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The ability of serovars of Salmonella enterica to cause systemic disease is dependent upon their

survival and replication within macrophages. To do this, bacteria must withstand or surmount

bacteriostatic and bactericidal responses by the host cell, including the delivery of hydrolytic

enzymes from lysosomes to the phagosome. The bacterial two-component regulatory system

PhoP/Q has been implicated in avoidance of phagolysosomal fusion by S. enterica serovar

Typhimurium (S. Typhimurium) in murine macrophages. In this study, the involvement of PhoP/Q-

activated genes in avoidance of phagolysosomal fusion was analysed: of all the S. Typhimurium

mutant strains tested, only an mgtC mutant strain partially reproduced the phenotype of the phoP

mutant strain. As this gene is required for bacterial growth in magnesium-depleted conditions in

vitro, the contributions of PhoP/Q to intramacrophage replication and survival were reappraised.

Although PhoP/Q was required for both replication and survival of S. Typhimurium within murine

macrophages, subsequent analysis of the kinetics of phagolysosomal fusion, taking account of

differences in the replication rates of wild-type and phoP mutant strains, provided no evidence for

a PhoP/Q-dependent role in this process. PhoP/Q appeared to act subsequent to the process of

phagolysosomal avoidance and to promote replication of those bacteria that had already escaped

a phagolysosomal fate. Therefore, we conclude that the PhoP/Q regulon enables S. Typhimurium

to adapt to intramacrophage stresses other than phagolysosomal fusion.

INTRODUCTION

Salmonella enterica serovar Typhi (S. Typhi) causes typhoid
fever, and is restricted to infection of primates. By contrast,
S. enterica serovar Typhimurium (S. Typhimurium) has a
broad host range and causes both self-limiting gastro-
enteritis and systemic diseases, depending upon the host;
the systemic disease that it causes in susceptible mouse
strains is frequently used as a model system to study
typhoid fever. The ability of both serovars to cause systemic
disease depends on their capacity to survive and grow
within cells of the granulocyte/monocyte lineage, such as
macrophages. Accordingly, S. Typhi is adapted to grow in
human macrophages, while S. Typhimurium grows

preferentially in mouse macrophages (Schwan et al.,
2000). Two multi-functional virulence systems contribute
to the intramacrophage growth and virulence of S. enterica:
the PhoP/Q two-component system, which activates the
expression of many genes following bacterial uptake into
phagosomes (Groisman et al., 1989; Miller et al., 1989),
and the SPI-2 type III secretion system (T3SS) (Hensel
et al., 1995; Ochman & Groisman, 1996; Shea et al., 1999),
which translocates numerous effector proteins across the
phagosomal membrane.

Macrophages use several bactericidal and bacteriostatic
processes that must be counteracted, avoided or withstood
for intracellular S. enterica to survive and replicate. DNA-,
protein- and membrane-damaging reactive oxygen species
are produced in the first few minutes of phagocytosis by
NADPH oxidase activity. Toxic reactive nitrogen species
are produced later, by inducible NO synthase (iNOS). The
increased growth of S. Typhimurium in macrophages and
knockout mouse strains lacking NADPH oxidase or iNOS
demonstrates that bacteria are susceptible to these
responses (Mastroeni et al., 2000; Vazquez-Torres et al.,
2000a, b). This sensitivity is limited by the activity of
bacterial detoxifying enzymes and regulatory factors,
including catalases, hydroperoxidases (Hébrard et al.,
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2009), superoxide dismutases (Craig & Slauch, 2009; De
Groote et al., 1997), HmpA, NorV, NrfA (Mills et al., 2008)
and sE (Testerman et al., 2002).

