kim et al. 2018) and melanoma (Roesch et al. 2013; Shaffer
et al. 2017), supporting a link between quiescence and drug toler-
ance (Singh and Settleman 2010). Additional states have been as-
sociated with drug tolerance, including a stress-response state in
melanoma (Baron et al. 2020) and mesenchymal state in carcino-
mas (Shibue and Weinberg 2017; Viswanathan et al. 2017).

Although scRNA-seq has contributed to the characterization
of well-established states at the molecular level, it has also high-
lighted cell states and gene modules that were previously over-
looked. Several studies have found a stress-response module that
is differentially expressed within cells of the same tumors and is
characterized by DNA-damage, unfolded protein, and TNF-signal-
ing response genes (Tirosh et al. 2016a; Baron et al. 2020; Izar et al.
2020; Moncada et al. 2020). Genemodules associated withmetab-
olism, including oxidative phosphorylation (Moncada et al. 2020)
and hypoxia (Patel et al. 2014; Neftel et al. 2019; Baron et al. 2020),
may be differentially expressed as a result of spatial variation in ox-
ygen and metabolite availability within the tumor. An indepen-
dent classification of cancer cells from glioblastoma based on
pathway enrichment coincided with previously characterized lin-
eage-specific cellular states, suggesting a link between develop-
mental states and metabolic activity (Garofano et al. 2021).
Cancer cells also appear to vary in their level of interferon response

B
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Figure 1. A gene module framework to characterize cancer cell states.
(A) Gene modules emerge from the underlying gene regulatory network.
Nodes and edges represent genes and coexpression, respectively. Colors
indicate distinct gene modules. (B) Coherent gene modules interact with
other modules to define amalignant cell’s state. (C) The spectrum of states
available to a cell can be described as a state potential map, where some
states are shared across patients, cancer types, cell types, or clones for ex-
ample, whereas others are accessible only in particular contexts.
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and antigen presentation (Patel et al. 2014; Izar et al. 2020). Under-
standing how these transcriptional changes affect interactions
with immune cells is critical to the growing field of immunother-
apy. Indeed, these changes appear to mediate increased immuno-
genicity as the result of antigen presentation but also,
paradoxically, immune tolerance through expression of immune
checkpoints (Thibaut et al. 2020;Williams et al. 2020). Thus,map-
ping transcriptionally defined cancer cell states to phenotypic
properties remains an active area of investigation, and will help es-
tablish their in vivo relevance.

Origin and dynamics of cancer cell states

The consistent identification of distinct intra-tumoral cancer cell
states raises the question of how they arise during tumorigenesis
(Fig. 2). As tumors also harbor genetic heterogeneity, it is tempting
to search for links between cancer cell states and genetic alter-
ations.Methods to simultaneouslymeasure genome and transcrip-
tome in single cells make it possible to directly link genetic
alterations and transcriptional states (Macaulay et al. 2015).
Several studies have identified specific mutations leading to wide-
spread transcriptional and phenotypic differences, including drug
resistance (Lim and Ma 2019; Sachs et al. 2019), growth factor in-
dependence (Rubinfeld et al. 1996; Dempke and Heinemann
2010; Kim et al. 2019), and high proliferative rates (Marusyk
et al. 2014). In a model of small cell lung carcinoma, a mesenchy-
mal state was shown to arise as a result of an oncogenic HRASmu-
tation (Calbo et al. 2011). Similarly,Wnt1-driven mammary gland
tumors can evolve two clones, with theHras-mutated clone acquir-
ing a basal-like proliferative phenotype (Cleary et al. 2014).

Increasingly, however, there is evidence that genetically en-
coded states are the exception rather than the rule. In brain tumors,
each clone contributes to all identified states in patient tumors
(Tirosh et al. 2016b). Furthermore, in vivo studies show that sorted
cells of a single state—or indeed single cells—are able to reconsti-
tute the full range of states observed in the original tumor (Dirkse
et al. 2019; Neftel et al. 2019). In other cancer types as well, a
high degree of plasticity between cancer cell states within the tu-
mor has been identified (Gupta et al. 2011; Kreso et al. 2013;
Cleary et al. 2014; Seino et al. 2018; Kinker et al. 2020;
Marjanovic et al. 2020). This plasticity appears to play a particular
role during metastasis: EMT first enables dissemination and seed-
ing, and MET leads the metastasis to regain the original epithelial
states (Lawson et al. 2015). In a study of triple-negative breast can-
cer combining single-cell DNA and RNA sequencing, resistance to
chemotherapy was associated with pre-existing genetic clones pre-
sent before therapy (Kim et al. 2018). However, transcriptional sig-
natures typically involved in drug tolerance were detected only in
posttreatment patients, suggesting that induced transcriptional
changes play a role in the resistance phenotype even in the pres-
ence of genetic clonal selection. Thus, similar to how different
cell types emerge fromagenetically identical populationduringde-
velopment, it appears that cancer cells in different states can arise
withoutgeneticdifferences. The sources ofnongeneticheterogene-
ity may then be intrinsic to the cell or caused by external signals
from the microenvironment.

