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Abstract: Arbuscular mycorrhizal fungi are among the most ubiquitous soil plant-symbiotic fungi in
terrestrial environments and can alleviate the toxic effects of various contaminants on plants. As an
essential micronutrient for higher plants, molybdenum (Mo) can cause toxic effects at excess levels.
However, arbuscular mycorrhizal fungal impacts on plant performance and Mo accumulation under
Mo-contamination still require to be explored. We first studied the effects of Claroideoglomus etunicatum
BEG168 on plant biomass production and Mo accumulation in a biofuel crop, sweet sorghum, grown in
an agricultural soil spiked with different concentrations of MoS2. The results showed that the addition
of Mo produced no adverse effects on plant biomass, N and P uptake, and root colonization rate,
indicating Mo has no phytotoxicity and fungitoxicity at the test concentrations. The addition of
Mo did not increase and even decreased S concentrations in plant tissues. Arbuscular mycorrhizal
inoculation significantly enhanced plant biomass production and Mo concentrations in both shoots
and roots, resulting in increased Mo uptake by mycorrhizal plants. Overall, arbuscular mycorrhizal
inoculation promoted the absorption of P, N and S by sweet sorghum plants, improved photosystem
(PS) II photochemical efficiency and comprehensive photosynthesis performance. In conclusion,
MoS2 increased Mo accumulation in plant tissues but produced no toxicity, while arbuscular
mycorrhizal inoculation could improve plant performance via enhancing nutrient uptake and
photochemical efficiency. Sweet sorghum, together with arbuscular mycorrhizal fungi, shows a
promising potential for phytoremediation of Mo-contaminated farmland and revegetation of Mo-mine
disturbed areas, as well as biomass production on such sites.

Keywords: molybdenum; arbuscular mycorrhizae; heavy metal pollution; ecological restoration;
phytoremediation; bioaccumulation

1. Introduction

Molybdenum (Mo) is a transition metal with low abundance in the lithosphere, but has
wide applications in many economic sectors, such as alloy, electronic parts, lubricants, catalysts,
and agricultural production [1]. It is also an essential nutrient for most organisms, and a component of
some plant enzymes involved in oxidation and reduction reactions [2]. Among the micronutrients,
Mo represents one of the scarcest trace elements in plant tissues [2]. Most plants contain Mo
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concentrations in the range of 0.8 to 5 mg/kg [3], but the critical values between deficiency and toxicity
can vary from 0.1 to 1000 mg Mo per kg dry mass [4]. Mo concentrations can reach up to 1585 mg/kg
and 1800 mg/kg in the leaf tissues of cotton and turnips respectively [5]. Although Mo is low in
phytotoxicity, exposure to excess Mo (40 mg/L) can cause adverse impacts in plants, such as chlorosis
and yellowing [6]. Particularly, excessive Mo in crops may pose potential health risks for humans and
animals via food chains. For instance, herbages containing Mo concentrations of 10 to 20 µg/g can cause
fatal molybdenosis in ruminants via inducing Cu deficiency (i.e., hypocuprosis) [7]. Hence, Mo content
in the crops growing on Mo-contaminated sites needs to be addressed.

Mo uptake by plants depends mainly on Mo forms and concentrations in soils, which can be
increased by human activities such as mining [8] and sludge applications [9]. In Mo-mining affected
soils, Mo concentrations can reach up to 1071.52 mg/kg [10] and 2903.91 mg/kg [11], respectively.
Mo concentrations in the rice grains harvested from a Mo-mining impacted field ranged from 0.58 to
12.04 mg/kg [12]. The application of sludge with higher Mo concentrations increased the Mo uptake in
forage grasses and legumes [9]. Consequently, Mo-contaminated crops may impose potential health
risk for consumers. It is of great interest to study Mo bioaccumulation and phytotoxicity in plants,
and phytoremediation of Mo-contaminated soil.