A major process by which macrophages kill phagocytosed
bacteria is the fusion of lysosomes to phagosomes to form
phagolysosomes, acidic compartments containing pro-
teases, glycosidases and lipases (Garin et al., 2001).
Numerous studies have shown that S. Typhimurium
modifies its phagosome, known as the Salmonella-contain-
ing vacuole (SCV), such that it acquires some features of
late endosomes but remains distinct from normal phago-
lysosomes. Interactions with early endosomes, character-
ized by recruitment of early endosomal markers (Hashim
et al., 2000), and acidification of the SCV (Drecktrah et al.,
2006; Rathman et al., 1996, 1997) are followed by the
acquisition of late endosome-associated proteins, including
lysosomal membrane glycoproteins such as LAMP-1
(Becken et al., 2010; Rathman et al., 1997). However,
SCVs are relatively deficient in mannose-6-phosphate
receptors (M6PRs), which deliver hydrolytic enzymes to
late endosomal/lysosomal compartments, and their cargo,
such as cathepsin L, is also largely absent (Hashim et al.,
2000; Rathman et al., 1997). Mature SCVs have also been
found to be relatively inaccessible to lysosomes, as judged
by co-localization with endocytotic lysosomal content
using electron (Buchmeier & Heffron, 1991) and light
(Becken et al., 2010; Garvis et al., 2001) microscopy. These
observations were recently confirmed using an in vitro
system that analysed fusion events between purified early
or mature SCVs and lysosomes. In both cases, the majority
of SCVs containing viable bacteria avoided fusion (Becken
et al., 2010).

Although the mechanism for avoidance of phagolysosomal
fusion by S. Typhimurium in macrophages is not well
characterized, both the SPI-2 T3SS (Uchiya et al., 1999)
and the PhoP/Q regulon (Garvis et al., 2001) have been
implicated. Our laboratory has reported that by 16 h after
bacterial uptake by macrophages, an increased percentage
of phoP mutant bacteria co-localizes with lysosomal
markers compared with wild-type bacteria (Garvis et al.,
2001). In this study we analysed genes of the PhoP/Q
regulon with respect to avoidance of phagolysosomal
fusion by intramacrophage S. Typhimurium, and re-
examined the method used to measure this process. A
reappraisal of the role of PhoP/Q in bacterial replication
and survival leads us to conclude that the PhoP/Q regulon
is not directly involved in the avoidance of phagolysosomal
fusion, but is required to promote the intramacrophage
replication of S. Typhimurium.

METHODS

Bacterial strains and growth conditions. The bacterial strains

used in this study are listed in Supplementary Table S1. Bacteria were

routinely grown in Luria–Bertani (LB) broth (Sambrook & Russell,
2001) at 37 uC, 200 r.p.m., except where otherwise indicated.

Antibiotics were used at the following concentrations: kanamycin,

25 mg.ml21; carbenicillin, 50 mg.ml21; chloramphenicol, 50 mg.ml21.
Protein expression was induced with 0.2 % (w/v) L-arabinose, as
required (Loessner et al., 2007).

Bacterial mutagenesis. S. Typhimurium LT2 mutant strains were
constructed using the one-step l red recombinase chromosomal
inactivation method (Datsenko & Wanner, 2000). Primer sequences
used for targeted mutagenesis and verification of recombination are
listed in Supplementary Tables S2 and S3, respectively. Clean
deletions of phoP and pmrA in S. Typhimurium LT2 were generated
using FLP recombinase expressed from pCP20 to excise antibiotic-
resistance cassettes.

Plasmids. Plasmids used in this study are listed in Supplementary
Table S1. pKD3 and pKD4 from Escherichia coli BW25141 (Datsenko
& Wanner, 2000) were used as PCR templates for bacterial
mutagenesis. pKD46 from BW25113, and pCP20 from BT340
(Datsenko & Wanner, 2000) were used to electroporate S.
Typhimurium LT2 strains for the generation of mutant strains and
the removal of antibiotic-resistance cassettes, respectively (Datsenko
& Wanner, 2000). pDiGc (Helaine et al., 2010) was electroporated
into S. Typhimurium 12023 wild-type and DphoP : : kan strains
(Helaine et al., 2010). The vector pDSRED.T3_S4T (Sörensen et al.,
2003) was used to construct pBADmgtC and pBADphoP: mgtC and
phoP were amplified from the S. Typhimurium genome with primers
mgtCNdeI-F and mgtCHindIII-R, or phoPXbaI-F and phoPHindIII-
R (Supplementary Table S2), which introduced a NdeI, HindIII or
XbaI restriction site flanking the genes. Vector and PCR products
were restriction-digested, and inserts were ligated into the vector in
place of the excised dsred.T3_S4T gene under the regulation of the
arabinose-inducible PBAD promoter.