The coexistence in a tumor of mature and immature cells of
the same lineage suggests that differentiationanddedifferentiation
processesplaya role incell statediversification (Dalerba et al. 2011).
Epigenetic encoding of cancer cell state identity appears to be less
hardwired than in normal cells, although lineage identity is re-
tained to some extent (Flavahan et al. 2017). In melanoma, for ex-

ample, the neural crest lineage identity is not lost, as cells vary only
between neural crest and differentiated melanocyte-like states
(Rambow et al. 2018; Baron et al. 2020). Similarly, cell states in
glioblastoma include neural progenitor-like, oligodendrocyte

Figure 2. Cell- and system-level view of intratumor heterogeneity. (Top)
Intrinsic factors (genetic alterations or epigenetic changes) and extrinsic
factors (stimuli from the environment) lead to transcriptional changes, rep-
resented here with the expression of two genes (orange and purple).
(Bottom) Transcriptional heterogeneity is revealed by scRNA-seq, which
gives the gene expression profile of each cell. Histograms depict expression
profiles corresponding to different cancer cell states in which two genes
(orange and purple lines) are expressed at different levels. Within the tu-
mor, cancer cells may also compete or cooperate with each other and in-
teract with other cells of the tumor microenvironment. Intrinsic epigenetic
factors may induce the EMT. Low vascularization and oxygen levels (O2)
may induce the hypoxic state, which in turn promotes angiogenesis
through VEGFA secretion. Interferon gamma (IFNG) secretion by T cells
may lead to an interferon response state with high CD274 (also known
as PDL1) expression.
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progenitor-like, andastrocyte-like, all ofwhicharederived fromthe
neural lineage (Neftel et al. 2019). Throughout tumor progression,
however, cells take on states of increasing regulatory distance from
the original lineage of the cell type of origin. In a lung cancermod-
el, for example, a state resembling lung progenitors appears first,
followed by a primordial gut-like state (Marjanovic et al. 2020).
Thus, lineage-related cancer cell states may follow from partial
loss of epigenetic stability.

Beyond differentiation and dedifferentiation along lineages,
other epigeneticmechanismsmay explain the existence of distinct
transcriptional states within the tumor (Kundaje et al. 2015). Intra-
tumoral heterogeneity in the chromatin state, along the restricted-
permissive axis, may dictate cell state not only by affecting gene
module expression but also by silencing tumor-suppressor
programs or allowing stochastic oncogene activation (Flavahan
et al. 2017). In colon cancer, Meir et al. (2020) used a “Luria–
Delbruck”-like experiment to show that the epithelial and mesen-
chymal states are inherited across several generations through
epigenetic memory, specifically through DNA methylation. This
is in line with the in vivo finding that the epigenetic state of the
cell of origin determines the propensity of tumor cells to undergo
EMT in squamous cell carcinoma (Latil et al. 2017). Drug tolerance
inpersister cells alsoappears tobebased ina specific reversible chro-
matin state (Sharma et al. 2010). In glioblastoma, for example, pre-
existing epigenetic composition dictated by histone demethylases
KDM6A/B leads to a reversibly slow-cycling persister state that sur-
vives treatment (Liau et al. 2017). Furthermore, epigenetic changes
occurring throughout tumorigenesis appear to mediate cell state
diversification. In lung cancer, single-cell ATAC-seq (scATAC-seq)
revealed distinct chromatin signatures underlying metastatic and
highly-plastic cell states (LaFave et al. 2020; Marjanovic et al.
2020). In glioblastoma, epigenetic profiling through scATAC-seq
uncovereddistinct stateswithin the self-renewing stemcell popula-
tion, with an invasive state correlating with poor prognosis (Guil-
hamon et al. 2021). In addition, these epigenetic states were not
associated with somatic copy number alterations. Taken together,
these studies highlight the role of epigenetic mechanisms in the
generation of cancer cell states, independent of clonal structure.