Arbuscular mycorrhizal (AM) fungi (AMF) are among the most ubiquitous soil plant-symbiotic
fungi in terrestrial environments, including sites contaminated by metallic and organic
contaminants [13,14]. AMF have been shown to improve plant mineral nutrition and attenuate
the toxicity of various contaminants to plants, thereby facilitating them to grow better on contaminated
sites [13–15]. AM extraradical mycelia can facilitate the solution of non-available nutrients
(most importantly P) in the soil, and deliver them to their host plants. Interestingly, the nutrients
in the soil, especially P and S, can affect Mo uptake in plants. Plant uptake of Mo is generally
elevated by soluble P but decreased by available S [16]. Given the above context, we hypothesize that,
in Mo-contaminated soil, AMF may change plant growth and Mo uptake and accumulation directly or
indirectly through regulating other nutrient uptake; these hypotheses still remain to be verified.

Plants are known to have different tolerances to environmental stress. Sweet sorghum, the plant
we used in our experiment, has wide adaptability and high resistance to stressful environments and can
grow on marginal lands with various disadvantages, including heavy metal contamination [17] and
salty soils [18]. Due to its high nutrition values and sugar-rich stalk, sweet sorghum is considered both
an excellent forage crop and biofuel crop [19,20]. It is of great significance for bioenergy production to
study the growth of sweet sorghum on contaminated sites. Hence, sweet sorghum may be potentially
used for both the biomass production and ecological restoration of fragile environments such as
Mo-impacted sites.

To date, only one study reported AMF effects under Mo-contamination, and the preliminary
results showed AMF increased Mo uptake by maize plants in a soil spiked with phytoavailable
(NH4)2MoO4 [21]. However, soluble molybdate rarely exists in soil. Sulfide molybdenite (MoS2) is
the principal component of commercially mined ore in China, and the most common contaminant
generated by Mo processing and tailings. Hence, it is of significance to study toxicity, uptake,
and bioaccumulation of Mo in plants exposed to MoS2 as influenced by AMF. Sweet sorghum is used
as both an excellent forage and biofuel crop [22], and a phytoremediation plant [23]. If AMF increase
the biomass production and Mo accumulation, mycorrhizal sweet sorghum can be used for both
bioenergy production and phytoremediation of polluted sites. If AMF increase sweet sorghum growth
but decrease Mo accumulation to a safe level, then they can be used for forage production.

Considering the importance of AMF in plant nutrition and tolerance, we hypothesize that AMF
can improve plant performance of sweet sorghum in soil contaminated with MoS2. The objectives
of our present experiment are to explore (1) the effects of excessive MoS2 on performance of sweet
sorghum; and (2) AMF impacts on plant growth and Mo accumulation and the underlying mechanisms.
Using an agricultural soil spiked with MoS2, we conducted a microcosm experiment to explore the
growth and Mo uptake of sweet sorghum inoculated with or without AMF. Our ultimate aims are to
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verify whether AMF can improve the performance of sweet sorghum, and to know their potential for
biomass production and revegetation or phytoremediation of MoS2-contaminted sites.

2. Materials and Methods

2.1. Soil, Plant and AMF Inoculum

Loamy soil taken from a farmland was used for the pot culture experiment (Table 1). Prior to use,
soil was sterilized for 60 min at 121 ◦C to eliminate indigenous AMF. Sweet sorghum (Sorghum bicolor (L.)
Moench var. Yajin2) was selected as the target plant. Due to its high tolerance to infertility and drought,
this cultivar is widely grown in China. Prior to sowing, seeds were surface-sterilized with NaClO
solution. AM fungal strain Claroideoglomus etunicatum (formerly known as Glomus etunicatum) BEG168
was propagated for 12 weeks using maize plants in sterilized sand [24]. The inoculum comprised a
mixture of sand, spores, mycelium, root fragments, and contained approximately 1000 spores per 100 g.

Table 1. Physicochemical properties of the soil used in the present study.

pH Organic Matter Total N Total P Total K Total Mo Total S

7.32 7.6% 13 g/kg 337.3 mg/kg 2.7 g/kg 8.4 mg/kg 147.6 mg/kg

2.2. Experimental Set-up and Procedure

The contamination status of Mo was simulated by artificially mixing MoS2 into the soil. Based on
our investigation that found Mo-contamination status can reach up to 5000 mg/kg in farmlands in
the vicinity of local Mo mines, we set up a series of Mo levels, i.e., 0, 1000, 2000, 3000, 4000 and
5000 mg/kg, in our present experiment. An appropriate amount of MoS2 (analytical reagent grade)
was thoroughly mixed into the soil to achieve the target Mo concentrations. To determine the effects of
AMF, 100 g air-dried inoculum of C. etunicatium BEG168 was mixed into each pot containing 900 g
soil to culture mycorrhizal plants, while an equal amount of sterilized AMF inoculum was used for
non-inoculated treatments. Therefore, this was a 6 × 2 designed two-factor experiment. Four replicates
were designed for each treatment.

