
RESEARCH ARTICLE

FunOrder: A robust and semi-automated

method for the identification of essential

biosynthetic genes through computational

molecular co-evolution

Gabriel A. VignolleID, Denise Schaffer, Leopold Zehetner, Robert L. MachID, Astrid

R. Mach-AignerID, Christian DerntlID*

Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria

* christian.derntl@tuwien.ac.at

Abstract

Secondary metabolites (SMs) are a vast group of compounds with different structures and

properties that have been utilized as drugs, food additives, dyes, and as monomers for

novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose cor-

responding genes are co-localized in the genome in biosynthetic gene clusters (BGCs).

Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of

the SM. Current genome mining tools can identify BGCs, but they have problems with distin-

guishing essential genes from gap genes. This can and must be done by expensive, labori-

ous, and time-consuming comparative genomic approaches or transcriptome analyses. In

this study, we developed a method that allows semi-automated identification of essential

genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a

BGC are blasted against a suitable proteome database. For each protein, a phylogenetic

tree is created. The trees are compared by treeKO to detect co-evolution. The results of this

comparison are visualized in different output formats, which are compared visually. Our

results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that

especially those genes that encode for enzymes of the biosynthetic pathway are co-evolu-

tionary linked and can be identified with FunOrder. In light of the growing number of genomic

data available, this will contribute to the studies of BGCs in native hosts and facilitate heter-

ologous expression in other organisms with the aim of the discovery of novel SMs.

Author summary

The discovery and description of novel fungal secondary metabolites promises novel anti-

biotics, pharmaceuticals, and other useful compounds. A way to identify novel secondary

metabolites is to express the corresponding genes in a suitable expression host. Conse-

quently, a detailed knowledge or an accurate prediction of these genes is necessary. In

fungi, the genes are co-localized in so-called biosynthetic gene clusters. Notably, the clus-

ters may also contain genes that are not necessary for the biosynthesis of the secondary
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metabolites, so-called gap genes. We developed a method to detect co-evolved genes

within the clusters and demonstrated that essential genes are co-evolving and can thus be

differentiated from the gap genes. This adds an additional layer of information, which can

support researchers with their decisions on which genes to study and express for the dis-

covery of novel secondary metabolites.

This is a PLOS Computational Biology Methods paper.

Introduction

Secondary metabolites (SMs) are a diverse group of compounds with a plethora of different

chemical structures and properties which are found in all domains of life, but are predomi-

nantly studied in bacteria, fungi, and plants [1]. SMs are not necessary for the basic survival

and growth of an organism but can be beneficial under certain conditions. For example, pig-

ments help to sustain radiation, antibiotics help in competitive situations, and toxins can serve

as defensive compounds or as virulence factors [2,3]. Notably, many SMs are used by human-

kind as drugs and pharmaceuticals, pigments and dyes, sweeteners and flavours, and most

recently also as precursors for the synthesis of plastics [4]. The study of the secondary metabo-

lism holds the promise for novel antibiotics, pharmaceuticals and other useful compounds [5].

A major hinderance in the discovery of yet undescribed SMs is the fact that most SMs are

not produced under standard laboratory conditions, as they do not serve a purpose for the

organisms then. Currently, different strategies are followed to circumvent this problem [6,7].

Untargeted approaches aim to induce the expression of any SM. To this end, biotic and abiotic

stresses are applied, or global regulators and regulatory mechanisms are manipulated [8].

These strategies may lead to the discovery of novel compounds, whose corresponding genes

have to be identified subsequently by time-consuming and expensive methods [7]. An extreme

example are the aflatoxins, major food contaminants with serious toxicological effects [9]. It

took over 40 years from the discovery of the aflatoxins as the causal agent of “turkey X” disease

in the 1950s [10] until the corresponding genes were finally described in 1995 [11]. Targeted

SM discovery approaches aim to induce the production of specific SMs by either overexpres-

sing genes in the native host or by heterologous expression in another organism [12]. The tar-

geted approaches, also called reverse strategy or bottom-up strategy allows a direct connection

of SMs to the corresponding genes and does not rely on the inducibility of SM production in

the native host. Inherently, the bottom-up approach is depending on modern genomics and

accurate gene prediction tools [13].

