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T cell immunoglobulin and mucin domain 3 (TIM-3) expression on malignant cells has
been reported in some leukemias. In myelodysplastic syndrome (MDS), increased TIM-3
expression on TH1 cells, regulatory T cells, CD8+ T cells, and hematopoietic stem cells
(HSCs), which play a role in the proliferation of blasts and induction of immune escape, has
been reported. In AML, several studies have reported overexpression of TIM-3 on
leukemia stem cells (LSCs) but not on healthy HSCs. Overexpression of TIM-3 on
exhausted CD4+ and CD8+ T cells and leukemic cells in CML, ALL, and CLL patients
could be a prognostic risk factor for poor therapeutic response and relapse in patients.
Currently, several TIM-3 inhibitors are used in clinical trials for leukemias, and some have
shown encouraging response rates for MDS and AML treatment. For AML
immunotherapy, blockade TIM-3 may have dual effects: directly inhibiting AML cell
proliferation and restoring T cell function. However, blockade of PD-1 and TIM-3 fails to
restore the function of exhausted CD8+ T cells in the early clinical stages of CLL, indicating
that the effects of TIM-3 blockade may be different in AML and other leukemias. Thus,
further studies are required to evaluate the efficacy of TIM-3 inhibitors in different types and
stages of leukemia. In this review, we summarize the biological functions of TIM-3 and its
contribution as it relates to leukemias. We also discuss the effects of TIM-3 blockade in
hematological malignancies and clinical trials of TIM-3 for leukemia therapy.

Keywords: acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphoblastic leukemia, chronic
myeloid leukemia, myelodysplastic syndrome, TIM-3
1. AN INTRODUCTION OF T CELL IMMUNOGLOBULIN
AND MUCIN DOMAIN-3

T cell immunoglobulin and mucin domain 3 (TIM-3) is a cell surface molecule which was first
identified approximately two decades ago on terminally differentiated CD4+ type 1 helper T cells
(TH1 cells) and CD8+ cytotoxic T cells (CTLs) (1). Later, its expression was observed on other T cell
subtypes, excluding TH2 cells, as well as some other immune cells including dendritic cells (DCs),
natural killer (NK) cells, monocytes, macrophages, and mast cells (2–4). Also in some cancers, the
malignant cells can express TIM-3 (5–8).
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The gene that encodes TIM-3 is havcr2 (hepatitis A virus
cellular receptor 2), which is located on chromosome 5q33.2.
Due to the genes encoded in this region, including interleukin
(IL)-4 and IL-5, this locus is known to be linked to allergies and
autoimmune disease (9, 10).

TIM-3 is a single transmembrane (TM) molecule whose
extracellular tail contains a N-terminal IgV domain. This
domain is subsequently followed by a mucin domain with
glycosylation sites, which explains where its name comes from.
After the mucin domain, there is a link peptide with N-linked
glycosylation sites and then the TM domain followed by the
cytoplasmic tail in the C-terminus (2, 11).