Ten uniform seeds were grown in each pot. Seven seedlings were retained per pot 7d after seed
emergence. All pots were randomly arranged in a plant cultivation chamber with a day/night (12/12 h)
temperature of 28–30/23–26 ◦C (light intensity of 5000 lux) and a relative air humidity of 50–80%.
Distilled water was irrigated to meet the plant’s requirement.

2.3. Sample Analysis

Photo-induced transients of prompt fluorescence in leaves were measured using a M-PEA
fluorometer (Multi-Function Plant Efficiency Analyser, Hansatech, UK) based on the procedure
described by Strasser et al. [25] and Kalaji et al. [26]. The third leaf from the top of the plant was selected
for measurement after 20 min of dark adaptation. Three leaves per pot were measured. The JIP-test
parameters, calculated based on the previous definitions, were shown in Table 2 [25,27].

Plants were harvested and sampled after 4 months of growth. Fresh roots were subsampled for
evaluation of root colonization rate. The remaining plant tissues were dried in an oven at 70 ◦C for
48 h for estimation of dry weights (DWs) and elemental analysis.

Root colonization rate was estimated based on method proposed by Trouvelot et al. [28] after ink
staining [29]. Briefly, fresh root samples were cleared in boiling 10% KOH solution for 3 min, acidized in
vinegar for 5 min, and then stained for 3 min in a boiling ink (5%)-vinegar solution. Thirty stained root
segments with lengths of about 1 cm were observed under higher magnification using a microscope to
determine the frequency of mycorrhizal colonization in the root system. The dried plant materials were
ground using a mortar and pestle and digested in a mixture of H2SO4 and H2O2. The concentrations
of Mo and P in the digested solution were determined by ICP-OES (Optima 7300 DV, Perkin Elmer,
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Waltham, MA, USA). Subsamples of plant materials were taken for analysis of N and S concentrations,
which were determined by dry combustion in an Elementar vario-macro C/N analyzer (Elementar
Analysensysteme, GmbH, Hanau, Germany).

Table 2. Definitions of terms for calculation of the JIP-test parameters from the chlorophyll, a fluorescence
transient OJIP emitted by dark-adapted leaves.

Parameter Definition

ϕPo The maximum quantum efficiency of PSII

ψEo Efficiency/probability that an electron moves further than reduced QA (primary electron
acceptor of PSII)

ϕEo Quantum yield of electron transport
ϕDo Quantum yield of energy dissipation

PIABS
Performance index (potential) for energy conservation from exciton to reduction of intersystem
electron acceptors

PItotal Performance index (potential) for energy conservation from exciton to reduction of PSI
end acceptors

2.4. Statistical Analysis

SPSS 22.0 software was used to analyze the data. The results were presented as means ± standard
error (SE). A Duncan test was performed to compare statistically significant differences (p < 0.05) among
means in different treatments. Two-way ANOVA analysis was conducted to test for the significance
(p < 0.05 and p < 0.01) of the interaction between soil Mo concentrations and AM inoculation. Pearson
correlation coefficients were calculated to analyze the relationship between Mo concentrations in soil
and in plant tissues.

3. Results and Discussion

3.1. Root Colonization

Mycorrhizal colonization was not found in roots of the non-inoculated plants and thus not shown
in Figure 1. Comparatively, the inoculated plants all had root colonization rates higher than 77%.
Compared to the zero Mo concentration, additions of Mo had no significant effects on root colonization
rates, and even some increasing effects at the concentrations higher than 1000 mg/kg.
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Figure 1. Root colonization rate (mean ± SE, n = 4) of the inoculated sweet sorghum exposed to
different concentrations of Mo. Different letters over the bar represent significant differences between
the means among different treatments using one-way ANOVA followed by Duncan’s multiple range
test (p < 0.05).