In bacteria and fungi, the genes responsible for the biosynthesis of a certain SM are often

co-localized in the genome, forming so called biosynthetic gene clusters (BGCs) [14,15]. The

BGCs consists of one or more core genes, several tailoring enzymes, and genes involved in reg-

ulation and transport. As all these genes are essential for the production of a SM in the native

host, we will refer to them as “essential genes” in this study. The core genes are responsible for

assembling the basic chemical scaffold, which is further modified by the tailoring enzymes

yielding the final SM [16]. We refer to the core genes and the tailoring genes as “biosynthetic

genes” in this study. Depending on the class of the produced SM, the core genes differ. In

fungi, the main SM classes are polyketides (e.g. the cholesterol-lowering drug lovastatin [17]
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and the mycotoxin aflatoxin [9]) and non-ribosomal peptides (e.g. the immunosuppressant

cyclosporine [18] and the antibiotic penicillin [19]), with polyketide synthases (PKS) or non-

ribosomal peptide synthetases (NRPS) as core enzymes, respectively. Other SM classes are ter-

penoids, alkaloids, melanins [20,21], and ribosomally synthesized and posttranslationally

modified peptides (RiPPs) [22,23], whose corresponding genes may also be organized in

BGCs. As mentioned, BGCs may also contain genes encoding for transporters [24], transcrip-

tion factors [25], or resistance genes [26]. While their gene products are not directly involved

in the biosynthesis of a SM they are still essential for the biosynthesis; we will call them „further

essential genes”in the following and differentiate them from the „biosynthetic genes“. The bio-

synthetic genes and the further essential genes are both necessary for the biosynthesis of a SM

in the native organisms. In contrast, only the biosynthetic genes and a selection of the further

essential genes (e.g. transporters) are necessary for heterologous expression [reviewed in [27]].

Notably, fungal BGCs often also contain genes that are not necessary for the production of a

SM, the so-called gap genes. The gap genes are not involved in the biosynthesis, regulation, or

transport of the SM, but have an unrelated function (Fig 1). We would like to stress here, that

this cannot be predicted based only on the class of the gene product. For instance, a gene

encoding for a transporter in the aflatoxin BGC was reported to have no significant role in afla-

toxin secretion [28].

As mentioned, the bottom-up approach for SM discovery is depending on modern geno-

mics and the accurate prediction of genes and BGCs. Each important gene missing in the pre-

diction is detrimental for obvious reasons, whereas each unnecessarily considered gap gene

makes the study of a BGC more complicated and complex, and the construction and transfor-

mation processes for heterologous expression more challenging. Currently, several BGC pre-

diction tools are available for fungi. Some tools for genome mining are antiSMASH [29],

CASSIS and SMIPS [30], SMURF [31], TOUCAN, a supervised learning framework capable of

predicting BGCs on amino acid sequences [32], and DeepBGC, an unrestricted machine learn-

ing approach using deep neural networks [33]. These tools are effective and successful in find-

ing and predicting BGCs based solely on genomic data. AntiSMASH uses a rule-based

approach to identify BGCs based on the identification of core or signature enzymes and

applies a greedy approach to extend a cluster on either side. This may result in overlaps or

combinations of closely situated clusters. However, the genes within the predicted BGCs are

classified into core biosynthetic genes, additional biosynthetic genes, transport-related genes,

regulatory genes, and other genes based on profile hidden Markov models by the antiSMASH

tool. The BGC prediction method of CASSIS and SMIPS is based on the principle that the pro-

moter regions of genes in a BGC contain one or more shared motif, as they are co-expressed

and presumably regulated by the same regulatory factors and/or mechanisms [30].

Fig 1. Schematic representation of the lovastatin BGC from Aspergillus terreus (lov). In red the biosynthetic genes for SM production, in

gold the further essential genes, and in blue the genes not involved in the biosynthetic pathway.

https://doi.org/10.1371/journal.pcbi.1009372.g001
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As mentioned above, the class of an enzyme may be a good indication for a potential

involvement in the biosynthesis of a SM but does not guarantee a correct prediction. This

problem can be solved by the analysis of transcriptome data because the genes necessary for

SM production within a BGC are normally co-expressed with each other but not with the gap

genes [34]. Notably, this demands the knowledge of expression conditions and does not work

for silent BGCs. However, it is an obvious advantage to have as much information as possible

about a BGC before studying it in the native host or performing heterologous expression for a

bottom-up approach for SM discovery.

