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Neuromusculoskeletal simulation provides a promising platform to inform the design
of assistive devices or inform rehabilitation. For these applications, a simulation must
be able to accurately represent the person of interest, such as an individual with a
neurologic injury. If a simulation fails to predict how an individual recruits and coordinates
their muscles during movement, it will have limited utility for informing design or
rehabilitation. While inverse dynamic simulations have previously been used to evaluate
anticipated responses from interventions, like orthopedic surgery or orthoses, they
frequently struggle to accurately estimate muscle activations, even for tasks like walking.
The simulated muscle activity often fails to represent experimentally measured muscle
activity from electromyographic (EMG) recordings. Research has theorized that the
nervous system may simplify the range of possible activations used during dynamic
tasks, by constraining activations to weighted groups of muscles, referred to as muscle
synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy
(CP), and may provide a method for improving subject-specific models of neuromuscular
control. The aim of this study was to test whether constraining simulation to synergies
could improve estimated muscle activations compared to EMG data. We evaluated
modeled muscle activations during gait for six typically developing (TD) children and
six children with CP. Muscle activations were estimated with: (1) static optimization
(SO), minimizing muscle activations squared, and (2) synergy SO (SynSO), minimizing
synergy activations squared using the weights identified from EMG data for two to five
synergies. While SynSO caused changes in estimated activations compared to SO, the
correlation to EMG data was not higher in SynSO than SO for either TD or CP groups.
The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and
SynSO (CP: 0.46, TD: 0.26 for five synergies). Constraining activations to SynSO caused
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the simulated muscle stress to increase compared to SO for all individuals, causing a
157% increase with two synergies. These results suggest that constraining simulated
activations in inverse dynamic simulations to subject-specific synergies alone may not
improve estimation of muscle activations during gait for generic musculoskeletal models.

Keywords: electromyography, muscle synergies, musculoskeletal modeling, cerebral palsy, static optimization

INTRODUCTION

Muscle synergies have been used as a method to describe how
muscles are commonly activated during tasks such as walking,
by identifying a low dimensional space of weighted muscle
groupings (Bizzi and Cheung, 2013). These weighted groups of
muscles have been shown to be altered among individuals with
neurologic injuries, such as stroke or cerebral palsy (CP) (Cheung
et al., 2009; Clark et al., 2010; Steele et al., 2015a; Tang et al.,
2015; Shuman et al., 2016). Synergies appear to mature in stable
patterns early in an individual’s lifespan, making them a potential
platform for quantifying and modeling an individual’s motor
control. In unimpaired children, synergies have been shown to
be similar to adults after five years of age (Dominici et al., 2011;
Rozumalski et al., 2017). For children with CP, synergies are
altered but do not change over time, even after extensive surgical
interventions with inpatient rehabilitation (Shuman et al., 2019).
Although calculation of synergies has been used to describe
muscle activation patterns in experimental data, these patterns
have only begun to be applied to support musculoskeletal
modeling. Using an individual’s synergies calculated from
experimental data to inform neuromusculoskeletal simulations
may improve estimates of an individual’s muscle coordination or
response to interventions like assistive devices or rehabilitation.

Estimating muscle forces and activations are important for
many questions asked with musculoskeletal modeling (Hicks
et al., 2015). Examples include contributions of specific muscles
to gait (Correa et al., 2011; Mcgowan et al., 2011; Steele
et al., 2013; Mansouri et al., 2016) loads acting upon joints
(Steele et al., 2012; Walter et al., 2014; Wesseling et al., 2015;
Serrancolí et al., 2016), impacts of surgical interventions (Delp
et al., 1996; Reinbolt et al., 2008; Fox et al., 2009), and
use of orthotic devices (Hegarty et al., 2017; Rosenberg and
Steele, 2017). However, when muscle activations are calculated
using optimization-based methods, there are large variations in
estimated muscle activations across studies (Tinler et al., 2018).
Comparisons of modeled muscle activations to experimental
data from electromyographic (EMG) recordings are frequently
performed only qualitatively, broadly assessing timing and
amplitudes (Hamner et al., 2010; Dorn et al., 2012; Hicks et al.,
2015; Lerner et al., 2015; Wesseling et al., 2015; Krogt et al.,
2016; Żuk et al., 2018b). Prior quantitative assessments revealed
only moderate correlations between experimental and modeled
muscle activations for both typically developing (TD) individuals
and individuals with neurologic injuries (Heintz and Gutierrez-
Farewik, 2007; Blazkiewicz, 2013; Żuk et al., 2018b; Veerkamp
et al., 2019). A recent study found similar correlations between
individuals with CP and TD individuals (Veerkamp et al.,
2019). Prior research often used custom constraints, specifying

