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Autism is a neurodevelopmental disorder typically assessed and diagnosed through
observational analysis of behavior. Assessment exclusively based on behavioral
observation sessions requires a lot of time for the diagnosis. In recent years, there is a
growing need to make assessment processes more motivating and capable to provide
objective measures of the disorder. New evidence showed that motor abnormalities may
underpin the disorder and provide a computational marker to enhance assessment and
diagnostic processes. Thus, a measure of motor patterns could provide a means to
assess young children with autism and a new starting point for rehabilitation treatments.
In this study, we propose to use a software tool that through a smart tablet device
and touch screen sensor technologies could be able to capture detailed information
about children’s motor patterns. We compared movement trajectories of autistic children
and typically developing children, with the aim to identify autism motor signatures
analyzing their coordinates of movements. We used a smart tablet device to record
coordinates of dragging movements carried out by 60 children (30 autistic children
and 30 typically developing children) during a cognitive task. Machine learning analysis
of children’s motor patterns identified autism with 93% accuracy, demonstrating that
autism can be computationally identified. The analysis of the features that most affect
the prediction reveals and describes the differences between the groups, confirming
that motor abnormalities are a core feature of autism.

Keywords: autism spectrum disorder, sensory-motor impairment, motion analysis, machine learning,
classification, assessment technologies

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder notoriously characterized by
communication impairment, a lack of social interaction, and the presence of restricted, repetitive,
and stereotyped behaviors. Clinically, autism includes a very variable repertoire of symptoms and
manifestations. The different target behaviors occur for each child with different degrees of severity.
The etiology of the disorder is still unknown, and it can involve both genetic and environmental
factors. Because of these variabilities, many specialists are assuming that autism can be classified
into different types, each of which may have different etiology and response to treatment. Recent
studies have defined ASD as the most frequently observed neurodevelopmental disorder with
an incidence estimate of 60–70/10,000 (Fombonne, 2009). The scientific community is currently
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moving in the direction of deepening the etiopathogenesis of
the disorder and increasingly refine the techniques of diagnosis
and assessment (Bertoglio and Hendren, 2009; Fombonne, 2009;
Lenoir et al., 2009). Assuming that the disorder could be
influenced by both genetic and environmental factors (Hallmayer
et al., 2011; Sandin et al., 2014), intervention on this second aspect
becomes a core topic for clinicians. An effective environmental
intervention is possible through early and targeted therapeutic
treatments. For these reasons, an early diagnosis becomes
a fundamental step to set up a more effective therapeutic
intervention (Howlin et al., 2009; Bradshaw et al., 2015). The
diagnosis of autism is recommended from 3 years of age by
the Roehr (2013), and this is due to the most widely used
diagnostic tools and the only ones to be validated that are based
on observational analysis of the specific behaviors considered the
core symptoms of the disorder according to the Diagnostic and
Statistical Manual of Mental Disorders (5th ed.). These symptoms
mainly concern the communication area, social interaction, and
the presence of ritualistic, repetitive, and stereotyped behaviors.
Heretofore, the diagnostic tools relied on the interpretative skills
of clinicians during the administration of paper and pencil tests
and the support of parents and caregivers who provided salient
information through structured interviews. All these methods
take a long time without being able to deliver an objective and
shareable result. One of the main gaps in the diagnosis of autism
is related to the lack of a quantitative evaluation of the disorder;
in fact, although the variability within the disorder is known,
there is still no valid method to recognize and categorize these
differences. These limits increase the time to diagnosis due to
the uncertainty in the clinical diagnostic fit. In recent years, the
literature on ASD has been focusing on identifying the links
between the core symptoms at a high level and the corresponding
impairment at a lower level. In the perspective of embodied
cognition, these behavioral anomalies or, more generally, these
high-level cognitive dysfunctions cease to be considered the
central focus of the syndrome and begin to be analyzed as
mere manifestations of underlying physiological dysfunctions
and neural abnormalities. It would mean that ASD individuals
cope with dysfunctions present at much lower levels, not only
at the level of the central nervous system but also at the one of
the peripheral nervous system and autonomic nervous system
(Torres et al., 2013).

Kanner (1943) was the first to identify the disruption of
normal movement patterns as a cardinal feature of ASD. Leary
and Hill (1996) were among the first to identify a link between
motor disorder and autistic symptoms, focusing on the effects
of motor abnormalities on language, emotional expressions, and
social interaction. This new point of view was followed by
consideration of an “enactive mind” approach (Klin et al., 2003),
according to which “. . . social cognitive processes emerge only
from recurrent sensorimotor patterns that allow action to be
perceptually guided.”