TIM-3 does not contain classic inhibitory tyrosine-based motifs
such as ITIM (immunoreceptor tyrosine-based inhibition) or ITSM
(immunoreceptor tyrosine-based switch). However, there is a
conserved region with five tyrosine residues, which two of them,
Y265 and Y272 in humans (Y256 and Y263 inmice), are assumed to
be phosphorylated after the interaction of TIM-3with its ligands. Itk,
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a Tec family tyrosine kinase, and Fyn and Lck, two Src family kinase
members, are known to be involved in the TIM-3 signaling pathway.
Astudyof JurkatTcells revealed thatTim-3overexpression following
Tcell receptorandCD-28 inductionpromotesLckorFyn-dependent
phosphorylationofY256 andY263. This event leads to accumulation
of proteins with SH2 domains, such as the p85 subunit of
phosphoinositide 3-kinase (PI3K) and phospholipase C-g1 (PLC-
g1), to the cytoplasmic tail of TIM-3. Furthermore, TIM-3 activation
enhances NFAT and NF-kB activation thorough interaction with
ZAP-70 and SLP-76, components of the TCR signaling pathway. In
contrast, another study of Jurkat cells demonstrated that TCR
induction in TIM-3-expressing cells suppresses AP-1 and NFAT
activation, resulting in impaired IL-2 production (12–14) (Figure 1).
This discrepancy can likely be explained by differences in acute vs.
chronic TCR induction and whether TIM-3 expression is secondary
to TCR induction or vice versa. In addition, HLA-B associated
transcript 3 (Bat3) can directly bind to the cytoplasmic tail of TIM-
3 and prevent signal induction in the absence of TIM-3 ligands (15).
FIGURE 1 | TIM-3 signaling in T cells in the presence (A) and absence (B) of galectin-9. In the absence of Gal-9, Bat3 binds to tyrosine residues in the cytoplasmic
tail of TIM-3 (Y256 and Y263 in mice and Y26 and Y272 humans). This process leads to accumulation of the active form of Lck, which promotes phosphorylation of
Zap70 and T cell signaling when the MHC peptide-TCR complex is formed. In the presence of Gal-9, as the ligand for TIM-3, phosphorylation of the tyrosine
residues results in Bat3 release from the cytoplasmic tail. In this paradigm, Bat3 cannot form a complex with Lck; thus, TIM-3 induction inhibits T cell signaling. TIM-
3, T cell immunoglobulin and mucin domain-3; Gal-9, galectin-9; Bat3, HLA-B associated transcript 3; TCR, T cell receptor; ITAM, immunoreceptor tyrosine-based
activation motif; APC, antigen presenting cell; MHC, major histocompatibility complex; Ag, antigen. The figure was produced with the assistance of Servier Medical
Art (https://smart.servier.com).
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There are four known ligands for TIM-3. The first and most
famous ligand is galectin-9 (Gal-9), which has been reported to
induce apoptosis in TH1 cells. Gal-9 can also bind TIM-3 on
other cells under other circumstances and result in activation of
different pathways (16, 17). High-mobility group protein B1
(HMGB1) is a type of damage associated molecular pattern
(DAMP), known as “alarmin”, which is released from damaged
cells and induces the activation of phagocytes. HMGB-1 can bind
TIM-3 in different contexts and does not always lead to one
outcome (18). Another TIM-3 ligand is a well-known “eat-me”
signal induction molecule phosphatidylserine (PtdSer).
Appearance of PtdSer on the outer surface of cell membranes
leads to phagocytosis. The same process is promoted when
PtdSer interacts with TIM-3 on myeloid cells, but it does not
always induce a same inflammatory response (19). The last
ligand is carcinoembryonic antigen cell adhesion molecule 1
(CEACAM-1), which can have both cis and trans interactions
with TIM-3 (20).
2. ALTERATIONS IN TIM-3 EXPRESSION
IN PATIENTS WITH LEUKEMIA

2.1. TIM-3 in Myeloid Leukemias
2.1.1. Myelodysplastic Syndrome (MDS)
Myelodysplastic syndrome (MDS) is a heterogenous hematologic
disorder, and its clinical manifestations include a wide spectrum
ranging from mild and single lineage cytopenia to high-risk
MDS, which rapidly progresses to acute myeloid leukemia
(AML) (21–24).

Several studies of T cell populations inMDS patients have been
performed so far. Ozkazanc et al. observed a subpopulation of CD4
+ T cells in the bone marrow aspirate of MDS patients expressing
the exhaustion markers programmed cell death 1 (PD-1), TIM-3,
and lymphocyte activation gene 3 (LAG3) (25). Fu et al. classified
CD4+ T cells in MDS patients and reported increased TIM-3
expression on type 1 helper T cells and regulatory T cells (26). In
another study,Taoet al. reported that inaddition toadecrease in the
populationofCD8+Tcells inMDSpatients, these cells express high
levels of TIM-3, and as expected, TIM-3+ CD8+ T cells express
higher perforin and granzyme B and lower CD95 (also known as
Fas) compared to TIM-3- CD8+ T cells in MDS patients (27). In a
recent study, Tao et al. reported increased expression of Gal-9 on
myeloid derived suppressor cells (MDSCs) in MDS patients and
theorized that the interaction between theGal-9 onMDSCcells and
TIM-3 induces T cell exhaustion inMDS patients (28). All of these
studies have suggested the use of immune checkpoint inhibition to
restore immune surveillance in MDS patients.