Identification of lysosomal compartments. RAW264.7
(91962702) macrophage-like cells purchased from the European
Collection of Cell Cultures were seeded on glass coverslips in 24-well
plates at a density of 16105 cells per well. Cells were incubated for
12–24 h in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10 % (v/v) fetal calf serum (FCS) at 37 uC, 5 % CO2,
prior to experiments. To label lysosomes, macrophages were pulsed
for 30 min with DMEM/10 % FCS containing 50 mg ml21 Texas red
ovalbumin (TROva; Molecular Probes, Invitrogen), washed, and
incubated for 2 h in label-free DMEM/10 % FCS (Garvis et al., 2001)
before fixation with 3 % (w/v) paraformaldehyde (PFA) for 15 min at
25 uC. Cells were permeabilized with 0.1 % (w/v) saponin in PBS and
labelled with a 1 : 500 dilution of rabbit anti-cathepsin D (anti-CtsD)
primary antibody (provided by S. Kornfeld, Washington University)
and a 1 : 200 dilution of anti-rabbit Cy2-conjugated secondary
antibody (all conjugated secondary antibodies were purchased from
Jackson Immunoresearch Laboratories). Co-localization between
CtsD and TROva was analysed in a minimum of 50 cells per
coverslip by laser-scanning confocal microscopy (Zeiss Axiovert
LSM510).

Assay for SCV–lysosome interactions in macrophages.
RAW264.7 macrophages were seeded, and lysosomes were labelled
with TROva as described above. Cells were infected at an m.o.i. of
10 : 1 with bacteria grown to stationary phase and opsonized as
previously described (Beuzón et al., 2000). A positive control
containing heat-killed bacteria (500 ml stationary phase wild-type S.
Typhimurium culture, incubated at 65 uC for 25 min) was similarly
opsonized and used for infection. The lack of viability of these
bacteria was confirmed by an absence of detectable c.f.u. on LB agar
(Sambrook & Russell, 2001). At the time points indicated, infected
macrophages were fixed with PFA, permeabilized with 0.1 % saponin
in PBS, and labelled with a 1 : 200 dilution of goat anti-Salmonella
CSA-1 primary (Kirkegaard and Perry Laboratories) and 1 : 200 anti-
goat Cy2-conjugated secondary antibodies. Co-localization of heat-
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killed bacteria and CtsD was detected in macrophages labelled with

anti-CtsD antibody and a 1 : 400 dilution of anti-rabbit Rhodamine
Red-X (RRX)-conjugated secondary antibodies. Pixel-to-pixel co-

localization between bacteria and lysosomal markers was assessed by
laser-scanning confocal microscopy in a minimum of 50 cells per

coverslip. Macrophages containing in excess of approximately 25

bacteria were excluded from the analysis due to the difficulty in
accurately determining their number and the proportion co-localizing

with TROva.

Bacterial growth in RAW264.7 macrophages. RAW264.7 macro-
phages were infected for different time periods with opsonized

stationary-phase cultures of bacteria at an m.o.i. of 10 : 1, as described
above. Cells were lysed with 0.1 % (v/v) Triton X-100 in PBS, and

c.f.u. were enumerated by plating serial dilutions of the lysate on LB

agar. Bacterial growth was measured as the fold change in c.f.u. ml21

recovered from macrophages between two time points.

Bacterial replication and survival in macrophages. Bone

marrow-derived macrophages (BMM) were extracted from BALB/c
mice (Charles River) and cultured as described by Helaine et al.

(2010). BMM medium [RPMI 1640 (Invitrogen) supplemented with
10 % (v/v) FCS Gold (PAA laboratories), 2 mM glutamine, 50 mM b-

mercaptoethanol, 1 mM sodium pyruvate and 10 mM HEPES] was

used to maintain BMM, which were seeded at a density of 26105 cells
per well in 24-well plates. RAW264.7 macrophages or BMM were

infected with bacterial strains carrying the pDiGc plasmid grown to
late stationary phase in MgM-MES pH 5.0 [170 mM MES, pH 5.0,