In 2014, Friston recognized the presence of anomalies in the
predictive coding systems associated with ASD. This anomaly
originates from perceptual systems and from an impairment
of the integration of sensory information that would lead to
maladaptive motor acts. In this scenario, it is difficult to identify

and topographically define the resulting motor anomaly. In
the last years, several studies aimed to identify the specific
characteristics of motor abnormalities in autism.

Frequently, ASD is associated with greater clumsiness,
motor coordination abnormalities, postural instability, and
abnormalities in the kinematics of purposeful movements, such
as grasping, reaching, or writing (Bauman, 1992; Ghaziuddin
et al., 1994; Molloy et al., 2003; Dowd et al., 2012; Sacrey
et al., 2014; Stoit et al., 2013; Kushki et al., 2011). Many
studies identify movement abnormalities during prospective,
goal-directed motor control (Trevarthen and Delafield-Butt,
2013) and an ineffective prospective organization during a series
or chains of movements (Fabbri-Destro et al., 2009).

An interesting interpretative proposal was given by Sinha et al.
(2014), and the authors focused on the predictive abilities of
individuals with autism, to explain their abnormal behaviors,
“. . .if our predictive abilities were somehow to be compromised,
then even mundane occurrences in the environment might
appear magical. . . A magical world suggests lack of control and
impairs one’s ability to take preparatory actions. It can result in
outcomes such as those that constitute the autism phenotypes.”
In fact, predictive ability appears to be the main compromised
component in autism. An impaired prediction leads to an
impaired online object’s position estimation as well as a weak
anticipation of the others’ actions. The perceptual awareness
of others’ motor intentions conveyed in body movement or
eye gaze is notoriously disrupted in autism (Pierno et al.,
2006; Cattaneo et al., 2007). According to this approach, the
stereotypical movements themselves would be configured as the
expression of a prediction problem. Individuals with autism,
through the repetitiveness of their stereotypes, would be able to
have the sensation of controlling the surrounding environment
(Sinha et al., 2014).

Thus, if motor abnormalities in ASD are derived from a
predictive and perceptual problem, it is possible that its effects
are observable from the first months of life. Several studies
in which home videos were used to observe children before
the age of two and then diagnosed as autism have found
motor differences compared with typically developing children
(Adrien et al., 1993; Teitelbaum et al., 1998; Baranek, 1999). This
would mean that motor deficits could be present even before
communication or social interaction problems, suggesting that
motor impairment could actually be the precursors of the main
symptoms of ASD (Leary and Hill, 1996; Nayate et al., 2005).
During a critical developmental step, an ineffective perception
of the external environment and an ineffective spatial interaction
can certainly affect the interaction with the physical and social
world, leading to the typical manifestations of autism. These
findings highlight the need for further studies of motor difficulties
as distinctive for ASD.

However, the literature still reports controversial results due to
the weak methodological strategy and to the high variability of the
autistic symptomatology. Although it is common to recognize the
presence of motor impairment through interviews with parents,
it is not easy to recognize these problems in childhood. For
this reason, there is a growing need for an objective system to
recognize autistic motor signatures from their early evidence. In
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recent years, several studies focused on using machine learning
systems to recognize autism motor patterns.

In the present study, we try to determine whether a simple
dragging movement on a tablet screen could be useful to
accurately classify children with ASD. We developed a supervised
machine learning system to discriminate children with ASD from
typically developing children by means of kinematics analysis.

Taking advantage of a type of technology widely used in daily
life and integrating it with classic diagnostic and assessment
tools, we tried to enhance the assessment processes in autism.
We aimed to make these processes more detailed and capable
of providing an objective measure of the disorder. At the same
time, we made the assessment sessions more motivating for the
users and easy to administer for clinicians (Milano et al., 2017;
Simeoli et al., 2019a).

RELATED WORKS

In the last 20 years, authors have raised the problem of being able
to categorize and recognize motor abnormalities in autism, taking
advantage of new technologies and new methods of artificial
learning. In particular, they focused on the recognition and
anticipation of stereotypical motor movements (SMM) (Westeyn
et al., 2005; Albinali et al., 2009, 2012; Min and Tewfik, 2010;
Goodwin et al., 2011, 2014; Goncalves et al., 2012; Rodrigues
et al., 2013; Großekathöfer et al., 2017; Milano et al., 2019). Using
a variety of different features and semi-supervised classification
approaches (orthogonal matching pursuit, linear predictive
coding, all-pole autoregressive model, higher order statistics,
ordinary least squares, and K-VSD algorithm), recognition rates
of 86/95% for SMM and no-SMM have been documented.
Such studies have had a great impact on rehabilitation and
intervention in autism.