when a muscle must be on and off, or other strategies to
try to get better agreement between simulated activations and
experimental measures from EMG data (Liu et al., 2008; Steele
et al., 2012). Synergies may improve estimates of computed
muscle activations by providing an alternate method to constrain
which muscles are simultaneously activated based upon an
individual’s EMG data (Ting et al., 2012).

Static optimization (SO) is a common algorithm used to
estimate muscle activity that minimizes an objective function,
such as minimizing the sum of squared muscle activations, while
satisfying the system’s equations of motion. These optimization
methods are theorized to reflect the strategies that unimpaired
adults use to coordinate muscle activity. However, a recent
study by Simpson et al. (2016) found that individual muscle
activations could be adjusted to almost any level at any point
in the gait cycle while still satisfying kinematic and kinetic
constraints, suggesting that shapes of modeled activation patterns
are driven predominantly by the choice of optimization function,
rather than being required by the joint torques (Simpson et al.,
2016). As high levels of co-contraction are a hallmark of gait
in clinical populations like CP (Gage et al., 2009; Steele et al.,
2017), other optimization criteria may be more appropriate
when modeling pathologic gait (Steele et al., 2013; Sartori et al.,
2017). If synergies reflect an individual’s neuromuscular control
strategy, constraining to individualized synergy structures may
help capture subject-specific activations patterns.

Synergies have previously been used to constrain muscle
activity for musculoskeletal simulations, most prominently in
forward dynamic simulations (Neptune et al., 2009; Mcgowan
et al., 2011; Allen and Neptune, 2012; Sartori et al., 2013;
Gopalakrishnan et al., 2014; Gonzalez-vargas et al., 2015;
Mehrabi et al., 2019). Two studies have employed synergies
with musculoskeletal modeling in pathologic gait of adult stroke
survivors (Allen et al., 2013; Meyer et al., 2016). Most of
these simulation studies have focused on tracking ideal synergy
activation patterns as part of the optimization (Allen et al., 2013;
Sartori et al., 2013; Gonzalez-vargas et al., 2015; Meyer et al.,
2016; Serrancolí et al., 2016), which has allowed for performance
similar to EMG tracking simulations, while reducing the number
of input parameters. These methods require extensive model
calibration achieved by adjusting model parameters like muscle
activation delays, EMG scale factors, and tendon slack lengths
such that the models closely match experimental kinematics
and kinetics. These procedures are time and computationally
expensive. One study applied synergy controls without EMG
tracking and found better calculation of joint loads than
individual EMG alone; however, this model was also highly
calibrated for a single individual (Walter et al., 2014). Another
study in the upper limb used optimization of synergy activations
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to model muscle activations during three-dimensional force
generation and found that synergies better represented EMG data
than independent muscle optimization (Borzelli et al., 2013).

The goal of this research was to evaluate whether constraining
simulated muscle activations to an individual’s synergies
calculated from experimental EMG data can improve estimates
of muscle coordination for both TD children and children with
CP. We hypothesized that the similarity between EMG data
and activations for traditional SO methods would be lower for
children with CP than TD peers, due to altered motor control. By
specifying and constraining muscle activations to an individual’s
synergies, we hypothesized that the similarity between EMG data
and modeled activations would improve for both groups. This
investigation examines whether synergy-based constraints alone,
without changes to the model properties, can be used to improve
fidelity of neuromusculoskeletal models to inform clinical or
rehabilitation applications.