We speculate that a comparative genomics analysis focusing on the evolutionary history of

the genes in a BGC might be a feasible alternative to a transcriptomics analysis in fungi for the

following reasons. In general, BGCs are suggested to undergo a distinct and faster evolution

than the rest of the genome, based on different mechanisms and genetic drivers [16,35–40]. In

bacteria, the evolution of BGCs is strongly influenced by the strong occurrence of horizontal

gene transfer in these group of microorganism [39]. Medema et al. performed a large-scale

computational analysis of bacterial BGCs and found that many BGCs consist of sub-clusters.

These sub-clusters encode for enzymes that work together to form a distinct chemical struc-

ture. Notably, this sub-clusters were described as “independent evolutionary entities” and the

contained genes are co-evolving. The authors suggested a “bricks and mortar” model. Therein,

different sub-clusters, the “bricks” form different chemical building blocks for a secondary

metabolite. Additional genes within the BGCs are encoding for enzymes that combine the

building blocks, and fulfil other functions such as tailoring, regulation and transport. These

individual genes are the “mortar” in the “brick and mortar” model [40]. The “bricks” corre-

spond to what we term “biosynthetic genes” and the “mortar” to our “further essential genes”.

Through horizontal gene transfer, the “bricks” can be easily exchanged and recombined to

form novel BGCs and secondary metabolites[40]. Notably, not all bacterial BGCs are com-

posed of exchangeable sub-units but some BGCs keep a stable architecture over a long time

[40].

In fungi, three molecular evolutionary processes were suggested to be responsible for shap-

ing the BGCs in a recent study, i.e., functional divergence, horizontal gene transfer, and de
novo assembly [41]. Rokas et al. define functional divergence as a “process by which homolo-

gous BGCs, through the accumulation of genetic changes, gradually diverge in their functions

changes” [41] and horizontal gene transfer as a “process by which an entire BGC from the

genome of one organism is transferred and stably integrated into the genome of another

through non-reproduction related mechanisms” [41]. This implies in both cases, that fungal

BGCs are staying intact. Further, the genes are suggested to undergo a co-evolution which is

faster than the rest of the genome [41]. Medema’s “brick and mortar” model would more or

less correspond to what Rokas et al. describe as “de novo assembly”. This is defined as a “pro-

cess by which an entire BGC is evolutionarily assembled through the recruitment and reloca-

tion of native genes, duplicates of native genes, and horizontally acquired genes” [41]. Notably,

Rokas et al. state that this is the”least well-documented evolutionary process involved in the

generation of fungal chemodiversity” [41], suggesting that in known and described fungal

BGCs functional divergence and horizontal gene transfer are the two main evolutionary pro-

cess, during which BGCs are staying intact and genes undergo a similar evolution. Further, we

hypothesize that especially the biosynthetic genes in a BGC are co-evolutionary linked by the

selection pressure to keep the biosynthetic pathway intact. Notably, a co-evolution analysis is a

laborious and time-consuming task because a phylogenetic tree has to be calculated for each

gene and then the trees compared to each other manually [42]. Recently, a method for the

detection of co-evolution in bacterial BGCs was developed with the aim to identify sub-clusters

[43]. That method is based on the detection of orthologous genes that are present in close
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vicinity in many BGCs. This method is working unsupervised but requires a large set of BGCs

as input [43].

In this study we describe a method (FunOrder) that allows a fast, semi-automated co-evolu-

tion analysis using individual BGCs as input. Based on this analysis and the assumption that

the essential genes undergo a shared or similar evolution, FunOrder aims to identify essential

genes in BGCs. To this end, we constructed a database of fungal proteomes as basis for the

identification of co-evolutionary linked genes in ascomycetes. We determine the thresholds

for the detection of co-evolution within different control gene sets. Then, we evaluated FunOr-

der and tested the underlying hypothesis, whether essential genes within a BGC could be iden-

tified based on the principle of co-evolution. We demonstrated the robustness and the

applicability of the FunOrder method by analysing different control gene sets, including

empirically validated BGCs and evaluated our method using stringent statistical tests.