An important goal to reach is still related to the diagnostic
and assessment processes. In fact, many attempts have been
made to make predictions by recognizing and categorizing
the typical motor patterns of ASD. The recent identification
of motor disorders in young children who develop ASD
represents a new goal for the development of early assessment
tools (Trevarthen and Delafield-Butt, 2013; Licari et al.,
2020). Crippa et al. (2015) used a supervised machine
learning method to determine whether a simple upper-limb
movement could be useful to recognize autism. They compared
typically developing children and autistic children by means of
kinematic analysis, reaching a maximum classification accuracy
of 96.7%. Torres and Jose (2012) proposed to use a sophisticated
measurement tool and statistical metric to classify and diagnose
individuals with ASD (Torres and Jose, 2012).

Some other researchers have tried to delve into the topic by
analyzing the coordinates of movement during the performance
of simple tasks that required drag movements on the screen of a
tablet. Anzulewicz et al. (2016) used an iPad gameplay and 262
features of movements, derived from touch screen and inertial
sensors, and they showed that children with autism could be
identified with up to 93% accuracy. Differences between children
with ASD and typically developing children have emerged in
terms of linearity, speed, and pattern of interaction (Simeoli

et al., 2019b, 2020). Also, a greater engagement in carrying out
cognitive tasks using digital tools has emerged, especially for
individuals with severe autism (Simeoli et al., 2019a). Thus, it
would appear that measures of motor patterns could provide a
means to assess young children for autism.

Since several interactions of motion variables could, actually,
affect the presumed typical autistic motor pattern, we cannot
assume that there must necessarily be movement variables typical
of autism and different in typically developing individuals. Thus,
in this context, using classical statistical analysis can often be
a stretch. For this reason, the aforementioned studies and the
present one choose a predictive method rather than exploratory
to address this issue (Yarkoni and Westfall, 2017).

In this study, we developed a software tool that, through
a smart tablet device with touch screen sensor technologies,
records kinematics movement while students are engaged to
perform cognitive tasks. We extracted 12 features of movement,
analyzed by a supervised machine learning method to obtain
an automatic classification system, able to differentiate typical
patterns of movements and autistic ones. This study aims (i)
to describe motor information data that could differentiate
children with autism from typically developing children and (ii)
to develop a computational model that could recognize these
motor patterns within ASD and typically developing children, in
order to enhance autism assessment processes.

MATERIALS AND METHODS

Participants
The study was attended by 60 children aged between 5 and
10 years, divided into two groups: 30 children with an average
age of 7 years, standard deviation 1.4, clinically diagnosed with
ASD according to the Diagnostic and Statistical Manual of
Mental Disorders (5th ed.); and 30 children, aged 6 years and
8 months, standard deviation 1, with typical development (TD).
The original version of the Leiter-3 International Performance
Scale was used to assess the IQ for both groups. The IQ score
for the TD group ranged between 74 and 110, and the ASD group
covered a range from 59 to 109. Six children in the ASD group
had a mild mental retardation with an IQ score ranging between
59 and 70 (World Health Organisation [WHO], 2016). No
moderate, severe, or profound mental retardation was detected.

All participants had normal vision and no sensory or motor
deficit. Any child whose clinician or teacher was uncertain about
the child’s diagnosis or health was excluded.

The ASD participants were recruited from the Neapolisanit
S.R.L. Rehabilitation Center. Inclusion criteria were as follows:
a diagnosis of autism according to both DSM-V clinical criteria
and to the Autism Diagnostic Observation Schedule (ADOS-
2) (Lord et al., 2012), age range between 5 and 10 years, and
no existing comorbidities. The TD participants were recruited
from a primary school. Exclusion criteria were suspected signs
of autistic spectrum disorders, developmental abnormalities, and
current or past history of psychiatric or neurological disorders.

All the participants belonging to the ASD group were
diagnosed with ASD by qualified doctors and professionals in
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the sector. They have no affiliation with our laboratory or our
research. Children with ASD follow psychomotor and speech
therapy treatment at the Neapolisanit S.R.L. Center. No specific
comorbidity was reported.

