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Abstract

Progress in synthetic biology tools has transformed the way we engineer living cells.

Applications of circuit design have reached a new level, offering solutions for

metabolic engineering challenges that include developing screening approaches for

libraries of pathway variants. The use of transcription‐factor‐based biosensors for

screening has shown promising results, but the quantitative relationship between the

sensors and the sensed molecules still needs more rational understanding. Herein, we

have successfully developed a novel biosensor to detect pinocembrin based on a

transcriptional regulator. The FdeR transcription factor (TF), known to respond to

naringenin, was combined with a fluorescent reporter protein. By varying the copy

number of its plasmid and the concentration of the biosensor TF through a

combinatorial library, different responses have been recorded and modeled. The

fitted model provides a tool to understand the impact of these parameters on the

biosensor behavior in terms of dose–response and time curves and offers guidelines

to build constructs oriented to increased sensitivity and or ability of linear detection

at higher titers. Our model, the first to explicitly take into account the impact of

plasmid copy number on biosensor sensitivity using Hill‐based formalism, is able to

explain uncharacterized systems without extensive knowledge of the properties of

the TF. Moreover, it can be used to model the response of the biosensor to different

compounds (here naringenin and pinocembrin) with minimal parameter refitting.
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1 | INTRODUCTION

Trends in metabolic engineering approaches to produce bio‐based
chemicals in cell factories are still under continuous improvements.

The main developments include overexpressing the enzymes of the

rate‐limiting steps (Tai & Stephanopoulos, 2013), deletion of

competing pathways (Stephanopoulos, 2012), balancing cofactor

and precursor metabolites (Lan & Liao, 2012; Singh, Cher Soh,

Hatzimanikatis, & Gill, 2011), implementing synthetic feedback loops

(Dunlop, Keasling, & Mukhopadhyay, 2010; Harrison & Dunlop,

2012), and biosensor‐based dynamic regulation (Xu, Li, Zhang,

Stephanopoulos, & Koffas, 2014).

One current challenging task is to set up a reliable method to

screen for the best producing strains among a wide genetic diversity.

The use of biosensors responsive to intracellular chemicals has

opened doors to solving this pressing issue. Such sensory–regulatory

devices, mainly transcription factors (TFs), have successfully been

used to detect the presence of metabolites, but also for quantifica-

tion and even high‐throughput screening (Pfleger, Pitera, Newman,

Martin, & Keasling, 2007). Furthermore, biosensors can also play an

important role in regulating pathway fluxes by sensing the level of a
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conversion (Xu et al., 2014). To overcome the limited number of

naturally occurring metabolite‐responsive TFs available, progress has

been made through their heterologous use, which includes trans-

plantation of prokaryotic transcriptional activators into the eukar-

yotic chassis (Skjoedt et al., 2016). Additionally, it was recently

shown that it is possible to expand the detection abilities by adding

one or more enzymatic steps to transform a nondetectable

compound into a detectable one (Delépine, Libis, Carbonell, &

Faulon, 2016; Libis, Delépine, & Faulon, 2016). This latest tool

considerably expands the scope of chemicals that can be sensed via

transcriptional regulators.

One of the interesting metabolic pathways implemented with

relative success is the flavonoid pathway (Fehér et al., 2014). The

industrial demand for some flavonoids is increasing, and among the top

promising chemicals is (2S)‐pinocembrin, which is a plant secondary

metabolite and the main starting point for the synthesis of other

flavonoid molecules. This compound has a broad range of interesting

characteristics such as antioxidant (Rasul et al., 2013), antibacterial

(Weston, Mitchell, & Allen, 1999), antifungal (Peng et al., 2012),

inhibitor of atherosclerosis (Yang et al., 2013), and neuroprotection in

neurodegenerative diseases (Liu et al., 2012; Liu, Gao, Yang, & Du,

2008). To produce pinocembrin from glucose, four heterologous genes

have to be implemented in Escherichea coli . First, phenylalanine

ammonia lyase converts phenylalanine into cinnamic acid, which is

then converted by coumarate‐CoA ligase into cinnamoyl‐CoA. Then,
chalcone synthase condensates cinnamoyl‐CoA and three molecules of

malonyl‐CoA to produce pinocembrin chalcone, which will be then

converted into pinocembrin through chalcone isomerase (Figure 1). As

of today, pinocembrin is produced at a low titer from glucose (Wu, Du,

Zhou, & Chen, 2013; only 40mg/L), and work still needs to be carried

out to increase productivity, most likely through the building of

combinatorial libraries with various enzyme sequences and regulatory

elements (promoters, ribosome binding sites [RBSs]). Such libraries

could be quickly screened with a pinocembrin biosensor, where the

level of the reporter gene (i.e., fluorescence) is proportional to the

pinocembrin titer.

Chemical structure similarity considerations of detectable flavo-

noids led us to choose as our candidate FdeR TF, a transcriptional

activator‐based biosensor from Herbaspirillum seropedicae SmR1,

shown to respond to naringenin (Marin et al., 2013; Siedler, Stahlhut,

Malla, Maury, & Neves, 2014). Here, we have focused on developing

and modeling the FdeR TF to shed light on the way we could design

TF‐based biosensors to overcome issues of measurable quantification

of metabolite production and to monitor an adequate sensing

response. We have built different constructs varying most notably in

plasmid copy number, changing both the concentration of the TF and

the number of binding sites for the activated complex, and modeled

the impact of this varying number on the sensitivity of the response.