Although different TIM-3 localization patterns (intracellular
and extracellular expression) have been reported in different
MDS cell lines, they all agree on increased overall expression of
TIM-3 on hematopoietic stem cells (HSCs; CD34+ CD38- Lin-)
in MDS patients compared to control groups (29, 30). Tao et al.
reported that TIM-3 expression on HSCs in MDS patients is
increased compared to healthy individuals and is close to the
expression level in AML patients. Their study on TIM-3+ HSCs
Frontiers in Oncology | www.frontiersin.org 3
revealed decreased expression of differentiation related
molecules, increased proliferation, and decreased apoptosis,
compared to TIM-3- HSCs. This group also reported a
correlation between a higher percentage of TIM-3 expression
on HSCs in MDS patients and an increased WPSS score, greater
than one cytopenia lineage, higher blast counts in bone marrow
smears, and worse karyotype (21). Because these characteristics
are known as indicators of disease progression, Tao et al. suggest
that a higher percentage of TIM-3 reflects higher risk for MDS
transformation to leukemia. Tcvetkov et al. have also reported
increased levels of TIM-3 and its ligand, Gal-9 on bone marrow
cells from MDS patients (31). In this regard, Asayama et al.
claimed that the bone marrow microenvironment and Gal-9/
TIM-3 axis in HSCs not only leads to MDS formation but is also
related to disease progression to leukemia in MDS patients. This
group also reported elevated levels of Gal-9 in MDS patients,
highlighting the TIM-3/Gal-9 axis role in the proliferation of
blasts and induction of immune escape, supporting disease
progression (29) (Table 1). It is not clear that TIM-3
expression on HSCs is weather an early trigger for MDS
formation and HSCs’ possible transformation to LSCs, or it is
a secondary event to MDS formation and acts as an accelerator
for disease progression. Hence, more studies are needed.
2.1.2. Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) is a progressive myeloproliferative
malignancywith low overall survival (32). AMLhas a heterogenous
genetical nature; while about 45% of patients may display normal
karyotype, others may show molecular mutations including
internal tandem duplications in the FLT3 tyrosine kinase (FLT3-
ITD). In some cases, cytogenetic abnormalities have also been
reported. All of these abnormal alterations are defined with
different prognostic values (33–37). Studies on the expression of
TIM-3 in AML can be divided into two types: expression of TIM-3
on immunecells, particularlyT cells andNKcells, and expressionof
TIM-3 on LSCs. Since genetic abnormalities in AML can be
considered as prognostic risk factors, there may be correlations
between them and the overexpression of TIM-3 in leukemia cells
and/or immune cells in AML; hence more studies are required in
this aspect.

When it comes to leukemia, there is a distinct group of stemcells
(SCs) called leukemic stem cells (LSCs), which have different
molecular patterns, sometimes including cytogenetic
abnormalities and mutations, higher proliferation rates, and
resistance to apoptosis, and they reproduce to form the malignant
cell population (32, 38). One of the distinguishing characteristics of
LSCs in AML is their upregulated TIM-3 expression. Many studies
have reported overexpression of TIM-3 on LSCs but not on healthy
hematopoietic stem cells (HSCs) (CD34+ CD38– Lin-) except in
acute promyelocytic leukemia (M3) (8, 30, 39–41). Therefore,
targeting TIM-3 with an antibody or microRNAs leads to LSC
eradication with no effects on normalHSCs (8, 42–44). In addition,
Jan et al. suggested that TIM-3 could be used to separate leukemic
and healthy SCs (39).

Later, several studies have focused on the role of TIM-3 in
leukemic cells in AML. It has been revealed that there is an
September 2021 | Volume 11 | Article 753677
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autocrine stimulatory loop in AML cells that works through the
interaction between TIM-3 with Gal-9, which leads to
phosphorylation of ERK (extracellular signal-regulated kinase)
and protein kinase B (PKB, also known as AKT). This process
results in induction of the b-catenin pathway and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB)
activation, which is important for cell survival and disease
progression, which explains why targeting TIM-3 on these cells
promotes apoptosis (45, 46). Moreover, ligation of TIM-3 and
Gal-9 in AML cell lines leads to phosphatidylinositol-3 kinase
(PI-3K)/mammalian target of rapamycin (mTOR) pathway and
ERK pathway activation, resulting in hypoxia-inducible factor 1-
alpha (HIF-1a), vascular endothelial growth factor (VEGF), and
TNF-a production (47).

TIM-3 is also involved in immune evasion in AML. Folgiero
et al. ascertained that indoleamine 2,3-dioxygenase1 (IDO1),
which is known as an anti-inflammatory enzyme (48), can be
produced by AML blasts in response to TIM-3/Gal-9-dependent
interferon gamma (IFN-g) production from natural killer (NK)
cells (49). Furthermore, Goncalves Silva et al. reported that
increased amounts of TIM-3 in plasma, probably due to its
secretion from AML blasts, and the soluble form of TIM-3
(sTIM-3), which is formed by its shedding from the surface of
AML blasts, can inhibit the release of interleukin-2 (IL-2), a vital
cytokine involved in the activation and function of T cells and
NK cells, from immune cells (50).

Reports of the influence of TIM-3 on chemotherapeutic
agents are controversial. Higher TIM-3 expression on AML
blasts has been reported to be an enhancer for better response
to chemotherapy by Xu et al. (51); however, Dama et al. noted
Frontiers in Oncology | www.frontiersin.org 4
that this overexpression is positively correlated with
chemotherapy failure (52). It is evident that, more studies are
required to address this controversy.