Prior to the study, children’s parents gave written informed
consent for their children’s participation in the study. The
experimental protocols employed were approved by the
Federico II University of Naples Ethical Committee of
Psychology Research.

Materials
The movement detection software was developed in Unity and
C#. The study was performed on Android tablet 6.0, size
(H × W × D) 241.9 × 149.5 × 8.5 mm, screen size 9.6 inches
with a resolution of 1,280 × 800 (WXGA) and a refresh rate of
60 Hz. The tasks were presented to the children within a bespoke
app organized in a sequence of scenes which play tasks of the
cognitive battery of the Leiter-3 test (Roid et al., 2013; Figure 1),
a totally nonverbal test of intelligence and cognitive abilities,
widely used in ASD individuals. The software plays exactly the
same tasks of the Leiter-3, presented in the same order, and the
administration of the digital version followed the same rules of
the original test. Participants were required to perform the tasks
according to their cognitive abilities. The examiner switched from
a subtest to another, according to the instruction procedure of the
original version of the test, after the error threshold was reached.

Scenes are composed of a maximum of five moving cards and
eight fixed images (the placeholders). Moving cards are placed
at the bottom of the screen and they can be dragged across the
screen; placeholders are placed at the top. The placeholders are
programmed to catch the moving cards dragged nearby. For each
task, placeholders and moving cards range from a minimum of
two to a maximum of eight and can include distractors.

The battery is composed of five different subtests related to
five different cognitive domains. Each subtest is composed of 10
or more items. Tasks are divided in five cognitive categories as
follows: (a) figure-ground (FG) tasks require to identify parts
of figures within a complex stimulus. The user must identify
the correct areas, within a complex picture, where to place
the moving cards representing parts of the picture above. The
placeholders are positioned within the target image and are
invisible to the user who must match identical figures within the
complex background; (b) figure completion (FC) demands the
ability to recognize an entire object from all its roles randomly
arranged on the scene; (c) classification analogies (CA) requires
classification of objects or geometric figures in which participants
have to complete a sequence of geometric shapes and matrices
with increasing levels of complexity; (d) sequential order (SO)
requires to place figures according to a logical, SO; and (e) visual
patterns (VP) requires discrimination and matching of pictures.
All the subtests, except FG, are arranged in the same way. The
users have to drag the moving cards at the bottom into delimited
placeholders positioned at the top of the screen.

Tasks are presented following an increasing level of complexity
and are characterized by a progressive increase of distracting
stimuli and details of the images. The ascending level of

complexity requires increasing levels of attention and decision-
making.

Since all participants correctly performed at least the first five
items of each subtest, only the trajectories derived from these
items were analyzed.

Experimental Protocol
During the study, participants sat in front of a table 65–70 cm
high according to the age of the child. The experimenter sat at
the opposite side of the table. Children performed the task on the
Android tablet placed on the table in front of the child within
20 cm of the edge of the table. At the beginning of each subtest,
the examiner provided the instructions to carry out each task,
according to the instruction procedures of the original version
of the test. The experimental task consisted of dragging images
on the tablet screen from a point to another, according to the
cognitive demand of each specific task (Figure 2). After the
instructions, the examiner left the child free to perform the task
without any further aid. The instruction phase included a series
of guides that encouraged attention to the main cognitive target,
using pointing and specific gestures, without any vocal aid. If
needed, the examiner can demonstrate how to carry out the task
by moving the cards himself. This is allowed only for the first item
of the first subtest (FG1). Coordinates extracted from this item
have not been considered for the analysis.

Switching between tasks was automatic when the child
completed the task. The task was considered complete when each
of the moving images was placed into one of the placeholders at
the top, regardless of the performance result. In case the child
did not place all the moving cards above the placeholders, the
examiner switched to the next by double clicking an invisible
button placed at the upper corners of the screen.

Data Acquisition and Analysis
Features Extraction
The software recorded information about the position over time
of each stimulus displayed on the screen during each task and, at
the same time, information about the participant’s finger position.
Touch data were collected runtime at a rate of 40 Hz. That is,
the software recorded 40 pair coordinates (x, y) of movement per
second. Information about which task was performed was always
associated with the touch data. The recorded space-time touch
data were analyzed as trajectories of movement. We considered
as “finite” trajectories all the coordinates resulting from the
dragging movement from the first tap on the screen until the
finger was lifted from the screen at the end of the dragging
movement. For each “finite” trajectory, we obtained the value of
the features in Table 1. For the analysis, we used the average value
merged per task.