We provide a modeling strategy based on Hill functions to understand

the impact of plasmid copy number and compound binding affinity to

FdeR on our biosensor behavior, for both the dose–response and time

curves, for a TF that has not been well characterized before.

2 | MATERIALS AND METHODS

2.1 | Plasmids and strains

All plasmids and strains used in this study are listed in the Supporting

Information Table I. E. coli strain DH5 (Life Technologies, Darmstadt,

Germany) and Mach 1 strain (Invitrogen Technologies, Carlsbad, CA)

were used for cloning. E. coli strain BL21 (DE3) was used for enzyme

expression. All the primers (P1–P9) were purchased from Eurofins

genomics (Ebersberg, Germany) and are listed in the Supporting

Information Table II. All our constructs were built by Gibson

assembly using the NEBuilder HiFi DNA Polymerase Kit from New

England Biolabs (Ipswich, Massachussets, MA). All plasmids were

sequenced at the GATC Biotech (Konstanz, Germany). We performed

all cloning and transformations as per standard protocols. Antibiotics

were used at the following concentrations: ampicillin (Ap), 50 μg/ml;

chloramphenicol (Cm), 25 μg/ml; kanamycin (Km), 30 μg/ml; and

spectinomycin (Sp), 50 μg/ml.

2.2 | Pinocembrin sensor library construction

Sixteen pinocembrin biosensors were constructed by varying the

plasmid copy number and the RBS strength.

First, primers P1 and P2 were used to amplify the plasmid

backbones with different copy numbers from pACYCDuet‐1,
pCDFDuet‐1, pETDuet‐1, and pRSFDuet‐1 (Supporting Information

Table III). Second, the red fluorescent protein (RFP) under the control

of the responsive promoter to pinocembrin was amplified from the

plasmid pV20 (Supporting Information Table I) using the primers P3

and P4. Third, the FdeR TF with its constitutive promoter J23100

was amplified also from the plasmid pV20 with the four couples of

primers P5/P9, P6/P9, P7/P9, and P8/P9 to generate the FdeR
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F IGURE 1 Pinocembrin biosynthesis pathway. PAL, TAL 4CL, CHS,
and CHI refer to phenylalanine ammonia lyase, tyrosine ammonia lyase,

coumarate‐CoA ligase, chalcone synthase, and chalcone isomerase,
respectively [Color figure can be viewed at wileyonlinelibrary.com]

key intermediate and then promoting its synthesis or its downstream



fragment with an RBS sequence 1, 2, 3, and 4, respectively. Finally,

the 16 possible combinations were assembled in one step by Gibson

assembly and confirmed by colonies PCR and sequencing (Figure 2).

All the constructs of pinocembrin biosensors are highlighted in

Supporting Information Table IV.

2.3 | Biosensor dose–response characterization

For each biosensor strain, an isolated colony of BL21(DE3) harboring

the appropriate plasmid was inoculated in 2 ml luria broth media

(LB) containing the appropriate antibiotics and grown overnight at

37°C. The culture was then diluted 1:100 in fresh LB containing

the appropriate antibiotics as well as different concentrations of

pinocembrin, naringenin, or cinnamic acid (previously dissolved in

ethanol) ranging from 1 to 500 µM. All the sensor cells were grown

then for 24 hr with agitation at 37°C in microplate reader BioTek.

Absorbance at 600 nm and fluorescence (Exc: 580 nm/Em: 610 nm)

were measured. All experiments were repeated at least three times.

2.4 | Chemical structure similarity

Compound InchI was obtained from Pubchem (Kim et al., 2016).

Chemical structure analysis was performed using the KNIME

(Berthold et al., 2009) analytics platform and RDKit nodes (Landrum,

2016). Tanimoto scores were computed using MACCS keys

fingerprints (Durant, Leland, Henry, & Nourse, 2002).

2.5 | Data normalization

RFP fluorescence reading was normalized by OD to obtain values

that are proportional to per cell fluorescence. For fold change data,

values obtained with inducers were divided by values obtained

without inducers:

( ) = / ( )
/ ( = )

Fold inducer
RFP OD inducer

RFP OD inducer
 

0
.change (1)

2.6 | Simulation tools

All data analyses and simulations were run on R (version 3.2.3).

Time evolution curves were simulated using the DeSolve package

(version 1.14) and the rk4 algorithm, implementing the fourth‐order
Runge–Kutta method. For random parameter sampling around the

best fit, values were sampled from within ±1.96 standard deviation of

the parameter estimate.

2.7 | Parameter fitting

All parameters that could be found in the literature are highlighted in

Table 1.

The other parameters (n, Km, and Kdsingle) were fitted using the nls

(nonlinear square, from Package stats version 3.2.3) function using

weighted least squares and the port algorithm (Dennis, Gay, &

WalshWelsh, 1981), which allows for boundaries on the search space.

The time evolution parameters (kdeg and α) were fitted using the

optim function (from Package stats version 3.2.3, using the L‐BFGS‐B
method implementing the Limited‐Memory Broyden Fletcher Goldfarb

Shanno Algorithm, which is a quasi‐Newton method). Model function

parameters were fitted locally to each data set of n = 3 replicates per

data point unless otherwise stated. The final parameters used in the

model are presented in Table 1 and Supporting Information Table V.