As mentioned above, upregulation of TIM-3 expression on
immune cells leads to their dysfunctional activity in AML.
Several studies have reported upregulation of TIM-3 on CD4+
and CD8+ T cells (25, 53–57). Ozkazanc et al. reported that the
exhausted phenotype of CD4+ T cells, which is characterized by
the expression of TIM-3, LAG-3, and PD-1, in AML patients is
induced by the co-stimulatory signals of AML blasts (25).

In contrast, some studies have suggested meaningful
associations between TIM-3 overexpression levels and
prognosis. Li et al. revealed that TIM-3 overexpression on CD4
+ T cells in AML patients that have an FLT3-ITD mutation, a
poor prognostic factor, was higher than that in those who did not
have this mutation (53). This group also reported higher levels of
TIM-3 expression on CD8+ T cells in high-risk AML patients
compared to low-risk patients. Kong et al. noted that for patients
with elevated Tim3+ PD-1+ T cells after allogenic stem cell
transplantation, leukemia relapse is more predictable (55). Later,
Zahran et al. determined a positive correlation between TIM-3
expression and poor prognosis in AML patients with normal
cytogenetics (56). Tan et al. demonstrated that higher TIM-3+
CD244+ CD8+ T cells are observed in M4 AML patients
compared to M3 patients. This group also reported that AML
patients have decreased TIM-3+ T cell portions by the time they
are in the complete remission phase (57).

In a remarkable recent study, Rakova et al. observed NK cell
activity in AML patients. This group revealed that TIM-3
upregulation on these cells was associated with increased
TABLE 1 | TIM-3 alteration in leukemias and reported correlations.

Leukemia Alteration Reported Correlation

MDS TIM-3 overexpression on CD4+ T cells No published evidence
TIM-3 overexpression on CD8+ T cells No published evidence
TIM-3 overexpression on HSCs Increase in WPSS score

More than one lineage cytopenia
Higher blast count in BM smear
Higher risk for MDS transformation to leukemia

AML TIM-3 overexpression on LSCs Response to chemotherapy (?)
TIM-3 overexpression on CD4+ T cells Higher in patients with FLT3-ITD mutation
TIM-3 overexpression on CD8+ T cells Higher in high-risk AML patients
Increase in TIM-3+ PD-1+ T cells Higher chance for leukemia relapse
TIM-3 overexpression on regulatory T cells Poor prognosis in patients with normal

cytogenetics
TIM-3 upregulation on NK cells Better clinical outcome

CML Increase in proportion of PD-1+ TIM-3- CD8+ T cells Poor response to TKI therapy
B-ALL Overexpression of TIM-3 and PD-1 on T cells Leukemia Relapse after allogenic HSCT (?)

Overexpression of TIM-3 on T cells Prognostic risk factor for B-ALL relapse
Overexpression of TIM-3 in BM and PBMC No published evidence

T-ALL Expression of TIM-3 in leukemic cells Positively related to chemoresistance
Overexpression of TIM-3 in BM and PBMC No published evidence

CLL Increase in percentage and absolute count of TIM-3+ T
cells

Positive correlation with advanced clinical stage

Overexpression of TIM-3 on NK cells of PB Poor prognostic factor
MDS, myelodysplastic syndrome; TIM-3, T cell immunoglobulin andmucin domain-3; CD, cluster of differentiation; WPSS, WHO (world health organization) classification-based prognostic
scoring system; HSC, hematopoietic stem cell; BM, bone marrow; AML, acute myeloid leukemia; LSC, leukemia stem cell; FLT3-ITD, internal tandem duplications in the FLT3 tyrosine
kinase; PD-1; progmammed cell death protein-1; NK cell, natural killer cell; CML, chronic myeloid leukemia; TKI, tyrosine kinase inhibitors; B-ALL, acute lymphoblastic B-precursor
leukemia; HSCT, hematopoietic stem cell transplantation; PBMC, peripheral bloodmononuclear cell; T-ALL, T-cell acute lymphoblastic leukemia; CLL, chronic lymphoblastic leukemia; PB,
peripheral blood.
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activity of NK cells and resulted in better clinical outcome for
AML patients (58) (Table 1). As noted, exceptional studies have
been performed on TIM-3 in AML, yet so many aspects are still
intact or not completely examined. For instance, how does TIM-
3 affect the function of other immune cells, are there any other
links between TIM-3 overexpression on different immune cells
and different aspects of prognosis (i.e., resistance to different
therapies, AML relapse, overall survival, refractory AML), are
there mechanisms underlying upregulation of TIM-3 on LSCs,
and how overexpression changes different aspects of function
and stability of LSCs?
2.1.3. Chronic Myeloid Leukemia (CML)
Reciprocal translocation between chromosome 9 and 22 [t(9,22)]
creates the oncokinase BCR-ABL1, developing a myeloproliferative
hematologic malignancy called chronic myeloid leukemia (CML).
Tyrosine kinase inhibitors (TKIs) are considered first-line,
approved treatments for CML patients that direct a deep
molecular response hampering leukemia progression (59, 60).