Seventeen variables were extracted from the analysis of these
trajectories: 12 features refer to characteristics of the trajectories
(Table 1), and five additional variables are related to the task
during which those features have been recorded, in order to
provide implicit information about the difficulty level of the task
performed. The features allowed us to obtain a comprehensive
computational description of a child’s motion patterns during the
interaction with the device.
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FIGURE 1 | Panel (A) depicts the Leiter-3 test in its original version; on the right, panel (B) is an example of a test scene in its digital version.

FIGURE 2 | An example of dragging movement during the performance of a CA task. The users are required to drag the moving cards from the bottom to the
corresponding placeholders at the top of the screen, according to the task demand.

TABLE 1 | Features obtained from the RStudio traj package analysis.

Feature name Description

MeanSpeed Average speed values per task

MaxSpeed Average value of the maximum speed peaks reached during the performance of a task

MinSpeed Average value of the minimum speed peaks reached during the performance of a task

sdSpeed Standard deviation of the speed values collected during the task

MeanAcceleration Average acceleration values per task

MaxAcceleration Average value of the maximum acceleration peaks reached during the performance of a task

MinAcceleration Average value of the minimum acceleration peaks reached during the performance of a task

sdAcceleration Standard deviation of the mean acceleration values collected during the task

STH The Straightness index as ratio between the distance of the starting and ending points of a trajectory and its length

DC Directional change is the change in direction over time

sdDC Standard deviation of directional change value obtained during the task

MeanLength The average amount of finite trajectories conducted during each task

STH is a number ranging from 0 to 1, where 1 indicates a straight line. STH is an index of linearity. DC is defined for each pair of steps so that a trajectory may
be characterized by the mean (DC) and standard deviation (sdDC) of all directional changes. DC may be used as an index of nonlinearity, and sdDC as a measure
of irregularity.

Features were computed from the consecutive sets of raw
coordinates using RStudio software and the traj package
(Leffondree et al., 2004; Sylvestre et al., 2006). Motion data for
each task were aggregated and divided into finite trajectories
based on the start and stop of each particular movement. The
analysis was conducted, and features were extracted for each of
these trajectories. All these data were then aggregated in order to
find the average values for each task. The final dataset consisted
of the mean value for all the features (Table 1) divided per task
(five difficulty levels).

Two types of information were obtained: (i) kinematics
information, e.g., speed or acceleration, and (ii) touch-based
functions, e.g., the number of trajectories drawn during the task
and the average length.

These compiled datasets were entirely used as input for an
artificial neural network (ANN) (see below). The dataset included
information about the tasks, as per Leiter-3 structure, in order
to classify the motion pattern according to the cognitive demand
required during the movement. Five different cognitive domains
within the Leiter-3 scale were identified and analyzed.

Classification Methods
The ANN was used to recognize the autism motor signatures,
since the capacity of ANNs to process complex and nonlinear
relationships between variables is well known (Hornik et al., 1989;
Chen et al., 1990). Seventeen features were obtained, as explained
above. The set of data was composed of the average values of each
feature, divided into tasks. Data were labeled accordingly to the
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FIGURE 3 | Accuracy during the training process. Data refer to the average accuracy of all the models of the 10-fold CV with five repetitions. Mean and 90%
bootstrapped confidence intervals of the mean (shadow area) across all the replications.

FIGURE 4 | Receiver operating characteristics curves (ROC) of the ANN
model. The curve is derived from the sensitivity and specificity index, the rate
of correctly classified samples in the positive and negative classes.

child’s diagnostic group (ASD or TD). Data were standardized,
before being assigned to the ANN.

The ANN used for the ASD/TD classification was a
feedforward multilayer perceptron, composed of an input layer
of 17 neurons, an output layer of two neurons, and a hidden
layer whose number of neurons has been selected through grid
search optimization with cross-validation, in a descending search
starting from 10 hidden neurons, as we tried to keep to the
model as simple as possible in order to reduce overfitting.
Indeed, it is a well-known result of ANN, the fact that simple
models, i.e., with few hidden units, are less prone to overfitting
(Musavi et al., 1994).