2.8 | Sensitivity, fold change, and cooperativity
of the different biosensors

To characterize the different biosensor dose–response curves, they

were fitted to the following standard Hill function (Weiss, 1997):

=
) +

× +Hill I
I

K I
ratio( )  

( )

(  ( )
1,

n

d
n n

(2)

where I is the concentration of the considered inducer (in µM); Kd is

the concentration that allows for half‐maximum induction (in µM as

well), also termed IC50; n is the Hill coefficient that characterizes the

cooperativity of the induction system; and ratio is the dynamic range

(in arbitrary units).

3 | RESULTS

3.1 | Choice of the TF

Recently, Raman and colleagues were able to convert the intracellular

presence of some flavonoids into a fitness advantage for the cell by

combining the TtgR‐responsive domain (a regulatory gene of the

multidrug efflux pump operon, ttgABC) to a TolC membrane protein (an

E. coli outer membrane protein) necessary for survival under selective

conditions. The strategy was successful in the screening of targeted

genome‐wide mutagenesis for naringenin high‐producing strains (Raman,

Rogers, Taylor, & Church, 2014). It is very useful in evolution experiments

looking to enrich the culture with evolved variants and counter‐select the
false positives but is not a first‐choice strategy when planning to screen
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F IGURE 2 Schematic representation of the pinocembrin biosensor
module. (a) Promotor, a ribosomal binding site precedes each gene. A
terminator is located downstream of each gene. Resistance refers to

chloramphenicol resistance, spectomycin resistance, ampicillin
resistance, or kanamycin resistance. RFT, red fluorescent protein
[Color figure can be viewed at wileyonlinelibrary.com]



libraries and pinpoint the response of every single clone. Our objective is

to combine a TF with a fluorescent response to sense pinocembrin, which

has not been previously reported. The use of Sensipath webserver

(Delépine et al., 2016) has shown the need to transform pinocembrin to

succinate or S‐adenosyl‐L‐homocysteine to be sensed by a transcription

regulator. This would not be relevant from a metabolic engineering point

of view, where the main objective is to increase the titer of the final

product and not to consume it in some other auxiliary reactions even for

a screening purpose. Direct detection in this case is more valuable. In a

previous work, Siedler et al. (2014) have already characterized FdeR and

Qdor, two TFs from H. seropedicae SmR1 and Bacillus subtilis shown to be

responsive in E. coli to naringenin and kaempferol, respectively. Since

these two compounds belong like pinocembrin to the flavonoid group, we

have therefore performed a chemical structure similarity search in this

family of chemicals. We have shown using the Tanimoto score that

naringenin is the closest detectable compound to pinocembrin (see

Section 2). We then decided to use the FdeR as a potential candidate to

develop a pinocembrin biosensor (Table 2).

3.2 | Biosensor design and construction

Marin et al. (2013) have identified the fde operon, associated with the

degradation of aromatic compounds, mainly naringenin. The expression

of this operon, under the regulation of the FdeR TF, is induced by

naringenin. Thus, we have built a plasmid containing FdeR under a

constitutive promoter and an RFP under the control of the responsive

promoter from the fde operon. To build our combinatorial library to

identify the best biosensors, we chose to build the constructs using

four different plasmid copy numbers and four different RBS sequences

for the FdeR gene (Figure 2).

3.3 | Biosensor characterization

To benchmark our design, E. coli cells harboring the different

constructs were grown for 24 hr in the absence and presence of

increasing concentrations of pinocembrin or naringenin ranging

from 1 to 500 µM, and red fluorescence was monitored in parallel

with cell growth (Figure 3a). As expected, the different biosensor

constructs were active in E. coli in the presence of naringenin. More

interestingly, the different constructs were able to detect pinocembrin,

and most of them have shown a high expression level of RFP exceeding

in all cases the level of expression in the presence of naringenin.

Moreover, FdeR appears to be more sensitive to pinocembrin than

naringenin, as is evident from the steeper slope in Figure 3a. The

results have shown that the minimal concentration of pinocembrin

required to activate the TF ranges between 1 and 5 µM. The fold
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TABLE 1 Parameters, their values, and references

Parameter name Parameter value Parameter description Method of obtention

ncopy for 257 20 Copy number for the 257 construct Novagen (Supplier)

ncopy for 157 10 Copy number for the 157 construct Novagen (Supplier)

ncopy for 357 40 Copy number for the 357 construct Novagen (Supplier)

ncopy for 457 100 Copy number for the 457 construct Novagen (Supplier)

n 1.84728055622324 ±

0.167856095615895 (dimensionless)

Cooperativity constant of the Hill model Fitted on pinocembrin data

Ratio for 157 0.142356903084492 ±

0.0145559485207119 (AU)

Dynamic range of the construct divided by

its copy number

Fitted on pinocembrin data

Ratio for 257 0.707131941851998 ±

0.0352622736990071 (AU)

Dynamic range of the construct divided

by its copy number

Fitted on pinocembrin data

Ratio for 357 1.76685307850461 ±

0.0224367736516089 (AU)

Dynamic range of the construct divided

by its copy number

Fitted on pinocembrin data

Ratio for 457

0.417451006235614 ±

0.0108399220317623 (AU)