MATERIALS AND METHODS

Participants
We retrospectively analyzed clinical motion analysis data
collected at UZ Pellenberg, Belgium, for six children with CP
(four males, age = 10.0 ± 3.3 years, mass = 33.2 ± 13.6 kg,
height = 1366 ± 233 mm) and six TD children (three
males, age = 8.9 ± 1.1 years, mass = 29.2 ± 1.8 kg,
height = 1334 ± 39 mm). All children with CP were in Gross
Motor Function Classification System (GMFCS) Levels I or II.
Marker trajectories were tracked using a 10–15 camera VICON
system (Nexus 1.8.4. Vicon-UK, Oxford, United Kingdom)
sampled at 100 Hz. Each trial consisted of barefoot walking at a
self-selected speed on a 10 m walkway. Ground reaction forces
were collected using two AMTI force plates sampled at either
1000 or 1500 Hz. The number of over ground walking trials
ranged between 4 and 8 for CP and 3 and 10 for TD.

Electromyography
Surface EMG data (Wave Wireless EMG, Cometa, Bareggio,
Italy) were collected at either 1000 or 1500 Hz from eight muscles
bilaterally (gluteus medius, rectus femoris, vastus lateralis, medial
hamstrings, lateral hamstrings, tibialis anterior, gastrocnemius,
and soleus) during clinical gait analysis. Because we were using
retrospective clinical data, not all muscles were recorded for
every trial and, for some individuals, a single muscle was missing
from all trials (right vastus lateralis in CP03, CP04, and CP05,
left tibialis anterior in TD02, and left rectus femoris in TD04).
Raw EMG data were bandpass filtered between 20 and 500 Hz
upon collection. We calculated a linear envelope for each muscle
by high-pass filtering at 20 Hz, rectifying the data, and low-
pass filtering at 6 Hz (Shuman et al., 2017). Prior to calculating
synergies, we concatenated the middle 80% of EMG data for all
available trials for each participant to maximize the amount of
data for synergy analysis while removing periods of transient
acceleration or deceleration near the beginning and end of each
trial (Oliveira et al., 2014; Shuman et al., 2017). Each trial
contained three to five strides of EMG data. The concatenated

data were down-sampled to 100 Hz and scaled to a peak
amplitude of one for each muscle.

Synergy Analysis
For each individual, we calculated synergies with weighted
non-negative matrix factorization (WNMF) using the Matrix
Factorization Toolbox (Kim and Park, 2007; Li and Ngom, 2013)
in Matlab (MathWorks, Inc., Natick, MA, United States) from
the concatenated EMG data. We have previously used WMNF to
accommodate clinical EMG data with poor or missing channels
by assigning a weight of zero to those data points, allowing us to
maximize data for synergy analysis (Shuman et al., 2018, 2019).
Aside from the missing EMG channels noted above, all muscles
were recorded in at least two trials within the concatenated
session. WNMF numerically identifies a set of synergy weights
(Wmxn) which are activated (Cnxt) such that the processed
EMGmxt data are approximated, where m is the number of
muscles (7 or 8), n is the number of synergies (2–5), and t is the
number of time points in the concatenated EMG session:

EMG = W x C + error

Synergies were calculated for each side (unilaterally) using
the following WNMF settings: 50 replicates, 1000 maximum
iterations, 1 × 10−4 minimum threshold for convergence,
and 1 × 10−6 threshold for completion. Synergy weights and
activations were scaled such that the maximum weight in a
synergy was one. Similar to prior research, reconstruction of the
EMG data by n synergies accounted for more EMG variance
in CP than to TD for all numbers of synergies (Figure 1)
(Steele et al., 2015a).