Due to their excellent tolerance to soil contaminants, AMF can survive in various sites impacted by
mining activities, including coal, metallic and other mining sites [13]. In an abandoned Mo mine with
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20 years of mining Mo and other heavy metals, abundant AMF were observed in both the soil and roots,
and C. etunicatum was the most dominant species [30]. In a previous study, C. etunicatum BEG168 was
shown to colonize maize plants exposed to an oxoanion molybdate (NH4)2MoO4 with concentrations
up to 4000 mg Mo per kg soil [21], indicating a low toxicity of MoO4

2− to AMF. Our present experiment
further confirmed that MoS2 did not influence the infectivity of this AM strain to sweet sorghum.
MoS2 is a stable mineral with low solubility in soil, and the component Mo is low in bioavailability,
which may account for its low or non-fungitoxicity. More importantly, Mo is an essential element for
plant endosymbionts such as rhizobia and mycorrhizal fungi [31]. The addition of Mo can benefit the
survival of rhizobial cells [32]. Likewise, Mo is expected to produce beneficial effects on AMF growth
and colonization.

3.2. Plant Biomass

As an essential micronutrient for plants, Mo can produce “low-dose stimulation and high-dose
inhibition” effects. Excess Mo can cause a series of side-effects on plants, but the phytotoxicity
concentrations of Mo vary widely with plants and soil conditions [16,33]. Monocotyledonous plants
like Gramineae usually have stronger resistance to Mo toxicity than dicotyledonous species [34].
Notwithstanding, excess soluble Mo can produce phytotoxic effects [35]. In our present experiment,
both shoot and root DWs were not significantly affected by the addition of MoS2 (Figure 2).
These findings indicate that Mo toxicity highly depends on its speciation and bioavailability. Our present
study first showed that, unlike phytoavailable MoO4

2−, insoluble molybdates such as MoS2 have low
bioavailability and no phytotoxicity.
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Figure 2. Shoot (a) and root (b) DWs (mean ± SE, n = 4) of sweet sorghum exposed to different
concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with Claroideoglomus
etunicatum BEG168, respectively. Different letters over the bar represent significant differences between
the means among different treatments using one-way ANOVA followed by Duncan’s multiple range
test (p < 0.05). Two-way ANOVA results for shoot DWs: AM inoculation: F = 4.6 *, Mo: F = 1.1 ns,
AM ×Mo: F = 0.5 ns; two-way ANOVA results for root DWs: AM inoculation: F = 17.0 **, Mo: F = 1.4 ns,
AM ×Mo: F = 1.0 ns. Significance levels: * p < 0.05; ** p < 0.01; ns non-significant effect.

Based on two-way ANOVA results, AM inoculation showed positive effects on plant growth,
particularly on root DWs. On average, root and shoot DWs of the inoculated plants increased by 33%
and 13% respectively, compared to the non-inoculated plants. AMF benefits on plant growth under
Mo stress have been confirmed by Shi et al. [21]. We further evidenced AMF promoted plant growth in
soil with high levels of MoS2. This implies potential applications of AMF in plant establishment and
ecological restoration of the sites disturbed by Mo-mining. Meanwhile, AMF may facilitate biomass
production of sweet sorghum on Mo mine areas.
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3.3. Mo Concentrations and Uptake in Plant Tissues

Shoot and root Mo concentrations in plants receiving no Mo addition ranged from 4 to 9 mg/kg
(Figure 3), which are slightly higher than the normal values (0.80 to 5.0 mg/kg) in common crops [3].
Comparatively, plants receiving additional Mo had much higher Mo concentrations and uptake in both
shoots and roots (Figure 3, Figure 4). Root Mo concentrations and uptake always showed an increasing
trend with the increase in Mo levels (Table S1). Although MoS2 is very stable in soil, it dissolves more
readily at higher soil pH and redox potential [16]. We used a slightly alkaline soil with pH 7.32 and
loamy texture. Thus, MoS2 may serve as a Mo sink to continuously release MoO4

2− for plants.