Dynamic range of the construct divided by

its copy number

Fitted on pinocembrin data

Correcting factor

for naringenin

1.3 Correcting fold change factor Estimated by averaging the

correcting factors for

individual constructs

Kdsingle 887.835649014124 ±

120.681558027955 (µM)

The Hill constant, Kd, for a single plasmid Fitted on pinocembrin data

Km for pinocembrin 1 (dimensionless) Ratio between the binding constants of the

inducer and the transcription factor

By definition

Km for naringenin 2.14168405285072 ±

0.206020050654161 (dimensionless)

Ratio between the binding constants of the

inducer and the transcription factor

Fitted on naringenin data

n_tf 2 (dimensionless) The transcription factor forms dimers Naringenin dose–response

reference



change is also shown to reach 60 folds in construct 156 for instance. In

some cases, we highlighted a decrease in the fluorescence when we

exceed 300 µM, which is probably due to the toxicity of the compound.

This toxicity could also explain the difficulty in reaching high titer of

pinocembrin in metabolic engineering experiments, where, as men-

tioned previously, the record is around 40mg/L (Wu et al., 2013).

To validate this biosensor as a potential candidate for screening

purposes, we tried to evaluate the specificity of FdeR. The sensor

detects pinocembrin, but what about its biosynthesis intermediates?

The work of Marin et al. (2013) has shown that this TF is not activated

by phenylalanine or tyrosine, which are the precursors of pinocembrin

and naringenin, respectively. Next, we investigated the effect of

cinnamic acid, a key intermediate in the pinocembrin pathway. One of

the most sensitive constructs (156, see list of constructs in the

Supporting Information Table IV) was grown in the presence of

increasing concentrations of cinnamic acid. The results show no

detection of this compound (Figure 3b). As a conclusion, none of the

major intermediates are detectable by FdeR. These data support our

choice of using the FdeR biosensor as a tool to screen for pinocembrin‐
or naringenin‐producing cells.

3.4 | Choosing an adapted modeling strategy

The FdeR TF has been studied in only a few previous publications

(Marin et al., 2013; Siedler et al., 2014), which means although it is

characterized enough to know which inducers will or might bind to

it and induce a response in E. coli, there is no quantitative data

available on the binding strengths of the inducers to the TF or of

the complex to the promoter. We had the choice among three main

modeling approaches: statistical physics model (Bintu et al., 2005;

Rydenfelt, Cox, Garcia, & Phillips, 2014), mechanistic modeling

(Berset, Merulla, Joublin, Hatzimanikatis, & Van Der Meer, 2017),

or variations on Hill modeling (Qian, Huang, Jiménez, & Del

Vecchio, 2017; Zucca, Pasotti, Mazzini, Cusella De Angelis, &

Magni, 2012).

The statistical modeling approach makes use of extensive

knowledge of the promoter, its inducer, and the TF. For instance,

after reviewing several published works, Bintu et al. (2005) have

highlighted the need of the following constants to model a

transcriptional activator: different binding energies (RNA polymerase

to the promoter, TF to the promoter, binding interaction between the

two, RNA polymerase to the rest of the genome) as well as

knowledge of the number of binding sites on the promoter or the

number of promoters. This does not include yet the effect of the

binding of the inducer to the TF or of the genetic context (e.g., if

there is a DNA binding loop for repression). This kind of modeling has

been applied to the Lac operon but remains elusive for less‐
characterized systems such as our novel biosensor.

The mechanistic approach models all possible interactions in

the system, or at least most, with an important number of
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TABLE 2 Tanimoto scores for flavonoid compounds

Name InchI Tanimoto

Luteolin 1S/C15H10O6/c16‐8‐4‐11(19)15‐12(20)6‐13(21‐14(15)5‐8)7‐1‐2‐9(17)10(18)3‐7/h1‐6,16‐19H 0.8125

Apigenin 1S/C15H10O5/c16‐9‐3‐1‐8(2‐4‐9)13‐7‐12(19)15‐11(18)5‐10(17)6‐14(15)20‐13/h1‐7,16‐18H 0.8965

Genkwanin 1S/C16H12O5/c1–20‐11–6‐12(18)16–13(19)8–14(21–15(16)7–11)9–2‐4–10(17)5–3‐9/h2–8,
17–18H,1H3

0.7812

Chrysin 1S/C15H10O4/c16–10‐6–11(17)15–12(18)8–13(19–14(15)7–10)9–4‐2–1‐3–5‐9/h1–8,16–17H 0.8965

Flavone 1S/C15H10O2/c16–13‐10–15(11–6‐2–1‐3–7‐11)17–14‐9–5‐4–8‐12(13)14/h1–10H 0.7241

Quercetin 1S/C15H10O7/c16–7‐4–10(19)12–11(5–7)22–15(14(21)13(12)20)6–1‐2–8(17)9(18)3–6/h1–5,
16–19,21H

0.8125

Fisetin 1S/C15H10O6/c16–8‐2–3‐9–12(6–8)21–15(14(20)13(9)19)7–1‐4–10(17)11(18)5–7/h1–6,
16–18,20H

0.7812

Kaempferol 1S/C15H10O6/c16–8‐3–1‐7(2–4‐8)15–14(20)13(19)12–10(18)5–9(17)6–11(12)21–15/h1–6,
16–18,20H

0.8387

Galengin 1S/C15H10O5/c16–9‐6–10(17)12–11(7–9)20–15(14(19)13(12)18)8–4‐2–1‐3–5‐8/h1–7,16–17,19H 0.8387