Many studies reported impaired anti-tumor immunity in CML
patients. Among them, Bruck et al. (61) observed TIM-3
overexpression on exhausted CD4+ and CD8+ T cells in
untreated CML patients. This is not an unexpected report, since
TIM-3 is known as an exhaustion marker in T cells. However, they
also reported a correlation between PD-1+ TIM-3- CD8+ T cells
and poor response to TKIs (Table 1). This may seem surprising,
because we are more used to announce TIM-3 as a marker for
disease progression, therapy resistance, probable relapse and more
complicated situation for treatment. Unfortunately, there is not
enough reports about TIM-3 in CML. TIM-3 and response to
TKIs in CML is not well studied and more specified and detailed
studies are required to clarify its possible role in better prognosis.

Dysfunctional immunity plays a major role in malignancy
formation. Moreover, possibility of CML relapse due to the
existence of undetectable residual leukemia stem cell, even
after successful TKI therapy, magnifies the critical role of
functional immune system. Therefore, much more clinical
studies are required to examine the expression of TIM-3 in
other immune cell types in CML as well and establish its role in
formation, therapy resistance, relapse of CML, and immune
scoring in this malignancy. Also, the possibility of the
expression of TIM-3 on leukemic cells should not be ignored.
2.2. TIM-3 in Lymphoblastic Leukemias
2.2.1. Acute Lymphoblastic Leukemia (ALL)
Acute lymphoblastic B-precursor leukemia (B-ALL) is the most
common hematologic malignancy in children, which is formed by
uncontrolled proliferation and a defect in lymphoid progenitors
(62, 63). A few studies have been performed to determine the role
of TIM-3 in B-ALL relapse, which is a challenging issue in this
subtype. Although Liu et al. observed T cell exhaustion,
characterized by TIM-3 and PD-1 expression, in post-allogenic-
HSCT B-ALL relapse, they could not describe a more detailed
relationship between increased immune checkpoint expression
Frontiers in Oncology | www.frontiersin.org 5
and relapse (64). Later in 2020 in a study on pediatric B-ALL,
Blaeschke et al. reported overexpression of TIM-3 alone and in
combination with PD-1 on CD4+ T cells in the bone marrow with
no significant difference in T cell subpopulations, and defined
TIM-3 as a substantial prognostic risk factor for relapse in B-ALL
patients (65). This group also claimed that CD200 may be
responsible for TIM-3 induction on T cells in ALL. These
findings have not yet been shown in vivo.

While ALL is considered as the most common malignancy in
children, about 15% of cases are T-cell acute lymphoblastic
leukemia (known as T-ALL), in which almost 20% of them do
not survive. According to records, this malignancy is not that
common in adults (25% of all ALL cases), but mortality rate is
higher than pediatric patients (about 50%) (66, 67).

Horlad et al. demonstrated that TIM-3 expression in
leukemic cells is possibly related to resistance to chemotherapy
in T-ALL patients (68), noting that more studies are needed. In a
more recent study, Balajam et al. included both B-ALL and T-
ALL cases and documented TIM-3 overexpression in bone
marrow and peripheral blood mononuclear cells (PBMCs) in
ALL patients compared to control individuals (69) (Table 1).
Thus, more studies regarding the possible diagnostic and/or
prognostic value of TIM-3 in ALL are recommended.

Chronic lymphocytic leukemia (CLL) is defined as a
hematologic malignancy in which CD5+ B cells aggregate not
only in peripheral blood but also in bone marrow and secondary
lymphoid organs (70, 71). CLL has different contribution
patterns all over the world (72, 73) and displays a wide
spectrum of clinical manifestations ranging from asymptomatic
individuals to fast progressing malignant cases (71, 74). Poor
response to common treatments, refractory CLL, and leukemia
relapse after a period of remission are other challenging issues in
these patients (75).