J. Fungi 2020, 6, x FOR PEER REVIEW 6 of 14 

 

J. Fungi 2020, 6, x; doi: FOR PEER REVIEW www.mdpi.com/journal/jof 

3.3. Mo Concentrations and Uptake in Plant Tissues  

Shoot and root Mo concentrations in plants receiving no Mo addition ranged from 4 to 9 mg/kg 
(Figure 3), which are slightly higher than the normal values (0.80 to 5.0 mg/kg) in common crops [3]. 
Comparatively, plants receiving additional Mo had much higher Mo concentrations and uptake in 
both shoots and roots (Figure 3, Figure 4). Root Mo concentrations and uptake always showed an 
increasing trend with the increase in Mo levels (Table S1). Although MoS2 is very stable in soil, it 
dissolves more readily at higher soil pH and redox potential [16]. We used a slightly alkaline soil 
with pH 7.32 and loamy texture. Thus, MoS2 may serve as a Mo sink to continuously release MoO42− 
for plants.  

Nonetheless, Mo concentrations in sweet sorghum did not exceed 300 mg/kg, which are much 
lower than the critical toxicity value of 500 mg/kg in most crop species [36]. This can partially explain 
why sweet sorghum did not exhibit toxic symptoms. Maize plants grown in soil spiked with 
(NH4)2MoO4 accumulated up to 800 and 3000 mg/kg Mo in their shoots and roots respectively, and 
displayed typical toxic symptoms [21]. Because both sweet sorghum and maize belong to 
Gramineous species with similar Mo requirements, the differences in Mo accumulation between them 
could be ascribed to the bioavailability of the Mo added. Thus, sweet sorghum could be grown in 
molybdenite-disturbed sites to achieve biomass production.  

 
Figure 3. Shoot (a) and root (b) Mo concentrations (mean ± SE, n = 4) of sweet sorghum exposed to 
different concentrations of Mo. -M and +M represent non-AM inoculation and inoculation with 
Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar represent significant 
differences between the means among different treatments using one-way ANOVA followed by 
Duncan’s multiple range test (p < 0.05). Two-way ANOVA results for shoot Mo concentrations: AM 
inoculation: F = 60.9**, Mo: F = 23.3**, AM×Mo: F = 13.0**; two-way ANOVA results for root Mo 
concentrations: AM inoculation: F = 13.0**, Mo: F = 13.4**, AM×Mo: F = 6.4**. Significance levels: *p < 
0.05; **p < 0.01; ns non-significant effect. 

 

d d

bcd bcd cd cd
d

cd

b bc
bcd

a

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000

M
o 

co
nc

. (
m

g/
kg

)

Mo  added (mg/kg)

(a)

-M +M

c c c c bc bc

c c c c

b

a

0

50

100

150

200

250

300

350

0 10002000300040005000

M
o 

co
nc

. (
m

g/
kg

)

Mo added (mg/kg)

(b)

e e
cde cde

e de
e

cde

b
bc bcd

a

0

50

100

150

200

250

0 10002000300040005000

M
o 

up
ta

ke
 (m

g/
po

t)

Mo added (mg/kg)

(a)
-M +M

c c c c bc
bc

c c c bc

b

a

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000

M
o 

up
ta

ke
 (m

g/
po

t)

Mo added (mg/kg)

(b)

Figure 3. Shoot (a) and root (b) Mo concentrations (mean ± SE, n = 4) of sweet sorghum exposed
to different concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with
Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar represent significant
differences between the means among different treatments using one-way ANOVA followed by
Duncan’s multiple range test (p < 0.05). Two-way ANOVA results for shoot Mo concentrations:
AM inoculation: F = 60.9 **, Mo: F = 23.3 **, AM ×Mo: F = 13.0 **; two-way ANOVA results for root Mo
concentrations: AM inoculation: F = 13.0 **, Mo: F = 13.4 **, AM ×Mo: F = 6.4 **. Significance levels:
* p < 0.05; ** p < 0.01; ns non-significant effect.
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Figure 4. Shoot (a) and root (b) Mo uptake (mean ± SE, n = 4) of sweet sorghum exposed to different
concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with Claroideoglomus
etunicatum BEG168, respectively. Different letters over the bar represent significant differences between
the means among different treatments using one-way ANOVA followed by Duncan’s multiple range test
(p < 0.05). Two-way ANOVA results for shoot Mo uptake: AM inoculation: F = 103.0 **, Mo: F = 26.5 **,
AM × Mo: F = 15.4 **; two-way ANOVA results for root Mo uptake: AM inoculation: F = 43.3 **,
Mo: F = 31.0 **, AM ×Mo: F = 15.7 **. Significance levels: * p < 0.05; ** p < 0.01; ns non-significant effect.
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Nonetheless, Mo concentrations in sweet sorghum did not exceed 300 mg/kg, which are much
lower than the critical toxicity value of 500 mg/kg in most crop species [36]. This can partially
explain why sweet sorghum did not exhibit toxic symptoms. Maize plants grown in soil spiked
with (NH4)2MoO4 accumulated up to 800 and 3000 mg/kg Mo in their shoots and roots respectively,
and displayed typical toxic symptoms [21]. Because both sweet sorghum and maize belong to
Gramineous species with similar Mo requirements, the differences in Mo accumulation between them
could be ascribed to the bioavailability of the Mo added. Thus, sweet sorghum could be grown in
molybdenite-disturbed sites to achieve biomass production.