Musculoskeletal Modeling
We used marker trajectories from an extended marker set,
based upon the Plug-in-Gait (PiG) model, to scale a generic
19 degree-of-freedom and 92 musculotendon actuator model in
OpenSim version 3.2 (Delp et al., 1990, 2007; Anderson and
Pandy, 1999). We used inverse kinematics to calculate joint angles
by minimizing the error between the experimental markers and
virtual model markers. The average RMS marker error was
0.92 ± 0.19 cm and the average maximum marker error was
2.64 ± 0.97 cm (Hicks et al., 2015). The force plate data used
in this study had a threshold applied upon collection where
forces under 25 N were not recorded. Thus, to avoid dynamic
inconsistencies in our models occurring near heel strike and
toe off, we limited our investigation to single-limb stance. We
performed a residual reduction analysis to improve dynamic
consistency in our models by making small adjustments to joint
angles and adjusting the position of the center of mass in the
lumped head, arms, trunk, segment (Thelen and Anderson,
2006). A total of 88 simulations of single-limb stance phase
(44 CP, 44 TD) were generated. Swing phase was evaluated for
each limb when the opposite limb was in stance. The number
of simulations per individual ranged between 3–13 for CP
and 5–10 for TD.

We calculated simulated muscle activations using two
methods (Figure 2). First, we used the standard SO algorithm
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FIGURE 1 | Synergies calculated from EMG data: (A) Muscle weights for two to five synergies for CP and TD. (B) The total variance in EMG data accounted for by a
given number of synergies was greater for children with CP than TD peers. The “+” represents outlier points (greater than the 75th percentile + 1.5∗ IQR or less than
the 25th percentile – 1.5∗ IQR.

FIGURE 2 | Musculoskeletal modeling framework: Musculotendon activations are computed from the musculoskeletal model using the static optimization algorithm
or the synergy static optimization algorithm and compared to measured EMG data. Static optimization minimizes the sum of all 92 actuators squared. Synergy static
optimization groups muscles together using synergy weights from the measured EMG data and minimizes the sum of the activations of those synergies squared.

in OpenSim (Anderson and Pandy, 2001). SO estimates muscle
forces that satisfy joint inverse dynamics at each point in
time while accounting for muscle force-length properties. The
cost function employed by SO minimizes muscle stress as the
sum of squared muscle activations (Crowninshield and Brand,
1981; Kaufman et al., 1991; Anderson and Pandy, 2001). To
evaluate whether constraining to synergies improved estimates
of muscle activity, we used the synergy optimization (synSO)
plug-in previously described by Steele et al. (2015b). SynSO
allows the user to specify weighted groups of muscles to be
commonly activated while minimizing the sum of squared

synergy activations. For each synergy, the synergy weights we
calculated from experimental EMG data were applied to the
corresponding musculotendon actuators for each muscle. Note
that the synergy weights were calculated from concatenated
EMG data representing all parts of the gait cycle (not just
single-limb stance). Thus, synergy weights for the gastrocnemius
were applied to both the medial and lateral gastrocnemius
actuators, weights for the medial hamstrings were applied to
both semimembranosus and semitendinosus actuators, weights
for the lateral hamstrings were applied to both biceps femoris
long head and short head actuators, and weights for the rectus
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femoris, vastus lateralis, tibialis anterior, and soleus were all
applied to their individual musculotendon actuators. As only
26 of the model’s 92 musculotendon actuators were accounted
for with EMG data, the remaining 66 musculotendon actuators
were independently activated as in SO. For each trial, we
evaluated SynSO for sets of two, three, four, or five synergies
for each participant. Synergies were calculated and applied
independently for each individual and each leg (e.g., in a four-
synergy simulation, we calculated and used four synergies for
the right leg and four synergies for the left leg). Constraining
activations through SynSO to fewer synergies reduced the
number of successful simulations. For all numbers of synergies,
more simulations were successful in CP than TD (e.g., 95 vs 86%
for five synergies; 45 vs 34% for two synergies).