Material and methods

Construction of a fungal proteome database

In this study we aim to identify co-evolutionary linked genes in ascomycetes. As the basis for

the detection of co-evolution is a suitable database [42], we compiled an empirically optimized

database consisting of 134 fungal proteomes from mainly ascomycetes and from two basidio-

mycetes for this method (Table 1). The two basidiomycete proteomes were included for the off

chance of analysing gene clusters that do not originate from ascomycetes. The database covers

the complete ascomycetes phylum and was iteratively tested and optimized for the detection of

co-evolution in ascomycetes. The sequences were downloaded from the National Center for

Biotechnology Information (NCBI) database and the Joint Genome Institute (JGI) [44]. A

short identifier, unique in the database for each proteome, was introduced to enable multiple

pairwise tree comparisons by the treeKO application [45]. A custom Perl script was used for

removing duplicated entries in the database. The database is deposited in the GitHub reposi-

tory https://github.com/gvignolle/FunOrder (doi:10.5281/zenodo.5118984).

Workflow

The workflow for the FunOrder method is depicted in Fig 2. First, the sequences of the BGC to

be analysed are fed into the software bundle. FunOrder accepts a single file in either genbank

file format or fasta format as input. The input files contain BGCs predicted by tools such as

antiSMASH [29] or DeepBGC [33]. In case a genbank file is provided, a python script

(Genbank to FASTA by Cedar McKay and Gabrielle Rocap, University of Washington) is

called to extract the amino acid sequence of the genes in the BGC and create a fasta file. The

multi-fasta file is then split into individual fasta files each containing a single protein sequence.

These are placed in a subfolder created for the analysis of the BGC. Each file is named either

after the position of the gene in the BGC or after the respective protein sequence description.

This varies from the input file and the varying annotations used (If needed this can be changed

in the script following the instructions of Genbank to FASTA by Cedar McKay and Gabrielle

Rocap, University of Washington). Each header of the query sequences is tagged with the iden-

tifier "query" at the beginning of the header. The individual sequences are compared to the

empirically optimized proteome database (Table 1) by a sequence similarity search using blastp

2.8.1+ (Protein-Protein BLAST) [133]. The output of this search is saved in a file with the ".

tab" extension. Additionally, an optional remote search of the non-redundant National Center

for Biotechnology Information (NCBI) protein database can be performed, yielding a file with

the "ncbi.tab" extension. This allows a preliminary manual analysis of the input sequences and

facilitates subsequent annotations of the BGCs.
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Table 1. Fungal proteomes included in the empirically optimized database.

Organism Source Database Identifier Reference

Acremonium chrysogenum JGI AcCh [46]

Alternaria alternata NCBI AlAl [47]

Alternaria arborescens NCBI AlAr [48]

Alternaria gaisen NCBI AlGa [49]

Alternaria sp. MG1 NCBI AlSp [50]

Alternaria tenuissima NCBI AlTe [49]

Amanita muscaria NCBI AmMu [51]

Amorphotheca resinae JGI AmRe [52]

Arthrobotrys oligospora JGI ArOl [53]

Arthroderma benhamiae JGI ArBe [54]

Ascobolus immersus JGI AsIm [55]

Aspergillus costaricaensis NCBI AsCo [56]

Aspergillus fijiensis NCBI AsFi [56]

Aspergillus flavus NCBI AsFl [57]

Aspergillus fumigatus NCBI AsFu [58]

Aspergillus homomorphus NCBI AsHo [56]

Aspergillus ibericus NCBI AsIb [56]

Aspergillus japonicus NCBI AsJa [56]

Aspergillus niger NCBI AsNi [59]

Aspergillus oryzae NCBI AsOr [60]

Aspergillus phoenicis NCBI AsPh [61]

Aspergillus terreus NCBI AsTe [62]

Blumeria graminis JGI BlGr [63]

Botryosphaeria dothidea JGI BoDo [64]

Botrytis cinerea NCBI BoCi [65]

Botrytis elliptica NCBI BoEl [66]

Botrytis galanthina NCBI BoGa [66]

Botrytis hyacinthi NCBI BoHy [66]

Botrytis paeoniae NCBI BoPa [66]

Botrytis porri NCBI BoPo [66]

Botrytis tulipae NCBI BoTu [66]

Cadophora sp. JGI CaSp [67]

Capronia semiimmersa JGI CaSe [68]

Chaetomium globosum JGI ChGl [69]

Choiromyces venosus JGI ChVe [55]

Cladonia grayi JGI ClGr [70]

Cladophialophora bantiana JGI ClBa [68]

Cladophialophora carrionii JGI ClCa [68]

Cladophialophora immunda JGI ClIm [68]

Cochliobolus heterostrophus JGI CoHe [71]