More importantly, AM inoculation always enhanced Mo accumulation in both shoot and roots
in soil added with MoS2 (Figure 3, Figure 4). This is similar to the findings that AMF increased Mo
accumulation in maize plants from soil spiked with (NH4)2MoO4 [21]. AMF can facilitate the plant
nutrient uptake of macronutrients and micronutrients. AMF extraradical hyphae, with a much greater
surface area than plant roots, can absorb nutrients from where roots cannot reach and supply them for
plants, leading to enhanced Mo acquisition by plants [37]. It is already recognized that plant Mo uptake
is elevated by the presence of soluble P [38], while AMF have excellent ability to enhance the solution
of insoluble P. The bioavailability of Mo usually positively correlates with soil pH [39], while AMF
can increase higher soil pH to mediate the availability of toxic metals [40,41]. Of course, how AMF
regulate Mo uptake and transport in the symbionts still remain to be elucidated.

Generally, plant Mo concentrations are correlated positively with Mo levels in the plant growth
substrate [42,43]. In our experiment, root Mo concentrations and shoot Mo concentrations in mycorrhizal
plants showed positive correlations with soil Mo concentrations (Table 2). In soil added with
5000 mg/kg Mo, mycorrhizal plants accumulated 4 times more Mo than nonmycorrhizal plants
(Figure 3). These findings lead to the following aspects regarding phytoremediation and crop
production. Mycorrhizal plants may have a different survival strategy to deal with excessive Mo,
and hence they are better candidate for phytoremediation of Mo-contaminated sites. High levels of
Mo-contaminants such as MoS2 can also cause Mo accumulation and consequently toxicity in plants
growing on Mo-contaminated sites. In Mo-contaminated farmland, Mo contents in crops, particularly
in edible parts, should be monitored for safe crop production.

3.4. Concentrations of P, N, and S in Plants

Mining activities not only cause increasing accumulation of mine waste and contaminants in the
environment, but also produce a series of damages on soil quality, such as nutrient deficiency [13]. It is
necessary to clarify the changes in plant nutrition status as influenced by MoS2 and AMF. As shown
in Figure 5, P concentrations in shoots and root were not significantly influenced by Mo addition.
Just as the most widely accepted fact, we once again confirmed AMF substantially improved plant P
nutrition (Figure 5). Compared to MoO4

2−, phosphate has a higher affinity for sorption sites in soils.
Soil available P (H2PO4

− and HPO4
2−) can compete with MoO4

2− for adsorption sites [44], and liberate
more soil-bound Mo into the soil solution, thereby enhancing Mo uptake by plants [5]. P can also form
a phosphomolybdate complex in soils, which may be taken up readily by plants [45]. It is inferred that
plants might absorb molybdate through a phosphate transporter [46]. Given the excellent ability of
AMF to improve plant P absorption, it is understandable that mycorrhizal plants always have higher
Mo accumulation than nonmycorrhizal plants.