5 mM KCl, 7.5 mM (NH4)2SO4, 0.5 mM K2SO4, 1 mM KH2PO4,

10 mM MgCl2, 38 mM glycerol and 0.1 % Casamino acids (Beuzón
et al., 1999)], in the presence of 0.2 % L-arabinose and antibiotics as

required. At specified time points, cells were washed and lysed, and

bacterial growth was quantified by enumeration of c.f.u. ml21. The
remaining lysate was centrifuged at 10 000 g, bacteria were resus-

pended in 500 ml PBS, and the levels of DsRED and GFP fluorescence
intensity were analysed by flow cytometry. Replication was measured

as the fold change in the geometric mean of DsRED fluorescence

intensity between two time points. Killing indices were calculated as
the difference between replication rate and net growth rate in number

of generations per hour, using the relationship F52n, where n
corresponds to the number of generations and F is the fold change

between the two time points.

Flow cytometric acquisition and analysis. Bacterial samples were
analysed using a FACSCalibur (Beckton Dickinson) for fluorescence

intensities in the FL-1 (GFP) and FL-2 (DsRED) channels; a

minimum of 10 000 bacterial events were analysed for each sample.
Data were analysed using FlowJo 8.6.3 software. The bacterial

population was selected on the basis of GFP expression; DsRED
fluorescence intensity was analysed across the bacterial population,

and the geometric mean of DsRED fluorescence was used to calculate

the dilution of fluorescence (Helaine et al., 2010).

Statistical analysis. All data shown are either the mean and SD of a

minimum of three independent experiments, or data from a single,

representative experiment, reproduced on a minimum of three
independent occasions. Statistical significance was calculated using

Student’s t test, where P,0.05 was judged to be significant.

RESULTS AND DISCUSSION

Visualization of lysosomes in macrophages

We first compared two methods for detecting lysosomes by
light microscopy. In one, a fluid-phase marker, TROva,

was pulse–chased into lysosomes. Cells were then fixed and
labelled for the lysosomal enzyme CtsD (Garvis et al.,
2001). Analysis by confocal microscopy showed that both
labels had a vesicular distribution (Fig. 1a). Almost all cells
(99 %) contained at least partial pixel-to-pixel co-local-
ization in the labelling patterns produced by TROva and
CtsD (Fig. 1b). Although full co-localization was restricted
to 28 % of cells, 71 % contained partial overlap, i.e. dual-
labelled TROva- and CtsD-positive compartments (Fig. 1a,
white arrow), as well as compartments distinctly labelled
for one or the other marker (Fig. 1a, red arrow).

TROva is taken up from the extracellular environment and
traffics through early and late endosomes before reaching
lysosomes, whereas CtsD is delivered by the M6PRs to late
endosomes from the trans-Golgi network (Ghosh et al.,
2003). Acidification triggers the release of the pro-enzyme
from the receptor, whereupon cleavage generates the
mature, hydrolytic protein found in the lysosomal lumen.
One explanation for the lack of complete co-localization
between these two markers is the ability of the anti-CtsD
antibody to bind the immature, pro-form of the enzyme
(data not shown). This would lead to the identification of
pre-lysosomal compartments in addition to lysosomes
containing the mature version of CtsD. Furthermore,
lysosomes undergo fusion and kiss and run events with
autophagosomes (Jahreiss et al., 2008) and late endosomes
(Mullock et al., 1998, 2000; Pryor et al., 2000). Differences
in the sorting of TROva and CtsD at this stage might also
give rise to the distinct patterns of labelling observed.

We next determined the extent of co-localization of these
markers with positive and negative controls for avoidance
of phagolysosomal fusion: viable or heat-killed S.
Typhimurium strain LT2 in RAW264.7 macrophages fixed
2 h after uptake. The majority of viable bacteria avoided
co-localization with either marker, with 28 % positive for
CtsD compared with the 16 % positive for TROva (Fig. 1c).
In contrast, 59 % and 82 % of heat-killed bacteria were
positive for CtsD labelling and TROva, respectively (Fig.
1c). In view of the better discrimination between negative
and positive controls obtained with TROva, this probe was
used in subsequent experiments to assess levels of fusion
between SCVs and lysosomes.