Two major studies have been performed regarding the
immunologic exhaustion profile in CLL patients. Allahmoradi
et al. examined CD4+ T cells and Taghiloo et al. explored CD8+
T cells in CLL (76). Both studies reported that exhausted CD4+
and CD8+ T cells, characterized by PD-1 and TIM-3 expression,
have a higher percentage and absolute count in CLL patients
compared with healthy individuals. The same result was observed
when only TIM-3+ T cells were considered. Moreover, lower
proliferation and protective cytokine production by these TIM-3+
T cells has been reported. Furthermore, both Allahmoradi et al.
and Taghiloo et al. claimed that the percentage and absolute count
of TIM-3+ PD-1+ CD4+ T cells and TIM-3+ PD-1+ CD8+ T cells
were positively correlated with advanced clinical stages for CLL
patients. Later, Hadadi et al. reported TIM-3 overexpression in
another immune cell type, called natural killer (NK) cells, which
plays a critical role in eliminating malignant cells, in the peripheral
blood of CLL patients. This study reported that an upregulated
TIM-3 profile is a linked to poor prognostic factors for CLL
patients (77) (Table 1). Together, these three studies have
presented TIM-3 as a “promising biomarker and possible target
for future immunotherapy” (76, 77). More detailed clinical studies
are required to clarify the possible role of TIM-3 in CLL
pathogenesis and its association with cases of leukemia relapse,
September 2021 | Volume 11 | Article 753677
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response to standard therapeutic agents and molecular prognostic
factors of CLL.
3. EFFECT OF TIM-3 BLOCKADE
IN LEUKEMIA

TIM-3 blockade alone was demonstrated to have anti-solid
tumor effects in preclinical studies by improving the ex vivo
proliferation of tumor-infiltrating T cells and increasing the
secretion of the cytokines IFN-g and TNF-a (78, 79). Other
checkpoint inhibitors, such as the PD-1/PD-L1 axis and LAG-3,
combined with TIM-3 blockade could further enhance the
immune function of tumor-infiltrating T cells (78, 79). In
clinical trials, TIM-3 blockade, especially in combination with
PD-1 blockade, has demonstrated reliable preliminary results
against solid tumors (79–81). Based on the expression
characteristics of TIM-3, which is expressed both on AML cells
and exhausted T cells (52, 57), TIM-3 blockade may have dual
effects: directly inhibiting AML cell proliferation and revising the
exhausted T cell phenotype and restoring T cell function.
Moreover, overexpression of TIM-3/Gal-9 has been found in
AML patients who failed chemotherapy, suggesting that
targeting TIM-3/Gal-9 in combination with chemotherapy
induction may be an alternative approach to increasing the
complete remission rate of patients with AML (52, 82). The
results of Kikushige Y et al., who found that injection of TIM-3+
AML cells in immune-deficient mice could establish an AML
model and subsequent TIM-3 blockers could alleviate disease,
supported the efficacy of this targeted approach (8). In AML
allogeneic hematopoietic stem cell transplantation (allo-HSCT)
models, TIM-3 blockade may lead to activation of macrophages
to eradicate AML stem cells and ameliorate disease (39, 83).
Recently, an in vitro study demonstrated that bispecific and split
CAR T cells (BissCAR-T cells) that target CD13 and TIM-3 can
specifically eliminate AML cells (84). Because there are no
known life-essential cells that express both CD13 and TIM-3,
BissCAR-T cells can selectively kill AML cells while reducing
toxicity to human hematopoietic stem cells and other normal
tissues. In addition, anti-human TIM-3 was identified as a
potential strategy for curing AML by targeting LSCs (84).

TIM-3 is highly expressed in peripheral blood and bone
marrow exhausted T cells in a variety of hematological
malignancies, including acute lymphoblastic leukemia (ALL),
chronic lymphocytic leukemia (CLL), and multiple myeloma
(MM) (57, 77, 85). However, few reports have demonstrated the
significant effects of TIM-3 inhibitors alone in the above diseases,
and the reason may be due to the fact that TIM-3 suppression
can partially restore T cell activation but it is unable to overcome
the T cell exhausted status. Moreover, there is high expression of
a number of immune checkpoint proteins, such as PD-1 and
TIGIT, in T cells from patients. For example, blockade of PD-1
and TIM-3 failed to restore the function of exhausted CD8+ T
cells in the early clinical stages of CLL (85), indicating the effects
of TIM-3 blockade may be different in AML and other
leukemias, further studies are required to evaluate the efficacy
Frontiers in Oncology | www.frontiersin.org 6
of TIM-3 inhibitors in different types and stages of leukemia as
well as in different leukemia bone marrow microenvironments.
4. TIM-3 INHIBITORS FOR LEUKEMIA
THERAPY IN CLINICAL TRIALS

Currently, the TIM-3 inhibitors used in clinical trials include
MBG453 (also known as Sabatolimab), TSR-022, BMS-986258,
LY3321367, SYM023, BGB-A425, and SHR-1702 (86, 87).
However, MBG453 and SHR-1702 have begun to be used in
clinical trials for leukemia immunotherapy only (86) (Table 2
and Figure 2).