Cochliobolus victoriae JGI CoVi [72]

Colletotrichum nymphaeae JGI CoNy [73]

Colletotrichum orchidophilum JGI CoOr [74]

Colletotrichum salicis JGI CoSa [73]

Colletotrichum simmondsii JGI CoSi [73]

Colletotrichum tofieldiae JGI CoTo [75]

Coniosporium apollinis JGI CoAp [68]

(Continued)
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Table 1. (Continued)

Organism Source Database Identifier Reference

Coniosporium apollinis CBS 100218 JGI Capo [68]

Corynespora cassiicola JGI CoCa [76]

Daldinia eschscholzii JGI DaEs [77]

Diaporthe ampelina JGI DiAm [78]

Diplodia seriata JGI DiSe [78]

Erysiphe necator JGI ErNe [79]

Eutypa lata NCBI EuLa [80]

Exophiala aquamarina JGI ExAq [68]

Exophiala dermatitidis JGI ExDe [68]

Exophiala oligosperma JGI ExOl [68]

Exophiala spinifera JGI ExSp [68]

Exophiala xenobiotica JGI ExXe [68]

Fonsecaea monophora JGI FoMo [81]

Fusarium fujikuroi NCBI FuFu [82]

Fusarium graminearum NCBI FuGr [83]

Fusarium oxysporum NCBI FuOx [84]

Fusarium proliferatum NCBI FuPr [85]

Fusarium pseudograminearum NCBI FuPs [86]

Fusarium verticillioides NCBI FuVe [83]

Gaeumannomyces graminis JGI GaGr [87]

Glonium stellatum JGI GlSt [88]

Hypoxylon sp. EC38 JGI HyEC [77]

Hypoxylon sp.CO27 JGI Hysp [77]

Magnaporthe grisea JGI MaGr [89]

Magnaporthiopsis poae JGI MaPo [87]

Meliniomyces bicolor JGI MeBi [52]

Meliniomyces variabilis JGI MeVa [52]

Metarhizium acridum NCBI MeAc [90]

Metarhizium album NCBI MeAl [91]

Metarhizium anisopliae NCBI MeAn [91]

Metarhizium brunneum NCBI MeBr [91]

Metarhizium guizhouense NCBI MeGu [91]

Metarhizium majus NCBI MeMa [91]

Metarhizium rileyi NCBI MeRi [92]

Metarhizium robertsii NCBI MeRo [90]

Monacrosporium haptotylum JGI MoHa [93]

Morchella importuna JGI MoIm [94]

[Nectria] haematococca NCBI NeHa [95]

Nectria haematococca JGI NeHa [95]

Neurospora crassa JGI NeCr2 [96]

Neurospora crassa FGSC JGI NeCr [97]

Neurospora tetrasperma JGI NeTe [98]

Oidiodendron maius JGI OiMa [51]

Ophiostoma piceae JGI OpPi [99]

Paecilomyces variotii JGI PaVa [100]

Panaeolus cyanescens NCBI PaCy [101]

Paracoccidioides brasiliensis JGI PaBr [102]

(Continued)
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Next, the top 20 results of the blastp analysis are extracted and combined with the query

sequence for each gene. A custom Perl script removes potential duplicate entries based on

sequence identity. Using emma, a multiple sequence alignment of these protein sequences is

Table 1. (Continued)

Organism Source Database Identifier Reference

Penicillium camemberti NCBI PeCa [103]

Penicillium chrysogenum NCBI PeCh [104]

Penicillium digitatum NCBI PeDi [105]

Penicillium expansum NCBI PeEx [106]

Penicillium nalgiovense NCBI PeNa [107]

Penicillium oxalicum NCBI PeOx [108]

Penicillium roqueforti NCBI PeRo [103]

Penicillium rubens Wisconsin NCBI PeRu [109]

Penicillium vulpinum JGI PeVu [107]

Periconia macrospinosa JGI PeMa [67]

Pestalotiopsis fici NCBI PeFi [110]

Phaeoacremonium aleophilum JGI PhAl [111]

Phaeomoniella chlamydospora JGI PhCh [78]

Phialocephala scopiformis JGI PhSc [112]

Pneumocystis jirovecii JGI PnJi [113]

Pseudogymnoascus destructans JGI PsDe [114]

Pseudomassariella vexata JGI PsVe [115]