Due to the availability of the entire genome sequence of the
S. Typhimurium LT2 strain at the time this study was
initiated, it was decided to use this strain to construct the
pag mutant strains. To validate the use of the LT2 strain,
we first constructed a phoP mutant in this strain. The
phenotype of the LT2 phoP mutant was indistinguishable
from that of the 12023 phoP mutant used previously
(Garvis et al., 2001) with respect to intramacrophage
growth and co-localization with TROva (Fig. 2a, b).
Growth of both 12023 and the LT2 phoP mutant strain
was restored, and the percentage of mutant bacteria that
co-localized with TROva reduced from approximately 40
to 20 %, by the expression of phoP from pBADphoP (Fig.
2a, b), showing plasmid-based complementation.
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A pag mutant strain partially reproduces the
phenotype of the phoP mutant strain

Using the LT2 strain, mutations were made in pmrA, genes
involved in modification of LPS, magnesium homeostasis,
antimicrobial peptide (AMP) resistance, and genes with less
well-characterized functions. TROva-labelled RAW264.7
macrophages were infected with wild-type or mutant
bacteria for 18 h, or heat-killed bacteria for 2 h. Characte-
ristic images of viable bacteria avoiding phagolysosomal
fusion, and a non-viable bacterium exhibiting full co-
localization, are shown in Fig. 3(a). For almost all the
mutant strains analysed, the percentage of bacteria co-
localizing with TROva was similar to that obtained for wild-
type bacteria (Fig. 3b). The pagO mutant strain had a
significantly lower percentage of co-localization compared
with the wild-type strain. However, since the purpose of the
screen was to identify mutants that could account for the
phoP mutant phenotype, this was not studied further. Only
the mgtC mutant strain exhibited a significantly higher mean
percentage of co-localization: 38 % of bacteria per cell were
positive for phagolysosomal fusion, compared with 50 % for
the phoP mutant and 15 % for the wild-type strain. This
phenotype was rescued by the expression of mgtC from
pBADmgtC (Fig. 3b).

mgtC encodes a 23 kDa protein required for S. Typhi-
murium growth within macrophages (Blanc-Potard &
Groisman, 1997; Rang et al., 2007). In addition, an mgtC
mutant strain has also been found to be deficient for
growth in magnesium-deprived conditions in vitro (Blanc-
Potard & Groisman, 1997). mgtC is in an operon that
includes the magnesium transporter-encoding gene mgtB

(Hmiel et al., 1989), and although there is no evidence that
supports a direct role for MgtC as an ion transporter
(Günzel et al., 2006; Moncrief & Maguire, 1998), the
putative inner membrane location of MgtC (Rang et al.,
2007), the importance of this protein for in vitro growth,
and the partial rescue of intramacrophage growth of mgtC
mutant bacteria upon addition of MgCl2 (Blanc-Potard &
Groisman, 1997), all suggest that MgtC promotes growth
within environments limited in metal ions. It is therefore
unclear how it might enable avoidance of phagolysosomal
fusion. In view of this result, we reappraised the apparent
contribution of PhoP/Q to survival and replication in
macrophages (Garvis et al., 2001).

Contribution of PhoP to replication in
macrophages

As LT2 and 12023 S. Typhimurium strains displayed
similar phenotypes in terms of lysosomal co-localization
and propagation in macrophages (Fig. 2), and since the
kinetics of replication, killing and overall growth of the
12023 strain had already been thoroughly characterized in
macrophages (Helaine et al., 2010), we assessed the
contribution of PhoP/Q to replication using strain 12023.
RAW264.7 macrophages were infected with wild-type or
phoP mutant strains carrying pDiGc. This plasmid encodes
constitutive GFP as a marker for bacterial cells, and
arabinose-inducible DsRED, the preformed pool of which
is diluted between daughter cells with each bacterial
division upon removal of the inducer. Replication is
quantified according to decreases in DsRED fluorescence
intensity (Helaine et al., 2010). Dilution of DsRED