Heterogeneity in themalignant compartmentmay stem from
different interactions with other factors of the tumor microenvi-
ronment, in the form of cell–cell interactions (Bagley 2010), me-
tabolite availability (Le 2018), or drug concentrations (Marusyk
et al. 2020). Cancer-associated fibroblasts (CAFs) are known to
play a crucial role in pancreatic cancer (von Ahrens et al. 2017),
and recent work has shown that CAFs induce proliferative and
EMT states (Ligorio et al. 2019), as well as aWnt-independent state
(Seino et al. 2018). Spatial transcriptomics, which comprehensive-
ly map cell types and states within the tumor, can yield insight
into these interactions (Rao et al. 2021). Using this technology,
CAFs were shown to colocalize with a partial EMT state in squa-
mous cell carcinoma (Ji et al. 2020) and inflammatory fibroblasts,
with a stress-response state in pancreatic cancer (Moncada et al.
2020). However, other methods are required to capture interac-
tions mediated by secreted factors rather than contact-dependent
signaling. For example, although the interferon-response state ap-
pears to be elicited by CD8+ T cells, there is no significant colocal-
ization between the two cell populations (Thibaut et al. 2020).
Additionally, varying concentrations of drugs and metabolites
within the tumor may also play a role in heterogeneity (Wu and
Dai 2017). In glioblastoma, treatment with receptor tyrosine ki-
nase inhibitors induces genetic and epigenetic changes, leading
to the emergence of a drug-tolerant persister state (Eyler et al.

2020). By altering gene expression or epigenetic state of a malig-
nant cell, drug treatment can also lead to cell state transitions of
pre-existing primed subpopulations within the tumor (Shaffer
et al. 2017; Kim et al. 2018). These studies suggest that tolerance
is likely facilitated by intrinsic transcriptional variability that
primes cells for further induced adaptations during therapy.

A system-level view of cancer cell states

The diversity of states within a single tumor raises the question of
how they interact within the tumor system (Barkley and Yanai
2019). In a context of limited resources, competition between
states would be expected to result in decreased heterogeneity, as
the most-fit states overtake the tumor population (Parker et al.
2020). In contrast, studies have found an increase in cell state
diversity throughout tumorigenesis. In a model of esophageal tu-
morigenesis, new states were found to appear at each stage of pro-
gression without loss of the earlier states (Yao et al. 2020).
Similarly, an increase in the diversity of cell states was observed
during lung adenocarcinoma progression, with some cells retain-
ing the original alveolar identity concurrentlywith the appearance
of new states reminiscent of earlier developmental stages
(Marjanovic et al. 2020). These observations suggest that state
diversity is a consistent property of advanced tumors.

Tumors are reminiscent of developmental systems in their ca-
pacity to recapitulate normal developmental and differentiation
hierarchies, analogous to progenitor cells maintaining tissue struc-
ture in normal organs (Yan and Owens 2008; Biteau et al. 2011;
Gehart and Clevers 2019). For example, mammary gland tumors
can be maintained by a bipotent progenitor, giving rise to basal
and luminal cells (Cleary et al. 2014; Tammela et al. 2017), and oli-
godendrogliomas by a pool of stem-like cells that differentiate into
oligodendrocyte-like and astrocyte-like cells (Tirosh et al. 2016b).
Furthermore, signaling niches also play an important role in tu-
morigenesis similar to development. It has been shown that a
Wnt-secreting state maintains the stem cell niche ofHras-mutated
proliferative cancer cell state in breast cancer (Cleary et al. 2014;
Tammela et al. 2017). This relationshipwas not transient, support-
ing the view of the tumor as a system rather than a set of indepen-
dent or competing cells (Cleary et al. 2014). Furthermore, this two-
state system was shown to emerge either clonally, with the basal-
like cells acquiring a Hras mutation, or hierarchically, with both
cell states sharing a common progenitor and genetic background
(Cleary et al. 2014). Although genetic differences do not necessar-
ily delineate cell states, studies have found that certain geneticmu-
tations, such as amplification of EGFR, PDGFR, or CDK4, are
associated with different frequencies of malignant cell states
(Neftel et al. 2019). This convergence of genetic and nongenetic
mechanisms of state segregation strongly supports the functional
importance of cell state heterogeneity in tumor progression.