Although a number of TIM-3 blockade clinical trials for
malignant tumor have been reported, MBG453 is the only
inhibitor that has shown preliminary efficacy and safety in
clinical studies for MDS and AML (86). Currently, eight phase
I/II clinical trials are ongoing for AML and MDS with MBG453
monotherapy or the combination of different agents such as
hypomethylating agents (HMAs), PD-1 inhibitors, HDM201 (an
MDM2 inhibitor), and venetoclax. There is also just one phase I
trial administering SHR-1702 for relapsed/refractory (R/R) AML
and higher-risk myelodysplastic syndromes (HR-MDS).
Moreover, there are two phase III trials of MBG453 +
azacitidine for HR-MDS and chronic myelomonocytic
leukemia-2 (CMML-2) (Table 2).

Most phase I/II trials of TIM-3 inhibitors for AML or MDS
have been initiated in the past two years, and the trials are still
ongoing; thus, the final results have yet to be released. Currently,
positive results from several trials have indicated that the ORR of
69 patients with HR-MDS or AML who received MBG453 plus
decitabine (Dec) (cutoff 27 Nov 2019, median exposure duration:
8.6 months) or that of 29 patients with HR-MDS or AML who
received MBG453 plus azacitidine (Aza) (cutoff 14 Jan 2020,
median exposure duration: 3.0 months) was 58% and 70% for
HR-MDS, respectively, and 41% and 27%, respectively, for newly
diagnosed (ND)-AML (NCT03066648) (88). Moreover, the ORR
was only 24% for MBG453 plus Dec in patients with R/R AML
(Supplementary Table 1). The most common grade 3/4
treatment-emergent (TE) adverse events (AEs) (in Dec and
Aza group) were thrombocytopenia, febrile neutropenia,
neutropenia, and anemia. For MBG453 plus Dec, only 4
patients experienced potential immune-related (IR) AEs that
were reported as treatment-related (ALT increase, arthritis,
hepatitis, hypothyroidism, rash). No treatment-related ≥ grade
3 potential IRAEs have been reported for MBG453+Aza
(Supplementary Table 2). No treatment-related grade 4 IRAEs
or deaths had been reported for either combination. Overall,
MBG453 plus Dec or Aza is safe and well tolerated in HR-MDS
and AML, which showed encouraging response rates and
emerging durability as well (88, 90). However, whether TIM-3
inhibitors together with HMA treatment could improve clinical
outcome requires more evidence from these trials. STIMULUS-
MDS1 (N≈120; NCT03946670) is a double-blind, phase II
clinical trial to evaluate whether MBG453 plus HMAs
improves the CR rate and progression-free survival (PFS) vs.
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HMA alone in HR-MDS (89). STIMULUS-MDS2 (N≈500,
NCT04266301) is a phase III clinical trial to further confirm
whether MBG453 prolongs the OS of HR-MDS patients
including CMML-2, and similar trials are ongoing in China
Frontiers in Oncology | www.frontiersin.org 7
and are recruiting (CTR20201781). STIMULUS-AML (N≈86;
NCT04150029) is an open-label study evaluating the safety
(DLTs) and efficacy (CR rate) of MBG453+HMA combined
with venetoclax in ND-AML (89). In addition, ongoing clinical
TABLE 2 | Anti–TIM-3 agents and associated clinical trials in leukemia.

Clinical trial
identifier

Phase Start date Status Cancer type
(population, N)

Interventions and
Combination

Primary Outcome
Measures

Secondary Outcome
Measures

NCT03066648
(88)

Ib July 6, 2017 Active, not
recruiting

ND or R/R AML, HR-MDS
(N≈243)

MBG453(alone) Safety, DLTs PK, ORR, etc.
+HMA
+Anti-PD-1
+HMA+ Anti-PD-1

NCT03940352 Ib June 24,
2019

Recruiting AML, HR-MDS (N≈80) MBG453 +HDM201 Safety, DLTs ORR, BOR, etc.
Venetoclax+HDM201

NCT04443751
(86)

I September
10, 2020

Recruiting R/R-AML, HR-MDS(N≈42) SHR-1702 MTD,RP2D Safety, PK, etc.

NCT03946670
(89)

II June 4, 2019 Active, not
recruiting

HR-MDS (N≈127) MBG453+HMA CR rate, PFS OS, EFS, etc.
Placebo+HMA

NCT04150029
(89)

II September 1,
2020

recruiting ND AML (N≈86) MBG453+HMA
+Venetoclax

Safety, DLTs CR rate CR/CRi rate, OS, etc.