Kaempferid 1S/C16H12O6/c1–21‐10–4‐2–8(3–5‐10)16–15(20)14(19)13–11(18)6–9(17)7–12(13)22–16/h2–7,
17–18,20H,1H3

0.7647

Eriodictyol 1S/C15H12O6/c16–8‐4–11(19)15–12(20)6–13(21–14(15)5–8)7–1‐2–9(17)10(18)3–7/h1–5,13,
16–19H,6H2/t13‐/m0/s1

0.9062

Naringenin 1S/C15H12O5/c16–9‐3–1‐8(2–4‐9)13–7‐12(19)15–11(18)5–10(17)6–14(15)20–13/h1–6,13,
16–18H,7H2

0.9655

Isosakurametin 1S/C16H14O5/c1–20‐11–4‐2–9(3–5‐11)14–8‐13(19)16–12(18)6–10(17)7–15(16)21–14/h2–7,
14,17–18H,8H2,1H3

0.875

Flavanone 1S/C15H12O2/c16–13‐10–15(11–6‐2–1‐3–7‐11)17–14‐9–5‐4–8‐12(13)14/h1–9,15H,10H2 0.7586

Pinocembrin 1S/C15H12O4/c16–10‐6–11(17)15–12(18)8–13(19–14(15)7–10)9–4‐2–1‐3–5‐9/h1–7,13,
16–17H,8H2/t13 /m0/s1

1



parameters (Berset et al., 2017; 21 for the ArsR biosensor). This

approach, although interesting, necessitates a lot of biological

knowledge to minimize the number of unknown parameters, as

well as knowledge of the interactions that do occur or not.

This can therefore only be carried out in a relatively well‐known

system. Those parameters are then fitted using system biology

approaches and different optimization algorithms to avoid

the main issue these models face: their sloppiness. Sloppiness

characterizes the fact that different sets of parameters can model

the data due to high interdependency between parameters.

For example, when two parameters are used to model a forward

and a backward reaction, which is actually at equilibrium given

the time scale considered, an infinite number of parameters,

whose ratio is the equilibrium constant of the reaction, will fit

the data.

The Hill class of models does not necessitate a priori

knowledge of the exact interactions between the species involved,

although knowledge of the broad behavior of the interactions is

necessary. This model has been, for example, extended to take

into account resource competition (Qian et al., 2017), model both

the binding with the inducer and complex binding to the promoter

in the Lux system (Zucca et al., 2012) or any switch‐like behavior.

Therefore, we decided to extend the Hill model to account for a

key tunable parameter in synthetic biology: plasmid copy number.

Our aim was to have a model with as little free parameters as

possible that could account for this effect.

3.5 | Effects of plasmid copy number that
we intend to model

As can be seen in Figure 3a (or the Supporting Information Figure 1),

increasing the copy number leads to increased production, as expected,

except for construct 457 (very high copy number), showing a decline in

production after 100 µM concentration of pinocembrin or naringenin.

The constructs behave similarly for both compounds, although the

biosensor is slightly more effective for pinocembrin detection than for

naringenin detection, which is somewhat unexpected given that

naringenin is its natural reported activator. Another interesting aspect

is the effect of copy number on IC50 (concentration at which the

biosensor reaches half‐maximum induction: it corresponds to Kd in the

standard Hill function). We can see that effect both in the figure where

the induction starts at smaller concentrations of the inducer and in

biosensor characterization (Supporting Information Table VI), where

IC50 diminishes with copy number of the construct. We therefore

decided to take that effect into account in our modeling effort.

3.6 | Derivation of the dose–response model:
Accounting for copy number

We aim to show here a dose–response model that can account for

the effect of copy number on both pinocembrin‐ and naringenin‐
responding constructs. We need to take into account two effects of

plasmid copy number.
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F IGURE 3 Dose responses of different biosensor constructs. (a) Constructs 457, 156, 159, 157, 257, and 357 were cultivated for 24 hr in the
presence of increasing concentrations of pinocembrin (blue) and naringenin (red) ranging from 1 to 500 µM. Error bars are based on the

standard deviation of a minimum of biological triplicate. (B) Biosensor 156 was cultivated for 24 hr in the presence of increasing concentrations
of pinocembrin (blue), naringenin (red), and cinnamic acid (green) ranging from 1 to 500 µM. Error bars are based on the standard deviation of a
minimum of biological triplicate [Color figure can be viewed at wileyonlinelibrary.com]



(1) The number of binding sites for the TF–inducer complex

increases proportionally to the plasmid copy number, meaning

that intuitively, to reach half‐maximum saturation, there needs to

be that many more TF–inducer complexes.

(2) The TF is produced constitutively from the biosensor plasmid, so

TF number scales with plasmid copy number.

We consider that all following processes are at equilibrium since

chemical binding is a fast process compared with transcription and

translation, and we are considering dose–response curves for the

time being.