The tangent hyperbolic (Tanh) activation function was used
for the five neurons in the hidden layer. Tanh is widely used
for the hidden layers of an ANN. Its values are between −1

and 1, and the average turns out to be 0 or very close to
it; in this way, it helps to center the data by bringing the
average close to 0. For the output layer, a normalized exponential
function (Softmax) was used. The Softmax function will output
a probability of class membership for each class label and
attempt to best approximate the expected target for a given
input. Adaptive moment estimation (Adam) learning algorithm
was used to update the iterative network weights based on the
training data (Kingma and Ba, 2015), and for the training, we
used a sparse categorical cross-entropy loss function to calculate
the model error.

To evaluate our approach and select the best architecture, we
use a 10-fold cross-validation with five repetitions: Using the 10-
fold cross validation scheme, the dataset was randomly divided
into 10 equal subsets. At each run, nine subsets were used to
construct the model, while the remaining subset was used for
prediction. The average accuracy for the 10-fold was recorded as
the final measurement.

To eliminate the statistical variations due to the random
weight initialization, we repeated the resampling procedure five
times and recorded the average classification errors.

The dataset was composed of a total of 1,500 samples, coming
from 60 subjects doing 25 tasks divided into five subtasks, and the
dataset is randomized between subjects and tasks. Each sample
was composed of 12 motor-based features and five task features,
by which the current task was equal to one and the others equal to
zero. The target was a simple two class one-hot encoded dataset
where ASD subjects were assigned to (1,0) and TD to (0,1).

Data regarding the motor features were standardized. The
general method of calculation is to determine the mean
distribution and standard deviations for each feature. Next,
we subtract the mean from each feature. Then, we divide the
obtained values of each feature by its standard deviation.

Then, the 10-fold cross-validations with five repetitions are
applied to a 500-epoch lasting training process, and for each fold,
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we take the 10% of the samples for testing and the remaining 90%
for training, regardless of the number of ASD or TD subjects in
the test or training set.

The purpose was to generate a model able to learn from the
selected characteristics how to discriminate individuals belonging
to two different groups and correctly classify, through these
characteristics, new unlabeled individuals.

Moreover, in order to understand how the kinematic and
touch features provided as input for the ANN contributed to the

classification, a form of sensitivity analysis is applied to the model,
where the accuracy, sensitivity, and specificity of the model are
calculated over the whole number of features ranging from 1
to 12 (subtest features were always provided to the ANN) in an
iterative way. In particular, we have iteratively applied the method
called Improved stepwise selection 1, as presented in Olden et al.
(2004). It assesses the change in the accuracy, sensitivity, and
specificity of a trained ANN by sequentially removing input
neurons from the neural network. The resulting changes for

FIGURE 5 | Classification accuracy, specificity, and sensitivity rates in relation to the number of features analyzed by the ANN. Features have been withdrawn as
follows: (1) sdAcc, (2) STH, (3) sdSpeed, (4) sdDC, (5) MaxSpeed, (6) DC, (7) MeanRow, (8) MinSpeed, (9) MeanSpeed, (10) MinAcc, (11) MaxAcc, and (12) MeanAcc.

FIGURE 6 | Boxplots of the 12 kinematics features extracted from coordinates of movement and compared between the groups. Features definition in Table 1.
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each variable removal illustrate the relative importance of the
predictor variables (see Gevrey et al., 2003). In our modification,
starting from the entire set of 12 input variables, we selectively
remove one single input neuron and record the change in
accuracy, sensitivity, and specificity after the removal of every
input variable, one at a time. That is, we test all possible 12
variables. Once the variable with the lesser impact on the overall
performance of the ANN is identified, it is permanently removed.
The same process is applied to all remaining input variables, until
the process exhausts the number of input variables of the model.
In this way, it is possible to measure the relative importance of
independent variables for the final categorization performance of
the one neural network found as the best predicting model.

RESULTS

The grid search with 10-fold cross-validation, applied to set the
most effective number of hidden neurons for the ANN, indicated
comparable accuracies for models from 10 to 5 hidden neurons.
Learning rate was set to 0.01 and synaptic weights were initialized
following the so-called Xavier initialization (Glorot and Bengio,
2010). The accuracy started to degrade with fewer than five
hidden neurons. To keep the model simple, we have chosen
the ANN with the smaller layer of hidden units that showed
the best accuracy as the final model, that is, the ANN with
five hidden units.

The chosen ANN was able to successfully classify participants
by diagnosis. The 10-fold cross-validation showed an accuracy of
88 ± 3%. Data showing the accuracy versus the epoch for the 10
cross-validation models are reported in Figure 3.