Rhizoctonia solani NCBI RhSo [116]

Saccharomyces arboricola NCBI SaAr [117]

Saccharomyces cerevisiae NCBI SaCe [118]

Terfezia boudieri JGI TeBo [55]

Tolypocladium ophioglossoides NCBI ToOp [119]

Tolypocladium paradoxum NCBI ToPa [120]

Trichoderma arundinaceum NCBI TrAr [121]

Trichoderma asperellum NCBI TrAs [122]

Trichoderma atroviride NCBI TrAt [123]

Trichoderma citrinoviride NCBI TrCi [122]

Trichoderma harzianum NCBI TrHa [124]

Trichoderma longibrachiatum NCBI TrLo [125]

Trichoderma reesei NCBI TrRe [126]

Trichoderma virens NCBI TrVi [123]

Trichophyton rubrum JGI TrRu [127]

Tuber aestivum var. urcinatum JGI TuAe [55]

Tuber magnatum JGI TuMa [55]

Venturia inaequalis JGI VeIn [128]

Verruconis gallopava JGI VeGa [68]

Verticillium dahliae JGI VeDa [129]

Xylona heveae JGI XyHe [130]

Zymoseptoria brevis JGI ZyBr [131]

Zymoseptoria pseudotritici JGI ZyPs [132]

The sequences were downloaded from the National Center for Biotechnology Information (NCBI) database or the Joint Genome Institute (JGI). The identifiers were

used in the FunOrder software package.

https://doi.org/10.1371/journal.pcbi.1009372.t001
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calculated based on the ClustalW [134] algorithm, and a dendrogram computed. Based on the

multiple sequence alignment, 100 rapid Bootstraps and a subsequent search for the best-scor-

ing maximum likelihood (ML) tree are performed using RAxML (Randomized Axelerated

Maximum Likelihood) [135]. The phylogenetic trees are computed using the LG amino acid

substitution model. Furthermore, a standard ascertainment bias correction by Paul O. Lewis is

performed. At this stage, we have obtained a phylogenetic tree (within the context of our

empirically optimized database) for each protein of the input BGC.

To estimate if and to what extent the different genes within a BGC are co-evolved, the strict

distance and speciation distance among the ML trees of the individual genes are calculated

using the TreeKO algorithm [45]. This tool was designed for automated tree comparison and

was already suggested to be used for the detection of co-evolution in protein families [45]. The

tool compares the topology of different trees; a distance of 0 in both distance measures repre-

sents identical trees. In this context, a higher similarity between the different trees of the indi-

vidual genes points towards a shared evolution. The strict distance is a weighted Robinson-

Foulds (RF) distance measure that penalizes dissimilarities in evolutionarily important events

such as gene losses and gene duplications; it has been suggested to be more significant in the

detection of co-evolution than the evolutionary distance [45]. In contrast, the evolutionary or

Fig 2. Schematic representation of the workflow of FunOrder.

https://doi.org/10.1371/journal.pcbi.1009372.g002
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speciation distance is computed without taking evolutionary exceptions, such as duplication

events or different species content of the two compared trees into account and infers shared

"speciation history" based solely on topology without considering branch lengths and only

considering shared species of the compared trees. Therefore, an evolutionary distance of 0

does not necessarily describe identical trees but shared "speciation history" of shared species.

All pairwise strict and evolutionary distances are combined into matrices which are used as

input for an R script [136–140].

In this R-script, first, the strict and evolutionary distances are summed up to a third com-

bined distance matrix combining the information about co-evolution and shared speciation

into a single measure. In our experience, this measure can be helpful to detect genes that share

little co-evolution with the core-enzymes but are still essential for the biosynthesis, which is

reflected in a shared speciation. The evolutionary distance is not directly part of the output of

FunOrder as is not intended to be used for the detection of co-evolution. Second, the strict

and the combined distance matrices are visualized as heatmaps with a dendrogram computed

with the complete linkage method, to find similar clusters in these data sets. Next, the Euclid-

ean distance within the matrices is computed and clustered using Ward’s minimum variance

method aiming at finding compact spherical clusters, with the implemented squaring of the

dissimilarities before cluster updating, for the two distance matrices separately, with scaled

input data [141]. Lastly, a principal component analysis (PCA) is performed on the two dis-

tance matrices and the score plot of the first two principal components visualized, respectively.