3.6.1 | Formation of the TF–inducer complex

We consider that the TF forms ntf multimers to derive our

equations. According to the literature, FdeR forms dimers (Siedler

et al., 2014), which means =n 2tf will be used when simulating the

data. Since the exact binding configuration with the inducers

(naringenin and pinocembrin) is not known, we will start by

considering the following equilibrium (Equation [3]). Other

neglected cooperativity effects will be accounted for in the Hill

cooperativity constant (Equations 4–6):

⇔+n T I T .tf f
K

f
c

dis
(3)

Ignoring the order of binding, which is not important for the final

equilibrium but only for the kinetics, not considered here, given the

time scales of the considered processes, we have Equation (4), where

Tf is the concentration of the TF, Tf
c , of the TF complexes and Kdis is

the dissociation constant of the complex:

=
×

T
I T

K
  .f

c f
n

dis

tf
(4)

Note that Kdis depends on the inducer considered here, either

pinocembrin or naringenin, and it is the dissociation constant of

the considered reaction. We first consider a classical Hill binding

equation for the induction due to the TF before improving on this

equation. The classical equation is Equation (5), where n is the

cooperativity constant and ratio represents the maximum induc-

tion or the dynamic range. Kd is the TF–inducer complex

concentration needed for half‐maximum induction:

=
+

× ×P
T

K T
ratio n

( )

( ) ( )
.fold

f
c n

d
n

f
c n copy (5)

However, we want to consider the fact that the plasmid copy

number changes the number of binding sites for the TF

(proportional to the number of plasmids in our construct, as

there might be cooperativity and therefore more than one binding

site per plasmid). We propose the following modification to

Equation (5), which accounts for the fact that to reach

half‐maximum saturation of a higher number of binding sites,

the number of binding complexes also needs to be that much

higher:

=
× +

× ×P
T

K n     T
ratio n

( )

( ) ( )
.fold

f
c n

d copy
n

f
c n copy (6)

When replacing Equation (4) into Equation (6), we obtain

=
+

× ×
× ×( )

P
I

I
ratio n .fold

n

K K n

T

n
n

copy
d dis copy

f
ntf

(7)

Let =K K K(compound)/ (pinocembrin)m dis dis in Equation (8) be the

ratio between the dissociation constant of the compound of interest

divided by the one for pinocembrin, where the dissociation constant

in itself is unknown. Therefore, =K 1m for pinocembrin and

=K K K(naringenin)/ (pinocembrin)m dis dis for naringenin. Introducing

this parameter allows us to only consider the difference of binding

strength between FdeR and naringenin or pinocembrin instead of the

absolute binding values, which would add one sloppy parameter to

our model. Moreover, since the TF is produced under a constitutive

promoter on the plasmid, we can assume it is produced proportion-

ally to the plasmid copy number. The proportionality constant

is included into the Kdsingle constant, as well as )K (pinocembrindis ,

leading to Equation (8). We can note here that given our hypothesis

(number of TFs and binding sites scaling with the copy number), no

effect would be obtained in our model if FdeR were not a dimer:

=
× +

× ×−
×( )

P
I

K K n I
ratio n .fold

n

dsingle m copy
n n n copy1 tf

(8)

3.7 | Analysis of the dose–response model

3.7.1 | Model fitting of pinocembrin

The model was fitted to the data according to the procedure

presented in materials and methods. The fitted parameters were

K , ndsingle and ratio, as by definition =K 1m for pinocembrin. The

obtained parameters are listed in Table 1. Since we intend to model

the effect of copy number variations, we chose to use constructions

sharing the same RBS sequence for our parameter fitting: 157, 257,

357, and 457.

We chose to represent both the best fit (Figure 4a) and 100

simulations (Figure 4b), where parameters were randomly sampled

from the estimated distribution of parameters (see Section 2 for

more details). We can see when looking at the random parameters

that there is some leeway in the estimation, allowing for a rather

wide dose–response curve. However, the expected behavior is

maintained, even accounting for uncertainty in the estimation of

the parameters. We chose to use the same cooperativity constant

n, as well as the same K ,dsingle constant, which would be the IC50

for a single plasmid, and hence its name. However, as mentioned

in the data analysis section, the dynamic range does not scale
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proportionally with the plasmid copy number. For this reason,

ratios varying from 0.14 to 1.76 were obtained and used in this

study, instead of using a single parameter for this effect. This is due

to a host of factors: higher plasmid copy number diverts more

resources from the cell, the replication machinery is not the same

for the different plasmids, which have different replication origins,

and the cells do not divert resources to plasmids proportionally to

their copies. Moreover, an interesting feature of the data is that

production from the very high copy number construct (457) is

initially higher than with the high copy number (357) until

concentrations cross a threshold. We can imagine that the demand

on the cell from our constructs becomes too high in the 457

construct, and the cell activates a “stress response.” This is

observed when using both compounds for induction.

3.7.2 | Model fitting of naringenin

We were interested to determine whether the model could

reproduce the features observed in the naringenin data: globally

lower fold change of induction than for the pinocembrin induction,

but the same overall behavior on sensitivity. Our aim was to

account for the compound change using only our Km parameter,

which represents the ratio between the dissociation constants of

inducers to the TF ( )=K K K(naringenin)/ (pinocembrinm dis dis ). The

results of this modeling strategy, when fitting only Km, give the

results presented in Supporting Information Figure 2. However, as

mentioned in Section 3.7.1, we chose to model fold change

variation with a single parameter (multiplied by the copy number).

Therefore, our model can capture changes in sensitivity due to

both copy number increases and compound changes, but since this

is included in our Hill function, variations of fold change at

saturating amounts of substrates cannot be captured. Therefore,

we added a correcting factor for all naringenin models, reducing all

ratio values in our models by 1.3. This factor was chosen as a

weighted average of correcting factors for the different

constructs. The results obtained by this strategy can be seen in

Figure 5a,b.

