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Introduction

Precisely controlled cell death plays a key role in development and disease in eukaryotes. Fer-

roptosis is a newly defined form of iron-dependent cell death best known for its role in tumor

suppression in mammalian cells [1–3]. To date, ferroptosis or ferroptosis-like cell death has

been observed in pathogen-challenged rice and tobacco leaves [4–6], heat-stressed Arabidopsis

roots [7], and in the sleeping sickness causal parasite Trypanosoma brucei [8], but not in any

microbial system (e.g., bacteria, archaea, or fungi) as yet. Recently, the occurrence of ferropto-

sis was confirmed during pathogenic development in the rice-blast fungus Magnaporthe ory-
zae, and the contribution of such regulated cell death to virulence of this rice pathogen was

highlighted [5]. Collectively, these findings set forth a new area of research in microbial patho-

genesis and molecular host–microbe interactions; and suggest novel strategies for pathogen

control based on modulating ferroptotic death and/or iron homeostasis.

What is ferroptosis?

Ferroptosis is a regulated mode of cell demise driven by iron-dependent peroxidation of mem-

brane lipids [1–3,9]. Such cell death can be induced upon failure of the lipid peroxide reducing

system that involves glutathione peroxidase 4 (GPX4) [10,11], which enzymatically converts

phospholipid hydroperoxides to nontoxic lipid alcohols using glutathione (GSH) as a cosub-

strate [12]. Accordingly, either GSH depletion caused by buthionine sulfoximine (BSO) or

Erastin treatment, or GPX4 inactivation through gene deletion or pharmacological inhibition,

leads to lethal accumulation of lipid peroxides in cellular membranes and results in strong

induction of ferroptosis [10,11]. Such death, however, can be blocked by lipophilic antioxi-

dants such as liproxstatin-1 (Lip-1) and ferrostatin-1 (Fer-1), which were selected from che-

mico-genetic screens and established as specific inhibitors of ferroptosis [10,13]. Like

exogenous lipophilic antioxidants, endogenous ones such as the reduced Coenzyme Q10

(CoQ10) and Tetrahydrobiopterin (BH4) are capable of potently suppressing ferroptosis as

membrane radical-trappers, and thus contribute to a GPX4-independent lipid peroxide detox-

ification mechanism [14–16].

In addition to accumulation of lethal levels of lipid peroxides, ferroptosis is characterized

by its strict iron dependency as well. Ferroptotic death can be prevented through iron chela-

tion [13], whereas iron supplementation enhances or directly activates such type of cell mortal-

ity [13,17]. Ferroptosis sensitivity is modulated by the import, storage, and export of iron

[18,19]; and iron uptake via the transferrin receptor serves as a specific marker for ferroptosis

[20]. Furthermore, initiation of ferroptosis is enabled by iron-dependent metabolic enzymes,

such as NADPH oxidase (Nox) and lipoxygenase, that lead to peroxidation of membrane lipids

[1,13]. For instance, the membrane spanning Nox enzymes have 2 iron-containing hemes,

which are noncovalently bound to it and participate in the electron transfer from NADPH to
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O2 and the consequent superoxide production [21]. Superoxides generated subsequently inter-

act with membrane lipids and trigger cell death once GPX4 and the requisite antioxidant sys-

tems are inactivated.

What function does ferroptosis serve in M. oryzae development?

Ferroptosis contributes to the programmed cell death of the 3-celled asexual spores, also

known as conidia, in M. oryzae (Fig 1) [5], which causes blast disease in several important

cereal crops such as rice and wheat, and adversely impacts global agriculture [22]. Pathogenic

life cycle of M. oryzae starts when the 3-celled conidium germinates on the leaf surface, and

produces a polarized germ tube, which forms a specialized infection structure called the

appressorium, which breaches the leaf epidermis using enormous turgor and a thin but rigid

penetration peg [22]. Bulbous fungal hyphae differentiated from penetration pegs then resume

filamentous growth within the plant cells and finally kill them and produce more conidia

using the host-derived nutrients [22]. During appressorium maturation, the 3 conidial cells

Fig 1. Ferroptosis occurs sequentially in the 3-celled conidium and is essential for pathogenesis in Magnaporthe oryzae. In M. oryzae, ferroptosis initiates first in the

terminal conidial cell distal to the infection structure (appressorium). Within this cell, lipid peroxides are generated via the iron-dependent NADPH oxidase activity that

accrues in the plasma membrane and trigger cell death as assessed by nuclear and cellular degradation. The reduced GSH-dependent GPX function acts as a negative

regulator of such death-inducing lipid peroxides. Ferroptosis subsequently spreads to the middle and proximal conidial cells and the germ tube prior to appressorium

maturation. The ferroptosis-enabling iron is acquired from intracellular source(s) in M. oryzae and is transported via autophagy, although the nature of such iron source

is still unclear. The ferroptosis inhibitor Lip-1 is a lipophilic antioxidant that acts as a potent suppressor of conidial ferroptosis in rice blast. Nuclei and lipid peroxides

are indicated as blue circles and orange dashes, respectively, in the conidial cell(s) undergoing ferroptosis. GPX, glutathione peroxidase; GSH, glutathione; Lip-1,

liproxstatin-1; ROS, reactive oxygen species.

https://doi.org/10.1371/journal.ppat.1009298.g001
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transport their cellular contents to the developing appressorium and then degrade their nuclei

and undergo a specific autophagic cell death [22,23].