Outcome Measures
To determine whether constraining to synergies resulted in
simulated muscle activations that were more similar to measured
EMG data, we calculated the cosine similarity between the
filtered EMG data and simulated muscle activations for SO
and SynSO. We determined that the similarity due to chance
was 0.55, which we calculated as the average cosine similarity
across all individuals and EMG channels to 1000 random
vectors with a truncated Laplacian distribution (Tresch et al.,
2006). Thus, cosine similarity was normalized such that the
similarity due to chance was given a value of zero (e.g., a
similarity of 0.55 would have a normalized similarity of 0.0). We
examined the similarity for each muscle by concatenating the
simulated activations from all trials and calculating the cosine
similarity to the corresponding measured EMG data. For muscles
modeled with multiple musculotendon actuators, we averaged
activations for comparison to EMG. We calculated the average
similarity for each participant across all muscles. We compared
the average normalized similarity of estimated activations to
EMG data between SO and SynSO, and between single-limb
stance and swing for each algorithm. We also computed the
change in summed muscle stress (overall and by muscle) as
the summed activation of each muscle and computed peak
activation of muscles. Descriptive statistics (median and IQR)
were used to compare normalized similarity, muscle stress, and
peak simulated activations.

RESULTS

The similarity of estimated activations and experimental EMG
data was similar between SO and SynSO, but generally poor for
both algorithms. The normalized similarity across single-limb
stance and swing between EMG and simulated muscle activations
from SO was higher in CP [median (IQR): 0.48 (0.17)] than in
TD [0.36 (0.18)] (Figure 3). Normalized similarity for SynSO in
CP was less than SO when fewer synergies were used, with values
of 0.37 (0.10), 0.38 (0.09), 0.48 (0.17), and 0.47 (0.19) for two to
five synergies, respectively. In TD, similarity from SynSO was less
than in CP and was lower than SO with a similarity of 0.24 (0.21),
0.19 (0.16), 0.27 (0.24), 0.26 (0.19) for two to five synergies. For
SynSO, estimates of muscle activity were more similar to EMG

FIGURE 3 | Normalized similarity of simulated activations and EMG data:
Cosine similarity was used to examine how well estimated activations from
simulation represented experimental EMG data for the TD and CP groups
during single-limb stance and/or swing. Similarity was normalized such that
zero equals similarity due to random chance and one equals perfectly
similarity. Median similarity was better than chance for both CP and TD for SO
and SynSO. Single-limb stance phase was better represented by SynSO than
SO. The “+” represents outlier points (greater than the 75th percentile +
1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

data during single-limb stance phase (CP: 0.59–0.65, TD: 0.48–
0.51) than swing (CP: 0.36–0.61, TD: 0.26–0.32). For SO, there
was no difference in single-limb stance [CP: 0.39 (0.26), TD: 0.34
(0.16)] or swing [CP: 0.38 (0.26), TD: 0.33 (0.21)] for estimates of
muscle activity compared to EMG data.

Similarity to EMG data was highly variable between
individuals. The gastrocnemius, soleus, and tibialis anterior were
the most similar muscles to EMG recordings using SO (Figure 4).
SynSO tended to improve the similarity to EMG for the plantar
flexors (CP: median soleus similarity increased from 0.65 for SO
to 0.76 for three SynSO) and decreased the similarity to EMG for
the tibialis anterior (TD: median similarity decreased from 0.57
for SO to –0.24 for three SynSO). The similarity of the gluteus
medius to EMG was higher in CP [SO: 0.72 (0.22)] than TD
[0.37 (0.30)] but did not become more similar when SynSO was
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FIGURE 4 | Similarity of individual muscles: The similarity of each muscle was
compared for SO and SynSO for CP and TD groups. Similarity was
normalized such that zero equals similarity due to random chance and one
equals perfectly similarity. Activations computed with SO had the lowest
similarity to EMG data for the rectus femoris (REF), vastus lateralis (VAL), and
biceps femoris (BIF). Activations computed with SynSO had poor similarity to
EMG data for the tibialis anterior (TIA), REF, and BIF (for the TD group). The
gastrocnemius (GAS) and soleus (SOL) had the greatest similarity to EMG
data for both algorithms. The “+” represents outlier points (greater than the
75th percentile + 1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

employed. The hamstrings and rectus femoris tended to become
less similar to EMG when constrained to SynSO for the TD
group and had only small changes in CP. The vastus lateralis
tended to be only as similar as chance using SO and became more
similar to EMG for all numbers of synergies in CP, but was still
poorly represented in the TD group (SO: –0.16; five SynSO 0.19).
Examination of the activation patterns between SO and SynSO
showed that most muscles were recruited to higher amplitudes in
single-limb stance (Figure 5).