Mo is a component of several key enzymes including nitrogenase and nitrate reductase, and plays
crucial roles in plant N metabolic processes, such as N fixation, nitrate reduction, and N transport [47].
Mo deficiency or excess can result in poor N nutrition in plants [21,48]. We found Mo addition had
no significant effects on N concentrations in plant tissues (Figure 6), which can be attributed to the
relatively “normal” Mo accumulation in plant tissues. Although plants did not suffer from N deficiency,
AMF also improved plant N nutrition (Figure 6). Nutrient deficiency, especially macronutrients such
as N, is a key factor restricting the plant establishment on mine areas. AMF may have a great potential
for revegetation of mining-impacted sties with low soil fertility.
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Figure 5. Shoot (a) and root (b) P concentrations (mean ± SE, n = 4) of sweet sorghum exposed to
different concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with
Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar represent significant
differences between the means among different treatments using one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05). Two-way ANOVA results for shoot P concentrations: AM inoculation:
F = 25.9 **, Mo: F = 0.3 ns, AM ×Mo: F = 0.3 ns; two-way ANOVA results for root P concentrations:
AM inoculation: F = 4.2 *, Mo: F = 0.7 ns, AM×Mo: F = 1.0 ns. Significance levels: * p < 0.05; ** p < 0.01;
ns non-significant effect.
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Figure 6. Shoot (a) and root (b) N concentrations (mean ± SE, n = 4) of sweet sorghum exposed to
different concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with
Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar represent significant
differences between the means among different treatments using one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05). Two-way ANOVA results for shoot N concentrations: AM inoculation:
F = 31.8 **, Mo: F = 0.9 ns, AM ×Mo: F = 1.7 ns; two-way ANOVA results for root N concentrations:
AM inoculation: F = 15.3 **, Mo: F = 1.3 ns, AM × Mo: F = 0.9 ns. Significance levels: * p < 0.05;
** p < 0.01; ns non-significant effect.

Due to the presence of the S component, MoS2 is expected to improve plant S uptake.
However, addition of MoS2 did not increase and even decreased S concentrations in plant tissues
(Figure 7). The bioavailability of the S in MoS2 depends on at least two processes, i.e., the release of S2−

ions from MoS2 and their subsequent oxidation into SO4
2−. MoS2 is difficult to dissolve and the released

S2− easily precipitate in soil, thereby preventing their transformation into SO4
2−. Moreover, due to

similar physicochemical characteristics between MoO4
2− and SO4

2−, they may compete for the same
transport-binding sites [16]. We can conclude that the S element in MoS2 is little available for plants.
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increase comprehensive photosynthesis performance, and consequently enhance the efficiency of 
PSII photochemical activities of inoculated plants. Rai et al. [51] found that maize plants inoculated 
with Piriformospora indica and mixed AMF exhibited relatively higher quantum yield compared to 
nonmycorrhizal plants, and electron flow yield (φEo = φPo × ψEo) was highly responsive to AM 
inoculation. Our results are in agreement with numerous findings that mycorrhizal plants generally 
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Figure 7. Shoot (a) and root (b) S concentrations (mean ± SE, n = 4) of sweet sorghum exposed to
different concentrations of Mo. −M and +M represent non-AM inoculation and inoculation with
Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar represent significant
differences between the means among different treatments using one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05). Two-way ANOVA results for shoot S concentrations: AM inoculation:
F = 41.9 **, Mo: F = 6.7 **, AM ×Mo: F = 1.0 ns; two-way ANOVA results for root S concentrations:
AM inoculation: F = 18.5 **, Mo: F = 8.7 **, AM ×Mo: F = 3.5 *. Significance levels: * p < 0.05;
** p < 0.01; ns non-significant effect.

AM inoculation significantly improved shoot S concentration, but sometimes decreased root S
concentrations (Figure 7). The total S uptake in plants was still enhanced by AM inoculation, due to
the higher biomass of the inoculated plants (Figure 2), suggesting that AMF can improve S uptake
and mediate S translocation in plants. AM fungus Glomus intraradices (now renamed as Rhizophagus
intraradices) can take up reduced forms of S (cysteine and methionine) and transport them to plants [49],
which implies a possibility of AMF to directly utilize the S in MoS2. We also found a significant
interaction between AM inoculation and MoS2 on root Mo concentration. In addition, AMF may
improve S uptake by regulating sulfate transporters in plants [50]. How AMF influence sulfide
contaminants such as MoS2 deserves more in-depth research in the future.