The global behavior of the biosensor is respected for all

sensors, meaning that the same model does apply to this data. The

shift in dose response can be explained by the Km parameter,

which shifts the curve toward less sensitivity by doubling IC50.

This is confirmed by the data for 357 and 457 constructs, which

are the constructs with the least variability on IC50 estimation.

We can also observe that the dynamic range is slightly lower,

meaning that our modification of the ratio parameter by the same

correcting factor is justified (for naringenin concentrations up to

100 µM). This could be explained by an effect that is not taken

into account in our model, such as higher load, or some different

toxicity between pinocembrin and naringenin. Km naringenin( ) is bigger

than one, which means that the dissociation of FdeR dimer with

naringenin is higher than the one with pinocembrin. In other

words, at the same TF and inducer concentration, there is more TF

bound with pinocembrin than would be with naringenin. This is

surprising given the fact that FdeR was identified in the fde

operon from Herbaspirillum seropedicae, which is involved and was

identified for its implication in naringenin degradation. This means

that we expected it to be evolved for naringenin detection, but

that it detects pinocembrin at least as well.

All this indicates that our model, although very simple and

based on broad knowledge of the sensor rather than precise

chemical constant values, manages to successfully capture our

system’s behaviour.
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F IGURE 4 Model fitting to pinocembrin data for varying copy numbers. (a) Best fit parameters for pinocembrin. (b) 100 random simulations
from parameter fitting for pinocembrin. Error bars represent standard deviation [Color figure can be viewed at wileyonlinelibrary.com]



3.8 | Time‐course model assumptions
and derivation

Once we had a satisfying dose–response model, we chose to model the

time‐dependent response of our biosensor, to determine the delay

between the signal and the fluorescence production. We considered a

relatively simple time‐course model, consisting of a production term and

a degradation term for the protein. Results are presented in Appendix 1.

This time‐course modeling partially allowed us to understand the impact

of initial dilution on the biosensor’s behavior and emphasized the need

to wait for it to reach steady state for it to be fully functional and

decipher between different inducer concentrations. The shortcomings

of this time‐course modeling confirm that although it is interesting to

see the delay in response of the biosensor signal, modeling the dose–

response curve is more important to show characteristics of the

biosensor, such as changes to the dose–response curve when used for

screening pinocembrin‐producing strains.

3.9 | Leveraging our model for biosensor design
improvement

Having constructed a satisfying dose–response model, it becomes

interesting to use it to make predictions for future improvements of

our design. We therefore considered three parameters that synthetic

biologists can tune and study their effect on half‐maximum induction

(IC50), used as a proxy for sensitivity. A higher IC50 means shifting the

sensitivity of the biosensor toward higher concentrations and

therefore can be used to screen higher producing strains. A lower

IC50 means shifting it toward lower concentrations and more

sensitivity to trace amounts of pinocembrin. The three parameters

whose effects we decided to study are the following: plasmid copy

number, DNA and TF binding strength, and TF and inducer binding

strength. Plasmid copy number can easily be tuned by choosing the

replication origin of the plasmid, DNA–TF affinity can be modified

either by random mutagenesis of the promoter or by protein

engineering (and measured through gel retardation assays), and

TF–inducer affinity can be tuned by protein engineering. In Figure 6,

we represent fold change compared with current fitted constants for

TF and inducer binding strength. DNA and TF dissociation constant

being captured by our Hill equation, it is proportional to our Kdsingle,

constant, so the binding strength is proportional to the inverse of

Kdsingle, and we are also representing fold changes around this

constant. The copy number, on the other end, is represented as the

desired value for copy number, as that can be achieved by choosing a

correct replication origin to achieve the desired copy number. We

can see in Figure 6a that increasing the binding constant between TF

and DNA or TF and the inducer has similar consequences: increasing

it leads to lower IC50 or higher sensitivity, whereas decreasing it

leads to higher IC50, allowing one to detect higher titers of

pinocembrin. This suggests that random mutagenesis at the promoter

might be a better first approach to tune the biosensor’s behavior to

an experimentalist’s needs, since it is easier to engineer rather than

engineering the binding strength of the TF and its inducer, and both

have similar consequences. Figure 6b, on the contrary, shows the

impact of changing plasmid copy number or binding affinity of the TF

for the inducer. As seen in our experimental data, increasing the copy

number (which leads to higher expression) also increases sensitivity,

allowing for better detection of the inducer but at lower concentra-

tions. Reducing the copy number enables detection at higher titers,

but reduces the fold change of the biosensor. On the contrary,
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augmenting the affinity of the TF to the inducer boosts sensitivity but

does not allow differentiating different responses at high concentra-

tions of the inducer. Therefore, our model suggests possibilities to

further engineer our system, whether to sense high titers of

pinocembrin to increase the biosensor’s sensitivity.

4 | DISCUSSION

The use of TF‐based biosensors is expanding in many fields, ranging

from environmental, biomedical to industrial biotechnology applications

and more specifically as a fast and reliable screening tool to address the

problems of high‐throughput limits of the other approaches (Dietrich,

McKee, & Keasling, 2010; Eggeling, Bott, & Marienhagen, 2015). Some

successful attempts have been reported describing strategies leading to

the fine‐tuned response dynamics and dynamic ranges by engineering

tunable biosensors (Chen, Xia, Lee, & Qian, 2017; Rogers et al., 2015).