Simulated muscle stress increased in SynSO relative to SO
for all individuals and was highest for the two synergy solutions
(Figure 6) with an increase of 157% (72%). Simulated muscle
stress is a rough estimate of energetic cost, indicating that the
constraints of SynSO find solutions requiring greater effort.
Muscles that were constrained to a synergy increased muscle

stress by 72% (61%) for two synergies and 64% (45%) for five
synergies compared to SO. Muscles that were not constrained to a
synergy in SynSO increased muscle stress by 323% (235%) for two
synergies and 147% (98%) for five, suggesting that constraining to
synergies for muscles with EMG data led to greater dependence
on non-constrained musculotendon actuators in the model.
Despite the large changes in summed muscle stress, changes in
peak activation were less than 10% for over 60% of the muscles
across all numbers of synergies in SynSO.

SynSO caused changes in simulated activations both for
muscles included within synergies and muscles that were
independently controlled (no EMG data, Figure 7). Muscles that
were constrained to synergies demonstrated the largest changes,
with a normalized similarity between SO activations and SynSO
of 0.17 (0.22) for two synergies and 0.54 (0.16) for five synergies.
Muscles that were independently controlled had smaller changes,
with a normalized similarity between SO and SynSO activations
of 0.52 (0.09) for two synergies and 0.60 (0.14) for five synergies.

DISCUSSION

We investigated whether constraining musculoskeletal
simulations to an individual’s synergies calculated from
experimental EMG data could improve estimations of muscle
activation from inverse dynamic simulations of gait. Across all
subjects, SynSO caused changes in estimated muscle activation
patterns compared to traditional SO. Compared to SO, estimated
muscle activations using SynSO tended to better match EMG
data during single-limb stance for both TD and CP individuals.
However, SynSO also tended to estimate activations that were
less similar to EMG data during swing, such that overall SynSO
did not better estimate EMG data than SO. These differences
may indicate that synergies better represent coordination
patterns in stance than swing. For both algorithms, the similarity
to experimental EMG data for both CP and TD groups was
generally poor, emphasizing the need for new methods to model
muscle activity for analyses of human movement. As modeling
methods are used to inform rehabilitation or assistive device
design, identifying the changes in modeling and simulation
methods required to accurately capture muscle coordination will
be critical to ensure that predicted effects will be relevant for a
specific individual.

The correlations found in this study between EMG and SO
were similar to those previously reported (Heintz and Gutierrez-
Farewik, 2007; Blazkiewicz, 2013; Żuk et al., 2018b; Veerkamp
et al., 2019). These four studies demonstrate variability both
between individuals and across muscles, similar to our results.
The best-represented muscles during gait were the plantar flexors,
while the worst represented muscles were the knee extensors
and hamstrings, consistent with our results for both CP and
TD (Heintz and Gutierrez-Farewik, 2007; Blazkiewicz, 2013;
Żuk et al., 2018b).

Selection of an appropriate number of synergies is challenging
for this type of problem. To avoid biasing our results based upon
and ad hoc threshold, we computed our results over a range of two
to five synergies. We chose to apply a minimum of two synergies,
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FIGURE 5 | Average SO, 4 SynSO, and EMG activation patterns for CP and TD: The modeled activation tended to be higher for SynSO than SO for most muscles in
both TD and CP during single-limb stance. EMG activations are scaled to the maximum activation in either SynSO or SO.

as a representation of gross flexion and extension which has
been previously been found to well represent data in infants and
individuals with CP (Dominici et al., 2011; Steele et al., 2015a).
As additional synergies were added, muscle activation patterns
within each synergy became more independent (e.g., the tibialis
anterior was largely independent in the five-synergy solution for
CP and TD), more closely representing the conditions in SO
(Figure 1). Constraining to a smaller number of synergies led to
higher levels of overall muscle stress, indicating an overall less
optimal solution. As SynSO did not tend to improve correlation
with EMG data for any number of synergies, we were unable to
find an optimal number of synergies needed for either group.