NCT04823624 II September
2021

Not yet
recruiting

LD-MDS (N≈20) MBG453(alone) ORR OS, PFS, etc.

NCT04623216 Ib/II July 22,
2021

recruiting AML (MRD+/post-aHSCT)
(N≈59)

Part
1

MBG453 400mg
Q4W

DLTs, R/R rate III or IV aGVHD rate, etc.

MBG453 800mg
Q4W

Part
2

MBG453
(age>18)
MBG453
(12>age>18)

NCT04878432 II June 30,
2021

Not yet
recruiting

HR-MDS (N≈90) MBG453 + HMA or
INQOVI (oral
decitabine))

Safety CR, mCR, etc.

NCT04812548 II May 24,
2021

Not yet
recruiting

HR-MDS (N≈76) MBG453+HMA
+Venetoclax

Safety, DLTs, CR rate ORR, PFS, etc.

NCT04266301 III June 8,
2020

recruiting HR-MDS, CMML-2
(N≈500)

MBG453+ Azacitidine OS Safety, CR, etc.
Placebo+ Azacitidine

CTR20201781 III August 6,
2020

recruiting HR-MDS, CMML-2
(N≈100)

MBG453+Azacitidine OS Safety, CR, etc.
Placebo+Azacitidine
September 2021 | V
AML, acute myeloid leukemia; aGVHD, acute graft versus host disease; BOR, best overall response; CMML-2, chronic myelomonocytic leukemia-2; CR, complete response; CRi,
complete remission with incomplete hematologic recovery; DLTs, dose-limiting toxicities; EFS, event-free survival; HR-MDS, higher-risk myelodysplastic syndrome; HMA, hypomethylating
agent, LD-MDS, lower risk MDS; mCR, marrow remission; MTD, maximum tolerated dose; ND, newly diagnosed; ORR, overall response rate; OS, overall survival; PD-1, programmed cell
death 1; PFS, progression-free survival; PK, pharmacokinetic; R/R, relapsed/refractory; RP2D, recommended phase 2 dose; TIM-3, T-cell immunoglobulin domain and mucin domain 3.
FIGURE 2 | Schematic diagram of TIM-3 identification, TIM-3 inhibitor development, and TIM-3 blockade in cancer and leukemia therapies in clinical trials.
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studies included the application of MBG453 in MRD-positive
patients after allo-HSCT (NCT04623216) and in combination
with a PD-1 inhibitor (NCT0306664), TP53-MDM2 inhibitor
(NCT03940352), or Bcl-2 inhibitors plus HMAs (NCT04812548,
NCT04150029) for efficacy and safety in MDS and AML.
Similarly, a phase I clinical study of the efficacy and safety of
another TIM-3 inhibitor, SHR-1702, for the treatment of R/R-
AML and HR-MDS is ongoing as well (42 cases; NCT04443751)
(86). Some studies have shown that TIM-3 inhibitors are well
tolerated, and preliminary antitumor activity in advanced solid
tumors has been demonstrated for this class of drugs (87, 91).
Overall, TIM-3 blockade combined with other checkpoint
inhibitors, targeted inhibitors, or HMAs may improve the
clinical outcome of patients with leukemia; however, more
clinical data are required to support the application of TIM-3
inhibitors in leukemia immunotherapy.
5. CONCLUDING REMARKS

Numerous clinical studies have indicated that overexpression of
TIM-3 is associated with poor prognosis in leukemia. As an
immune checkpoint protein, TIM-3 is upregulated on T cells,
resulting in increased T cell exhaustion in leukemia patients.
TIM-3 is also expressed on leukemia cells and may serve as a
biomarker and target for targeted therapy for different leukemias.
However, blockade of TIM-3 may lead to different outcomes in
AML in comparison with other leukemias. Therefore, further
studies and more detailed clinical data are required to evaluate
the efficacy of TIM-3 inhibitors in different types and stages
of leukemia.

It is necessary to define how TIM-3 affects the function of
other immune cells, and if there are other links between TIM-3
Frontiers in Oncology | www.frontiersin.org 8
overexpression on different immune cells and resistance to
different therapies, relapse, and overall survival. Some clinical
trials have shown that blockade of TIM-3 alone fails to achieve
clinical efficacy for most patients with AML or MDS. It is only
when TIM-3 is combined with other checkpoint inhibitors, TKIs,
or HMAs that improvements in clinical outcome are observed.
Thus, the mechanism of TIM-3 blockade on leukemia cells, in
the leukemia bone marrow microenvironment, and on T cells
need to be characterized. This research may help to understand
how to optimize TIM-3 blockade for leukemia immunotherapy.
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