TFs have a ligand‐binding domain most likely to be promiscuous. In this

study, we showcased the potential of chemical structure similarity

scoring to select TF starting candidates to develop or engineer

biosensors for small molecules. We have constructed a biosensor to

detect pinocembrin with a fold change of around 60. FdeR appears

unexpectedly to be more sensitive to pinocembrin than to naringenin,

its natural effector, and has the required specificity to discriminate

against the intermediates in the pinocembrin biosynthetic pathway.

Indeed, the first report of this TF in Marin et al. (2013) identifies FdeR

as the TF responsible for the regulation of a naringenin degradation

operon. However, our experiments prove that FdeR senses pinocembrin

at least as well, suggesting that this operon could also be involved in

pinocembrin degradation. Two possible degradations pathways were

identified by Marin et al. (2013) based on in silico analysis of the

enzymes found in the operon. One started by opening the C‐ring of

naringenin, whereas the other opened the A‐ring. In both cases, since

pinocembrin differs from naringenin by a group on the B‐ring, it could
also be degraded by these pathways. A recent study performed by

Zhang et al. (2017) was also successful in generating a new biosensor

for specific lactam compounds using a chemoinformatics approach

inspired by small‐molecule drug discovery. Methodologies based on the

structural analysis of compounds could offer an alternative to some

heavy strategies based on the design of new TFs for nonnatural ligands

(Looger, Dwyer, Smith, & Hellinga, 2003; Mandell & Kortemme, 2009;

Schallmey, Frunzke, Eggeling, & Marienhagen, 2014) or by random

mutagenesis (Tang, Fazelinia, & Cirino, 2008; Tang et al., 2013; Tang &

Cirino, 2011).

To extend our knowledge of the rules governing the sensitivity,

specificity, and dose responses of biosensors, we have also built

different sensor constructs varying the copy number and the RBS to

scan different response patterns that could serve as a template for

modeling and to help extract rational understanding of the biosensor

behavior.

Although simple, the model developed in this paper allows us to

explain the behavior of our biosensor to both naringenin and

pinocembrin with a single parameter that accounts for the binding

variability between these two compounds and the TF. It also
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F IGURE 6 Effect on biosensor sensitivity of varying copy numbers, DNA, and transcription factor (TF) binding affinities or transcription

factor and inducer binding affinities. Half‐maximum induction (IC50), used as a proxy for sensitivity, is represented in colors ranging from
white (low IC50, high sensitivity) to dark blue (high IC50, low sensitivity) on a log scale. Binding constants are represented as fold‐change
compared with current fitted constants. (a) Comparison of the effect of changing TF and DNA binding constants and TF and inducer binding
constant. (b) Comparison of the effect of changing plasmid copy number and TF and inducer binding constant [Color figure can be viewed at

wileyonlinelibrary.com]



accounts for variations of copy number on the sensitivity of the

biosensor starting from a simple idea: if there are more binding sites,

there is a need for proportionally more activators to reach half‐
maximum saturation. This is a simple but useful addition to the

synthetic biology modeler’s toolbox when working on poorly

characterized systems where more robust modeling approaches,

such as mechanistic or statistical modeling, are not possible to use.

Our model allows us to not only describe trends but also

quantitatively correct values.

An interesting effect we managed to capture is the effect of copy

number on IC50. This effect was already observed in a previous work

of Zucca et al. (2012) although the authors did not investigate the

link between copy number and IC50. Although they have an IC50 that

increases with copy number (although the relationship is not linear),

the way they model their binding renders a numerical comparison

impossible.

In the present paper, we have two different effects when

increasing copy number: we increase the number of binding sites

(increasing IC50) but we also increase the number of available TFs,

allowing for more binding even with less inducer, thereby reducing

the IC50. According to our model, if the TF concentration was not

increasing, we would also see a reduced sensitivity, as found in Zucca

et al., which confirms our biosensor design idea.

As we have seen, the time evolution model is not fully satisfying.

A few strategies could help make it closer to the data, but they all

present the disadvantage of adding new free parameters: adding a lag

time for protein production as the introduced dilution does not seem

to be enough and add some toxicity or load effect when copy

number, TFs, and inducers are in too great numbers. These were not

implemented as our aim was to present a model with a minimal set of

parameters that explained the data well enough.

Another interesting feature of our model is to suggest further

modifications of our design depending on the desired application:

increasing its sensitivity, its dynamic range, or being able to sense

higher titers of pinocembrin, by capturing the effects of changing copy

number, DNA–TF binding affinity, or TF–inducer binding affinity.

As a conclusion, we have presented a simple model with a

minimal number of parameters that allows us to capture the effects

of both copy number and inducer variations on our biosensors’

behaviors and most notably on sensitivity, which are effects that

have not been addressed as such and especially never with such a

simple formalism. This model, based on a simple Hill equation, has the

advantage of being very versatile and easy to use on previously

uncharacterized systems.

The development of the pinocembrin biosensor, its modeling, and

understanding its behavior open doors to generate more transcription‐
factor‐based biosensors to meet the increasing demands of screening

and dynamically regulating metabolic pathways in industrial strains.
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