Having checked that no overfitting is present in every fold, for
the successive analysis, we used the best trained model across the
10-fold, as reported in Riccio et al. (2020). Such ANN correctly
differentiated individuals within ASD and TD groups with an
accuracy of 0.93 (sensitivity 0.87, specificity 0.98). The ROC curve
is shown in Figure 4.

In order to understand how the input variables contributed
to the classification, the accuracy, sensitivity, and specificity rates
were calculated over the 12 input variables representing the
kinematic and touch measures, as specified above. The subtest
features were always provided to the ANN. Figure 5 shows
the dependence of the metrics on the number of considered
features. From the graph and the accompanying table, we can
see that accuracy, specificity, and sensitivity rates reached their
maximum when considering all the extracted features. Moreover,
according to the iterative assessment described above, the metrics
degrade slowly until the seventh variable is removed (78%
accuracy). After that, the accuracy falls sharply until 52% of
accuracy is reached.

According to their progressively greater impact on the overall
classification performance, input variables have been withdrawn
as follows: (1) sdAcc, (2) STH, (3) sdSpeed, (4) sdDC, (5)
MaxSpeed, (6) DC, (7) MeanRow, (8) MinSpeed, (9) MeanSpeed,
(10) MinAcc, (11) MaxAcc, and (12) MeanAcc. It means, for
example, that variables number 1, 2, or 3 have less impact on the
classification than variables number 10, 11, or 12, indicating that

variables related to speed and acceleration of the finger seems
more important than other measures, such as the straightness
(STH) and the coherence (DC) of the entire trajectory.

DISCUSSION

Autism is primarily assessed by relying on qualitative judgments
by expert clinicians and through semi-structured interviews
conducted by parents and caregivers. Given this gold standard, in
recent years, the use of a pattern recognition method has obtained
great attention as a suitable tool to define objective, quantitative
measures of the disorder.

The purpose of the present work was to use kinematic features
of simple dragging movements as predictors to discriminate
children with ASD from typically developing children. Our
results suggested that motor patterns related to autism can be
identified by machine learning method. Our analysis showed that
17 features were sufficient to classify autism with an accuracy rate
of 93%, sensitivity of 87%, and specificity of 98%.

The study shows that autism can be identified by the
interaction of a few specific movement features and their
characteristics. We cannot assume that these features are
statistically different between groups, but we can suppose that the
dynamic interaction of these features can be categorizable.

In order to understand how these features appear between
groups, we observed them in detail (Figure 6). Results
revealed that autism motor patterns are characterized by
low linearity of movements. As shown in Figure 6, the
ASD group reached a low level of STH and high level of
DC. This means that their trajectories were not straight and
characterized by many changes of direction. Furthermore,
the average length of their trajectories (MeanLength)
was lower than that of the TD group, indicating more
fragmented movements. Velocity index revealed a wide
range of values associated with speed and acceleration
of ASD children’s movements. In fact, they showed big
values of MeanSpeed and MaximumSpeed, but low values
of MinimumSpeed. Likewise, mean gesture acceleration
also covered a wide range for the ASD group, with great
MaximumAcceleration value and low MinimumAcceleration.
These results explain the higher standard deviation values
(sdSpeed; sdAcceleration) shown for both speed and acceleration
in the ASD group (Figure 6).

Our results are consistent with the findings of Anzulewicz
et al. (2016), since they found that ASD children displayed
greater force of impact and different patterns of force than
their typically developing peers. The authors explain these
characteristics as likely due to maintaining great velocity at
contact with consequent increased impact force. These findings
are in line with the notion that prospective guidance of goal-
directed movement is disrupted in ASD, and this disruption
could likely determine over- and undercompensations during
the movement, e.g., during the movement to reach the
tablet as shown by Anzulewicz et al. (2016) and during the
dragging movement across the screen as shown in our study.
Other features contributed to describe this phenomenon as,
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e.g., for the results related to DC, STH, and MeanLength
of trajectories. In fact, our results indicated that autism
finite trajectories were basically very short, as shown in
Figure 6 for the MeanLength feature. In addition, our autistic
trajectories were characterized by a low straightness and
linearity and a great irregularity, as indicated by the values
of STH, DC, and its SD, respectively (Figure 6). All these
characteristics could be linked to the compensations mechanism
described above.