3.5. Chlorophyll Fluorescence Parameters

The JIP-test for fast fluorescence transients is considered an effective tool for determining
mycorrhizal effects on host plants [51]. Several JIP-test parameters of chlorophyll fluorescence were
significantly changed by AM inoculation (Table 3). As shown in Figure 8, AM inoculation enhanced
ϕPo, ψEo and ϕEo, but decreased ϕDo, which suggests that the leaves of the inoculated plants have
higher maximum quantum efficiency and quantum yield for electron transport, and lower quantum
yield for energy dissipation. Particularly, mycorrhizal plants had much higher performance index
(PI) than nonmycorrhizal ones. These changes imply that AMF can decrease energy dissipation and
increase comprehensive photosynthesis performance, and consequently enhance the efficiency of
PSII photochemical activities of inoculated plants. Rai et al. [51] found that maize plants inoculated
with Piriformospora indica and mixed AMF exhibited relatively higher quantum yield compared
to nonmycorrhizal plants, and electron flow yield (ϕEo = ϕPo × ψEo) was highly responsive to
AM inoculation. Our results are in agreement with numerous findings that mycorrhizal plants
generally can achieve a higher photosynthesis rate via modulating chlorophyll fluorescence parameters,
and thereby can grow better under environmental stress such as high temperature, salt stress, and metal
toxicity [52–55]. An essential nutrient like P is indispensable for photosynthesis processes such
as photosynthetic phosphorylation. Nutrient deficiency can affect phytochemical processes [26].
AM plants generally have higher photosynthetic capacity and leaf nutrient concentrations [56].
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Putatively, AMF-improved P nutrition, as well as N and S, can partially explain the higher
photochemical activities.

Table 3. Two-way ANOVA results from AM inoculation, Mo addition concentration and their
interactions the JIP-test parameters.

Parameter AM Inoculation Mo AM ×Mo

ϕPo 89.14 ** 1.31 ns 1.22 ns
ψEo 121.40 ** 1.86 ns 0.4 ns
ϕEo 142.09 ** 1.86 ns 0.68 ns
ϕDo 89.14 ** 1.31 ns 1.22 ns
PIABS 272.70 ** 1.58 ns 0.36 ns
PItotal 157.18 ** 1.62 ns 1.16 ns

Significance levels: ** p < 0.01; ns non-significant effect.

In addition, Mo did not influence the target JIP-test parameters (Figure 8), indicating that Mo
did not produce damages in photosynthetic properties. Excess toxic metals often inhibit plant
photochemical activity and plant growth [54,57]. On the contrary, our results indicate that Mo is of
low phytotoxicity. This is in accordance with the observations on unchanged biomass production
in the plants exposed to Mo (Figure 2). Plants were shown to sequestrate excessive Mo in vacuoles,
thereby reducing Mo toxicity and damages [58].
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accumulation in plant tissues, implying potential health risks for humans and animals. AM 
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Mo. (a)ϕPo, (b)ψEo, (c)ϕEo, (d)ϕDo, (e) PIABS, (f) PItotal. −M and +M represent non-AM inoculation
and inoculation with Claroideoglomus etunicatum BEG168, respectively. Different letters over the bar
represent significant differences between the means among different treatments using one-way ANOVA
followed by Duncan’s multiple range test (p < 0.05). The definitions of the parameters were shown in
Table 2 and two-way ANOVA results were shown in Table 3.
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4. Conclusions

Unlike soluble molybdate, MoS2 at the test concentrations (1000–5000 mg/kg) produced no
obvious phytotoxic effects on sweet sorghum growth and AM colonization, but resulted in high Mo
accumulation in plant tissues, implying potential health risks for humans and animals. AM inoculation
always increased Mo concentrations and uptake of the plants exposed to Mo with different doses,
but did not increase Mo phytotoxicity, suggesting mycorrhizal plants may have a preference for Mo
and higher tolerance. AMF improved the performance of sweet sorghum and the biomass production
in Mo-contaminated soil via enhancing nutrient uptakes of P, N and S, and photosynthesis efficiency.
In conclusion, MoS2 has low phytotoxicity to sweet sorghum and AMF, and sweet sorghum together
with AMF can be used for phytoremediation and revegetation of Mo-contaminated farmland and
Mo-mine disturbed areas, as well as biomass production for biofuel on such sites.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2309-608X/6/2/44/s1.
Table S1. Pearson correlation between Mo concentrations in soil and Mo concentrations/uptake in plant tissues.
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