Coexistence of various cancer subpopulations within a tumor
has led to the hypothesis that cancer cell states have distinct func-
tions that together promote overall success of the tumor. This hy-
pothesis has been extensively explored theoretically, borrowing
from the field of game theory (Gatenby and Vincent 2003;
Aktipis and Nesse 2013; Archetti and Pienta 2019). Jouanneau
et al. (1994) showed that the presence of an FGF1-producing pop-
ulationwithin the tumor increases tumorigenic andmetastatic po-
tential. The resulting primary and metastatic tumors remained
mixed, suggesting that the increase in fitness was owing to a com-
munity effect rather than a single population outcompeting the
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other. In small cell lung carcinoma, mixed tumors of neuroendo-
crine and nonneuroendocrine cells displayed increased prolifera-
tion in vitro and metastasis in vivo (Calbo et al. 2011). This
effect was shown to be local rather than systemic, as it was not ob-
served when the neuroendocrine and nonneuroendocrine cells
were separate in contralateral flanks. In contrast, Polyak and col-
leagues showed a systemic effect in breast cancer, where subpopu-
lations of IL18 or VEGFA-producing cells induce tolerance in
neutrophils, leading to increased growth and metastasis of the tu-
mor as a whole (Marusyk et al. 2014; Janiszewska et al. 2019). In
melanoma, Campbell et al. (2020) found that subpopulations of
tumor cells with a proliferative or invasive cell signature cooperate
to seedmetastases (Campbell et al. 2020). In the context of immu-
notherapy, it was shown that interferon-insensitive cells have a
selective advantage over interferon-sensitive cells in the same tu-
mor but that their survival depends on the interferon-sensitive
cells (Williams et al. 2020). Taken together, these results suggest
that indirect parasitism or cooperation between cancer cell states
promotes tumor growth and metastasis.

Finally, heterogeneitywithin the tumormay be key to robust-
ness in the face of environmental fluctuations, including drug
treatment. The presence of proliferative and quiescent cells in
the same tumor is reminiscent of survival strategies observed in
unicellular species, including yeast and bacteria (Lewis 2007). A
similar bet-hedging strategymay evolve in tumors, wherein the co-
existence of these two states enables both growth and robustness
to environmental changes, as the quiescent cells are less sensitive
(Chen et al. 2016; Brown and Schober 2018). Such a strategy is
further exemplified in the context of drug treatment, in which
pre-existing transcriptional heterogeneity enables a fraction of
cells—drug-tolerant persisters—to survive drug insult, thus provid-
ing a substrate for natural selection and, finally, emergence of
genetically drug-resistant cells (Sharma et al. 2010; Emert et al.
2021). Increasing transcriptional variability may be one of the
ways in which histone demethylases, which increase transcrip-
tional heterogeneity, function as oncogenes (Roesch et al. 2013;
Hinohara et al. 2019). Thus, heterogeneity may provide a frame-
work for tumor cells to explore novel states that are advantageous
to the cell itself but also to the tumor system as a whole.

Outlook

As the importance of intra-tumoral heterogeneity for tumor pro-
gression has become abundantly clear, the efforts to examine the
tumor as a complex system have also come into focus. Although
the existence of diverse cancer cell states has been known for
manyyears, several challenges have thwarted efforts to understand
their role and functional relevance on a deeper level. In particular,
many molecular approaches were not available to dissect the rela-
tionships among the cell states as a part of the collective tumor
system.

Recent advances in molecular biology, single-cell technolo-
gies, and computational methods promise to provide an
integrative understanding of the tumor system. First, we can
now study tumors at an unprecedented scale and resolution,
with a high-dimensional, multiomic view at the level of individual
cells. Integrating multiple modalities, including proteomic, tran-
scriptomic, epigenomic, and genomic, will help to understand
the origins of cancer cell states. Although each sample under study
with these technologies is a snapshot, computational methods to
infer dynamics make use of naturally occurring lineage tracing us-
ing copy-number alterations and mitochondrial mutations. Fur-

thermore, leveraging spatial transcriptomics to understand how
states mix or segregate within the tumor, as well as their colocali-
zation with elements of the tumor microenvironment, may hint
at how they arise and at their functional consequences.

Perturbation experiments in model systems will be required
to rigorously establish the causal aspects of cancer cell states and
move beyond correlative observations. With increased practicality
and tractability, model systems like patient-derived organoids and
geneticmousemodels can be used to recapitulate the tumor and its
microenvironment and mimic human disease. Single-cell CRISPR
screens to perturb cell states may also lead to novel insights into
the plasticity and dynamics of cell states as well shed light on
the drivers of heterogeneous populations within the tumor.
Computational strategies such as agent-based modeling can be in-
corporated to understand how tumor-level properties emerge from
these components. Together, these two complementary approach-
es—holistic but correlative, and causal but reductionist—will en-
able us to understand how the tumor system emerges from its
individual components and may highlight the system’s vulnera-
bilities for treatment.
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