Our results could be considered in line with the previous
findings about optical motion tracking experiments of goal-
directed tasks. Considering the motion structure described
above, it could suggest that individuals with autism make
greater moment-by-moment adjustments of their progressive
movements compared with the neurotypical group (Cook
et al., 2013; Torres et al., 2013; Whyatt and Craig, 2013).
Whyatt and Craig (2013) demonstrated that ASD children,
during their movements, made multiple corrective movements,
reaching greater velocity at the end of their motion. Our study
confirms these findings reporting a general greater velocity and
acceleration for children with autism, but also describing the
movement as more fragmented and less straight. The higher rate
of change of direction could be a representative index of the
aforementioned overcorrection of movements.

These results support the idea of the presence of a fundamental
deficit in the prospective control of movement (Klin et al., 2003;
Fabbri-Destro et al., 2009; Trevarthen and Delafield-Butt, 2013;
Lawson et al., 2014). This deficit would manifest itself with
the interruption of the anticipatory, or feedforward mechanism
(Mari et al., 2003; Papadopoulos et al., 2012) or feedback re-
afferences (Torres et al., 2013), during the goal-directed actions.
Deficits in perception of others’ intentions and on fluid selective
attention on the adequate stimuli to program a consistent
movement with the external environment are notoriously
damaged in autism (Pierno et al., 2006; Cattaneo et al., 2007).
All these findings support the idea of a deficit in sensorimotor
timing integration that affects the perception–action process
and the ability to understand the social environment. If the
proprioceptive feedback that allows online movement guidance is
interrupted, movement control errors can be generated, resulting
in abnormal motor signature that we are proposing to use as
markers for children with ASD.

About index and markers for identifying autism, many studies
have focused on discovery biomarkers of the disorder, but the
heterogeneity and the complex etiology of autism have always
made this process very tough. For this reason, studies of recent
years and our study are focusing on identifying computational
biobehavioral markers of the disorder. However, the analysis of
these markers requires further study to avoid potential attribution
errors. In fact, the motor signature identified may overlap
with other disorders, such as attention deficit disorder, motor
coordination disturbance, or general intellectual disabilities.
Further studies are needed to elucidate this aspect.

The present study is a theoretical demonstration of the
development of accessible and attractive assessment tools that can
integrate new important information to the ordinary assessment
process for autism.

Despite our promising results, some methodological
limitations are evident. One of the limitations is certainly related
to the small sample size, and a replication on a larger sample
is needed to validate this method on a new not trained dataset.
Further studies are necessary to test whether the algorithm used
could remain predictive also for a greater sample or if it requires
to be retrained.

Furthermore, we were not able to exclude intelligence as
confounders. Even if we tested children’s IQ through the test tasks
themselves, we did not use IQ as an independent feature for the
analysis. However, most of the ASD children who participated
were classified as high functioning and only six of the participants
with ASD had a mild mental retardation with an IQ between
59 and 70. In order to reduce the cognitive interference, we
selected for the analysis the features extracted from tasks correctly
performed by all participants.

Our study involved children with different types of autism
(from high to low functioning) since the hypothesis was that
autism, regardless of type, could affect the classification.

Previous studies assumed the presence of a sensory integration
dysfunction (SID) to explain motor abnormalities in autism
(Klin et al., 2003; Mari et al., 2003; Fabbri-Destro et al., 2009;
Papadopoulos et al., 2012; Torres et al., 2013; Trevarthen and
Delafield-Butt, 2013; Lawson et al., 2014). SID is not currently
recognized as a distinct medical diagnosis, but it is usually
found in development conditions, particularly in autism. Other
conditions could be affected by SID as for example ADHD. Thus,
in addition to an IQ control, future extensions of this work should
include other neurodevelopmental disabilities in order to verify
the specificity of these motor signatures for ASD.

CONCLUSION

In conclusion, this study represents a proof of concept that
kinematic analysis of a simple dragging movement can be useful
to discriminate individuals with autism and differentiate them
from their typically developing peers. The predictive power of
our algorithm might support clinical assessment processes and
encourage a computer-aided diagnosis perspective.

Our future aim is to recognize these autistic signatures in
younger children and, thus, facilitate the diagnostic processes.

However, we can affirm that the automatic learning of
autistic motor patterns, through kinematic analysis, during
tablet cognitive assessment, can be considered a promising new
method for autism detection and that it could enable the use
of biobehavioral markers for the assessment of the disorder.
Through this study, we also suggest how technologies, integrated
with classic diagnostic and clinical tools, can be wisely used to
support the clinic and intervention in the field of ASD, facilitating
and refining the research, diagnosis, and assessment processes.
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