Fig. 1. Identification of lysosomes in
RAW264.7 macrophages. (a) Confocal micro-
scopy images of a RAW264.7 macrophage
pulse–chased with TROva (red in merged
image) and labelled with anti-CtsD antibodies
(green in merged image). The dotted white line
indicates the cell membrane, white arrows
indicate co-localization and red arrows indi-
cate the absence of co-localization; bars, 5 mm.
(b) Percentage of RAW264.7 macrophages
containing full, partial or no co-localization
between TROva and CtsD labelling. Data
shown are the mean of three independent
experiments in which a minimum of 50 cells
were scored; error bars, SD. (c) Percentage of
viable and heat-killed S. Typhimurium LT2 co-
localized with TROva or anti-CtsD labelling in
RAW264.7 macrophages 2 h after uptake.
Data shown are the mean of at least three
independent experiments; error bars, SD.
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fluorescence in S. Typhimurium recovered from
RAW264.7 macrophages was monitored by flow cytometry
over a 16 h period and bacterial replication calculated from

the fold change in geometric mean fluorescence. This
revealed an approximately 100-fold increase in wild-type
bacteria between 2 and 16 h (Fig. 4a), which corresponded
to a mean rate of 0.46 generations h21. In contrast, the
phenotype of phoP mutant bacteria became apparent 4 h
post-uptake, with the bacteria exhibiting almost no
replication (Fig. 4a) and a mean of approximately one cell
division over the full course of the experiment.

Single-cell analysis by flow cytometry of bacteria recovered
from RAW264.7 macrophages showed that wild-type S.
Typhimurium replicated in a relatively synchronous wave,
as evidenced by the high frequency of events within a
narrow range of fluorescence intensities. This is shown for
bacteria recovered after 8 h of infection (Fig. 4b, left panel,
grey profile), but was consistently reproduced at each time
point analysed (data not shown and Helaine et al., 2010).
In contrast, wild-type bacteria recovered from BMM after
24 h exhibited a broader, more heterogeneous distribution
of fluorescence intensities and therefore replicative cap-
ability (Fig. 4b, left panel, black profile). Presumably this
reflects the increased stress to which bacteria were
subjected in BMM compared with RAW264.7 macro-
phages, and was accompanied by only a 10-fold increase in
bacteria in these cells (data not shown and Helaine et al.,
2010).

The distribution of fluorescence intensities of phoP mutant
bacteria in RAW264.7 macrophages or BMM over a 24 h
period was similar, revealing a heterogeneous distribution
of fluorescence intensity, and therefore replicative ability,
across the bacterial population (Fig. 4b, right panel). The
extent of replication of phoP mutant bacteria in BMM
macrophages was similar to that in RAW264.7 cells (data
not shown). The profiles of phoP mutant bacteria in BMM
and RAW264.7 macrophages (Fig. 4b, right panel) more
closely resembled those of wild-type bacteria in BMM
rather than RAW264.7 macrophages (Fig. 4b, left panel),
indicating that the phoP mutant strain sustains a similar
degree of stress, with consequent effects upon replication,
irrespective of macrophage type.

We then analysed whether this effect upon the replicative
potential of phoP mutant bacteria was accompanied by an
increased susceptibility to killing. Differences between the
rates of replication and net growth for wild-type and phoP
mutant strains were used to calculate killing indices
(Helaine et al., 2010). Relatively little bacterial loss was
observed for wild-type S. Typhimurium recovered from
RAW264.7 macrophages between 2 and 24 h, generating a
killing index of 0.08 generations h21 (Fig. 4c). This almost
tripled to 0.21 generations h21 for bacteria recovered from
BMM (Fig. 4c; Helaine et al., 2010), confirming that these
macrophages have a greater bactericidal capacity. Despite
this difference in killing activity, there was no difference in
the relatively high killing indices obtained for phoP mutant
bacteria in the different macrophages, representing a loss of
0.16 generations h21 between 2 and 24 h (Fig. 4c). This
shows that bacteria lacking PhoP are highly sensitive to

Fig. 2. S. Typhimurium LT2 phoP mutant phenotype. (a)
RAW264.7 macrophages were infected with 12023 or LT2 wild-
type, phoP or phoP/pBADphoP mutant S. Typhimurium in the
presence of 0.2 % L-arabinose. Net growth between 2 and 24 h
was calculated from the fold change in c.f.u. ml”1 recovered at
these time points. (b) TROva-labelled RAW264.7 macrophages
were infected with wild-type, phoP or phoP/pBADphoP mutant S.