Such programmed death can be suppressed by iron chelators or the ferroptosis inhibitor

Lip-1, and this death suppression is invariably accompanied by a dramatic decrease in lipid

peroxide levels in the plasma membrane [5]. Lack of Nox activity through genetic or pharma-

cological inhibition simulates iron chelation or Lip-1–based inhibition in terms of suppressing

conidial death and the associated lipid peroxidation [5]. Conversely, iron supplementation or

GSH depletion via BSO drives peroxidation of membrane lipids and advances conidial ferrop-

tosis [5]. These typical characteristics confirmed the occurrence of ferroptosis in the 3 conidial

cells in a highly controlled and sequential manner: Ferroptosis initiates first in the terminal

conidial cell distal to the appressorium, and then sequentially spreads to the middle and proxi-

mal cells (Fig 1) [5]. Such precise execution of conidial death may be attributable to the wave-

like nature of ferroptosis propagation [24]. In mammalian cell populations or tissues, ferropto-

sis spreads as a wave in response to iron supplementation or GSH depletion, but not GPX4

inactivation [24,25]. Such unique propagation suggests a cell–cell communication that delivers

ferroptosis trigger(s), which is supported by the dynamic spread of conidial ferroptosis in M.

oryzae too. The abundance of iron increases considerably within the terminal conidial cell

before it undergoes ferroptosis [5]. Such iron accumulation followed by cell death appears sub-

sequently in the middle and proximal cells following the same chronology or sequence of

conidial death [5], thus implying iron as a propagation trigger that fine-tunes and controls the

crucial conidial ferroptosis in rice blast.

What is the role of ferroptosis/iron homeostasis in microbial

pathogenesis?

Regarding this question, what is known is that ferroptotic conidial death during appressorium

development determines proper pathogenesis of M. oryzae [5]. When ferroptosis is subverted

in the conidium through iron chelation or Lip-1–based inhibition or Nox inactivation, M. ory-
zae is unable to colonize rice cells and fails to cause the typical blast disease lesions. In contrast,

an additional supply of iron boosts the conidial cell death and also increases the ability of M.

oryzae to infect the rice plants.

So how does conidial ferroptosis impact the infection ability of M. oryzae? One possibility

could be that successful ferroptosis occurs within a limited time period/window, when the

nutrients stored in the conidium can still support its life activities, and guarantees proper

development of the infection structure/appressorium. This is supported by the observation

that smaller or immature appressoria (unable to penetrate the host by implication) are inevita-

bly produced upon disruption of conidial ferroptosis [5]. Further investigation is required to

unveil the link between conidial ferroptosis and the proper morphogenesis or formation of a

functional appressorium.

To date, it is unclear whether ferroptosis occurs in microbial pathogens other than M. ory-
zae. However, the ability to take up iron and maintain iron homeostasis is essential for full vir-

ulence of an array of microbial pathogens, with hosts ranging from plants to humans [26,27].

For example, the human pathogenic fungus Candida albicans employs a high-affinity iron per-

mease system [28] and utilizes siderophores produced by other microbes for iron acquisition

[29–31]. C. albicans also uses a series of transporters that deliver heme-iron across the cell

wall, and then takes it up through endocytosis, to ensure proper iron uptake during growth

and colonization within the host, thus enabling a strong infection capability [31]. In line with

the iron requirement, Nox function and lipoxygenase activities, which are sources of lipid per-

oxidation in mammals, have been reported in fungi and bacteria too [32–34]. Thus, it will be
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interesting to investigate whether iron-dependent ferroptosis serves as an evolutionary con-

served mechanism widely involved in microbial pathogenesis.

What is the source of iron in ferroptosis?

The availability of iron from external host-derived sources or growth medium is extremely

limited during pathogenic differentiation prior to host penetration in M. oryzae. As such, it is

most likely the internally stored iron that enables and supports ferroptosis in the rice blast fun-

gus. Presently, the nature of such internal source(s) and the type of iron involved is unclear. In

mammalian cells, internal iron is stored as ferric ion in the form of ferritin complexes, and a

selective form of autophagy referred to as ferritinophagy is responsible for ferritin degradation,

thus releasing free iron for ferroptosis [35]. Although, M. oryzae lacks ferritin-like complexes,

autophagy is still involved in fine-tuning ferroptosis likely through the trafficking and/or dis-

tribution of iron (Fig 1) [5]. It remains to be seen whether such regulation of intracellular ferric

ions is indicative of the potential intrinsic stores (endoplasmic reticulum, mitochondria, and/

or vacuoles) and sinks for iron in microbial pathogens that affect plants and animals. A key

issue that needs to be resolved in the near future is what triggers and executes the release of fer-

roptosis-enabling iron in the pathogen. Lastly, it would be interesting to address whether the

host plays a role in directly or indirectly regulating ferroptosis in the microbial pathogen, for

instance, by modulating iron availability at the crucial stages of pathogenic development

therein.
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