Our results using synergies to improve estimations of muscle
activation during gait contrasts with previous studies (Borzelli
et al., 2013; Walter et al., 2014; Meyer et al., 2016; Serrancolí
et al., 2016) which found generally good estimation of EMG

with synergies. The differences between the previous work
and our results here broadly fit into three categories: the
optimization criteria, the challenge of relating EMG amplitudes
to neural excitations, and generic musculoskeletal properties. In
the prior studies of Walter et al. (2014), Meyer et al. (2016),
and Serrancolí et al. (2016), EMG shape tracking was used as
part of the optimization algorithm. In this study, we sought to
model muscle activations through a modified SO cost function
which minimized synergy activations squared, consistent with
the optimization previously implemented by McKay and Ting
(2012) and Borzelli et al. (2013). This cost was motivated
by the traditional physiologically motivated cost functions
which seek to minimize fatigue or load in individual muscles
(Crowninshield and Brand, 1981; Anderson and Pandy, 2001;
Ackermann and Van Den Bogert, 2010), while constraining the
space of allowable muscle activations to specified patterns
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FIGURE 6 | Increased sum of muscle stresses for SynSO: Muscle stress
measured as the muscle activations squared increased for both TD and CP
across all number of synergies. Increases in muscle stress were highest for
two synergies and lowest for five synergies. The “+” represents outlier points
(greater than the 75th percentile + 1.5∗ IQR or less than the 25th percentile –
1.5∗ IQR.

FIGURE 7 | Similarity of activations computed with SO and SynSO:
Activations computed with SynSO were different than those calculated from
SO, for both muscles that were constrained to a synergy and muscles that did
not have EMG data and were independently activated. Similarity was
normalized such that zero equals similarity due to random chance and one
equals perfectly similarity. The “+” represents outlier points (greater than the
75th percentile + 1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

of coactivation. The constrained search space resulted in
higher muscle stresses than what is found with independent
actuation, consistent with prior studies (McKay and Ting,
2012; Borzelli et al., 2013). We note that minimizing synergy
activations squared alters the cost function, removing the direct
physiological relationship to muscle stress. A prior investigation
by McKay and Ting (2012) in cats suggests that minimizing

synergy activations squared, as performed in this study, results
in higher muscle stress than minimizing muscle stresses squared
subject to synergy constraints. A further difference is that, unlike
the prior studies (McKay and Ting, 2012; Borzelli et al., 2013),
we did not have EMG data for all muscles in the model and
thus allowed the unmonitored muscles to have their activations
optimized independently.

The challenges in directly comparing EMG to musculoskeletal
modeling have been well documented (Farina et al., 2004;
Sartori et al., 2017) and include scaling EMG to peak neural
excitations (Ting et al., 2012; Borzelli et al., 2013; Kristiansen
et al., 2015), electromechanical delays (Durandau et al., 2018),
as well as interpretation of EMG stemming from inter-step
variability, crosstalk, cancelation, measurement orientation, and
pre-processing decisions (Farina et al., 2004; Shuman et al.,
2017). In this study, we modeled activations using subject-
specific synergies whose weights were derived from EMG data
normalized by peak measured EMG amplitude during walking.
This choice was necessitated by our use of retrospective data
and represents the simplest implementation of synergies into
musculoskeletal modeling. To compensate for the uncertain
scaling parameters between EMG and neural activation, previous
forward dynamic simulations have tracked activation patterns
but allowed the relative weights of the modeled muscles to vary
either through a minimization of muscle stress with synergy
activation tracking (Neptune et al., 2009; Allen and Neptune,
2012) or as part of the initial EMG tracking calibration process
(Walter et al., 2014; Meyer et al., 2016; Serrancolí et al., 2016).
Alternate methods of scaling synergies experimentally, such as
by a maximum voluntary contraction or the use of force-to-
EMG measurements (Borzelli et al., 2013), require the collection
and integration of additional data, significantly complicating
the implementation. Although the choice of amplitude scaling
prior to calculating synergies can impact the relative weights
of muscles within a given synergy (Shuman et al., 2017), a
recent investigation by Kieliba et al. (2018) found nearly identical
synergy structures between EMG data normalized by maximum
voluntary contractions or peak activations in healthy adults. The
consistency of these synergy structures suggests that the relative
weights of muscles within a synergy scaled by experimental data
may only have a small impact on our results.