Typhimurium in the presence of 0.2 % L-arabinose for 24 h. A
positive control containing heat-killed wild-type S. Typhimurium
was analysed 2 h post-uptake. The mean percentage of bacteria
(as identified by antibody labelling) per cell that co-localized with
TROva was scored by confocal microscopy. Data shown in (a) and
(b) are the mean of three independent experiments (error bars, SD),
and significant differences from the wild-type are indicated by an
asterisk (12023) or cross (LT2), where P,0.05.
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both RAW264.7 macrophages and BMM, and that the
increased bactericidal capacity of BMM has no greater
effect on this mutant strain. Therefore, the factors to which
the PhoP/Q regulon enables intracellular adaptation are
likely to be a common feature of RAW264.7 macrophages
and BMM.

Kinetics of avoidance of phagolysosomal fusion

As the phoP mutant strain appeared to be equally stressed
in RAW264.7 macrophages and BMM, despite the
increased bactericidal activity of the latter, we re-examined
the kinetics of phagolysosomal fusion in RAW264.7
macrophages at early and late time points for both wild-
type and phoP mutant S. Typhimurium. Macrophages were
pulse–chased with TROva and infected with opsonized
bacteria. Between 25 and 17 % of wild-type bacteria per cell
co-localized with TROva at selected time points through-
out an 18 h infection (Fig. 5a). Although the percentage of
phoP mutant bacteria co-localized with TROva increased

with time, reaching 45 and 48 % of bacteria by 14 and 18 h
post-inoculation, respectively, in broad agreement with
previous work from our laboratory (Garvis et al., 2001), the
percentage of co-localization at 2 h was very similar to that
of the wild-type strain (Fig. 5a). In contrast, almost 70 % of
heat-killed bacteria were positive for TROva labelling at 2
and 6 h post-inoculation, indicating rapid phagolysosome
maturation.

To take account of the observed difference in the
replication rates of the wild-type and phoP mutant strains
(Fig. 4a) in the analysis of phagolysosomal fusion, the total
numbers of bacteria per macrophage, and those co-
localized with TROva, were compared by microscopy
(Fig. 5b). A significant difference between wild-type and
phoP mutant bacteria was apparent in the total number of
bacteria per cell: from 6 h onwards an increase in the
number of wild-type bacteria per cell was observed, which
reached a mean bacterial load of 14–16 bacteria per cell by
14 and 18 h (Fig. 5b); at these time points, macrophages
infected with phoP mutant S. Typhimurium only contained

Fig. 3. Analysis of TROva co-localization with
pag-mutant S. Typhimurium strains in macro-
phages. (a) Characteristic images of S.

Typhimurium (green in merged images) nega-
tive for TROva (red in merged images) co-
localization (top panel) and heat-killed S.

Typhimurium positive for co-localization (bot-
tom panel) in RAW264.7 macrophages. Bars,
2 mm; arrow indicates TROva+ bacterium. (b)
Mean percentage of S. Typhimurium per cell
co-localized with TROva in RAW264.7 macro-
phages infected with the indicated bacterial
strains for 2 h (heat-killed) or 18 h (all other
strains). Data shown are the mean of at least
three independent experiments (error bars, SD),
and asterisks indicate a significant difference
from the wild-type, where P,0.05.
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seven to eight bacteria. This difference in the intracellular
numbers of wild-type and phoP mutant strains is also in
agreement with their divergent kinetics of replication
measured by fluorescence dilution (Fig. 4a).

Whether infected with wild-type or phoP mutant S.
Typhimurium, macrophages contained a mean of four to
five bacteria at 2 h post-uptake. In each case, one to two of
these bacteria had co-localized with TROva (Fig. 5b). As
the infection proceeded, the number of TROva-positive
bacteria only increased by approximately one per cell, and
at no point was there a significant difference in the number
of wild-type or phoP mutant S. Typhimurium positive for
TROva labelling (Fig. 5b). Therefore, we conclude that the
PhoP/Q regulon does not directly affect SCV–lysosome
interactions, but does enable proliferation of the non-
lysosomal population of bacteria. As a result, the few phoP
mutant bacteria undergoing phagolysosomal fusion con-
stitute a greater proportion of the total intracellular
population than do phagolysosomal wild-type bacteria,
consistent with previous results (Garvis et al., 2001). These
interpretations are summarized in Fig. 5(c), and highlight
how differences in the intracellular growth of bacterial
strains can generate misleading conclusions when data are
expressed as a proportion of the population rather than in
absolute terms.