A key limitation of our ability to model muscle activations
using SynSO is the lack of any electromechanical delay, which
neglects activation/deactivation dynamics. In those studies that
used EMG shape tracking, the electromechanical delay was also
uniquely scaled for each muscle (Walter et al., 2014; Meyer et al.,
2016) or applied from the literature (Serrancolí et al., 2016).
In a post hoc analysis, we evaluated the impacts of including a
delay between EMG and modeled activations of 10–100 ms but
found inconsistent impacts on similarity between phases of the
gait cycle and number of synergies included in the optimization.
For the previous studies which used an SO-based algorithm, the
investigations were limited to examining muscle activity during
a isometric force generation task across a variety of directions
(McKay and Ting, 2012; Borzelli et al., 2013), negating the
impact of activation dynamics. Conversely, for dynamic tasks
such as walking, in which a gait cycle may take approximately
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one second, even a 50 ms delay may have substantial impacts
on the similarity between simulated muscle activity and
experimental EMG. This is likely a defining difference in the
higher accuracy of estimated muscle activity in previous studies
incorporating synergies compared to the results of this research.

A significant limitation of this study was the use of
generic musculoskeletal models. While generic models have
the advantage of minimizing the amount of data that must
be collected for any individual, they achieve this by including
sample-based assumptions about geometry (e.g., muscle
attachment points, and bone geometry) and muscle properties
(e.g., activation delays, maximum muscle forces, and tendon
lengths). These assumptions can have large impacts on estimated
muscle activations (Correa et al., 2011; Ackland et al., 2012;
Serrancolí et al., 2016; Roelker et al., 2017; Sartori et al.,
2017; Żuk et al., 2018a; Hegarty et al., 2019) and may not
represent individual properties (Zajac, 1989), especially for
individuals not well represented by the population used to
develop the models, such as children or individuals with CP
(Barber et al., 2012; Barrett and Barber, 2013; Mudge et al.,
2014; Handsfield et al., 2016). We found variable results across
participants and muscles in both TD and CP groups emphasizing
the limitations of generic musculoskeletal models to capture
heterogeneity in our populations. To address this, previous
studies examining synergies in musculoskeletal modeling that
use EMG shape tracking tune musculotendon properties as
part of the model calibration (Walter et al., 2014; Meyer
et al., 2016; Serrancolí et al., 2016), but these parameters are
difficult to validate. Other musculoskeletal studies incorporate
imaging data to personalize bone and muscle geometry
(Barber et al., 2011; Scheys et al., 2011; Kohout et al., 2013;
Handsfield et al., 2016; Modenese et al., 2016; Sartori et al.,
2017). Incorporation of subject-specific geometry and muscle
properties may influence the utility of synergies in modeling
muscle activations, but the degree of personalization required
remains unclear.

This study demonstrated that muscle activations estimated
from SO using generic musculoskeletal modeling does not
accurately predict EMG profiles for children with CP or TD peers.
Constraining activation patterns to experimentally measured
synergies increased estimated muscle stresses, but did not
improve the estimation of muscle activations for either group.

These findings suggest that when generic musculoskeletal models
are used, constraining muscle activations to synergistic patterns
alone may not improve estimation of muscle activations during
gait. Additional methods, such as tuning of muscle-tendon model
parameters, may be required to create neuromusculoskeletal
simulations that can accurately represent muscle coordination for
rehabilitation or assistive device applications.
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Żuk, M., Syczewska, M., and Pezowicz, C. (2018a). Influence of uncertainty in
selected musculoskeletal model parameters on muscle forces estimated in
inverse dynamics-based static optimization and hybrid approach. J. Biomech.
Eng. 140:121001. doi: 10.1115/1.4040943
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