Although there was no detectable difference between wild-
type and phoP mutant bacteria, the number of heat-killed
bacteria that co-localized with TROva was significantly
higher than that of the wild-type at 6 h post-uptake. This
indicates that there are factors other than the PhoP/Q
regulon that enable S. Typhimurium to escape phagolyso-
somal fusion. Although the SPI-2 T3SS has been implicated
in this phenomenon (Uchiya et al., 1999), a recent study by
our group indicates that the SPI-2 T3SS is not involved in
resistance to macrophage killing mechanisms (Helaine
et al., 2010), and future work is required to establish the
identity of the relevant bacterial molecules.

Genes of the PhoP/Q regulon are involved in several
functions, including magnesium transport (Blanc-Potard &
Groisman, 1997; Soncini et al., 1996). AMPs, produced by
a range of host cells including macrophages, have activity
against S. Typhimurium (Beuzón et al., 2002; Blanc-Potard
& Groisman, 1997; Hiemstra et al., 1993, 1999; Soncini
et al., 1996). In vitro studies indicate that some PhoP-
activated genes (pags), including mig-14, virK and pagP,
increase resistance to AMPs such as polymyxin B and
protegrin-1 (Brodsky et al., 2002; Detweiler et al., 2003;
Guo et al., 1998); the partial rescue of growth of a phoP
mutant strain in BMM lacking the AMP CRAMP suggests
that this also occurs in the intramacrophage environment
(Rosenberger et al., 2004). Components of the PhoP/Q
regulon have been shown to be involved in the tolerance
response to inorganic acid stress at pH 4.5 (Bearson et al.,
1998). The pH of the SCV drops rapidly to between pH 4
and 5 (Rathman et al., 1996). Therefore, an acid tolerance
response is likely to be important for S. Typhimurium to

Fig. 4. PhoP/Q is required for S. Typhimurium replication in
macrophages. (a) Replication, quantified from the fold change in
fluorescence, of wild-type and phoP mutant pDiGc S. Typhimurium
in RAW264.7 macrophages. Data shown are the mean of three
independent experiments; error bars, SD. (b) Representative
histograms of the fluorescence intensity of wild-type (left) or
phoP mutant (right) pDiGc S. Typhimurium recovered from
RAW264.7 macrophages and BMM at 8 and 24 h, as indicated.
(c) Killing indices (generations h”1) of wild-type and phoP mutant
pDiGc S. Typhimurium in RAW264.7 cells and BMM between 2
and 24 h. Data shown are the mean of three independent
experiments (error bars, SD), and asterisks indicate a significant
difference between samples, where P,0.05.
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Fig. 5. Kinetics of SCV–lysosome interactions
in RAW264.7 macrophages. (a) Mean per-
centage of bacteria per cell co-localized with
TROva in RAW264.7 macrophages infected
with wild-type, phoP mutant or heat-killed S.

Typhimurium at the times indicated. Data
shown are the means of at least three
independent experiments (error bars, SD), and
asterisks indicate a significant difference from
the wild-type at the corresponding time point,
where P,0.05. (b) Mean total number of
bacteria per cell and mean number of
TROva+ bacteria per cell in RAW264.7
macrophages infected with wild-type, phoP

mutant or heat-killed S. Typhimurium. Data
shown are the mean of at least three inde-
pendent experiments (error bars, SD), and
asterisks indicate a significant difference
between wild-type and phoP mutant bacteria,
while a cross indicates a significant difference
between wild-type and heat-killed bacteria,
where P,0.05. (c) Illustration of how differ-
ences in growth rates between wild-type and
mutant bacterial strains affect the interpreta-
tion of the avoidance of phagolysosomal fusion
on a proportional basis. In each case only one
phagosome fuses with lysosomes, but the
overall growth defect of the mutant results in
a higher proportion of phagosomes that have
undergone fusion.
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adapt to this environment and efficiently express other
factors required for survival and replication within the
phagosomal environment. Resistance to AMPs and resis-
tance to acidic pH are therefore likely to be important
responses enabling PhoP/Q-dependent replication of
Salmonella in macrophages and virulence in its hosts.
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