These outputs enable the adoption of a larger view on the distance measures and thereby allow

the analysis of co-evolution within the BGC from different perspectives. We describe in a fol-

lowing subchapter how to interpret these visualisations.

The software bundle is written in the BASH (Bourn Again Shell) environment and includes

all necessary subprograms. As BASH is the default shell-language of all Linux distributions

and MacOS, FunOrder can run on these two operation systems. The FunOrder software pack-

age is deposited in the GitHub repository https://github.com/gvignolle/FunOrder (doi:10.

5281/zenodo.5118984). Notably, the software package includes scripts adapted to the use on

servers and for the integration in various pipelines; details on these can be found in the

ReadMe file on the GitHub repository. FunOrder requires some dependencies e.g., RAxML

(Randomized Axelerated Maximum Likelihood) [135] and the EMBOSS (The European

Molecular Biology Open Software Suite) package [142], for details and links to all dependen-

cies please refer to the ReadMe file on the GitHub repository.

Compilation of benchmark gene clusters (GCs)

To test and evaluate the applicability of the FunOrder method, we used different control and

test gene (or protein) sets. The sequences of all test and control sets are deposited in the

GitHub repository https://github.com/gvignolle/FunOrder (doi: 10.5281/zenodo.5118984).

The first set of negative control gene clusters (GCs) were 42 completely randomly generated

synthetic GCs, which were created with a custom BASH script. Therein, ATGC strings of ran-

dom composition and length were translated to amino acid strings using transeq from the

EMBOSS package and the asterisks were removed. The second set of negative controls were 60

random GCs which were created by subsampling randomly the fungal proteome database with

a Perl script from the MEME suit [143]. For each random GC a different seed number was

given to guarantee non repetitive GCs, each random GC contained 3–10 randomly chosen

protein sequences in a random order. These negative control GCs were subsampled from dif-

ferent genomes to maximize the randomness and use gene clusters that should not contain co-

evolved genes.
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We used a set of 30 empirically well characterized BGCs from a broad range of different

genera (Table 2) as positive controls. The BGC sequences were downloaded from NCBI or the

MIBiG (Minimum information about a biosynthetic gene cluster) database [144]. The

sequences are available at the GitHub repository https://github.com/gvignolle/FunOrder

(doi:10.5281/zenodo.5118984). All BGCs were manually inspected for correctness and com-

pleteness based on the respective literature (S1 Table, references in Table 2). We further added

2 genes on each side of the BGC to mimic the greedy gain performed by antiSMASH, if possi-

ble (sequences available) and applicable (only few or no gap genes present). Next, we defined

the class of each gene (biosynthetic gene, further essential gene, gap, or extra gene) according

to the described function of the enzymes in the literature (S1 Table).

Further, we compiled 10 protein sets containing the sequences of enzymes of conserved

metabolic pathways from organisms that were not included in the proteome database, termed

„Biosynthetic_pathways“, or „BioPath”(S2 Table; sequences deposited at the GitHub reposi-

tory https://github.com/gvignolle/FunOrder (doi:10.5281/zenodo.5118984)). As we anticipate

a strong co-evolution among the corresponding genes, we used these sets as positive controls

for co-evolution in general. Finally, we subsampled the genomes of organisms that were not

Table 2. Empirically characterized biosynthetic gene clusters used as positive controls.

Product—BGC Organism MIBiG id Reference(s)

2-Pyridon-Desmethylbassianin (dmb) Beauveria bassiana BGC0001136 [145]

Aflatoxin (afl) Aspergillus flavus BGC0000008 [146,147]

Botrydial (bot) Botrytis cinera BGC0000631 [148,149]

Cephalosporin (cef) Acremonium chrysogenum BGC0000317 [150]

Compactin (mlc) Penicillium citrinum BGC0000039 [151,152]

Cyclosporin (cyc2) Beauveria felina BGC0001565 [18,153–155]

Destruxin (dtxs) Metarhizium robertsii BGC0000337 [156]

Fumagillin (fma) Aspergillus fumigatus BGC0001067 [157]

Fumitremorgin (ftm) Aspergillus fumigatus - [158–161]

Fumonisin (fum1) Fusarium oxysporum BGC0000063 [162]

Fumonisin (fum2) Fusarium verticilloides BGC0000062 [163–170]

Fusaric acid (FUB) Fusarium fujikuroi - [171]

Ilicicolin H (ili) Neonectaria sp. DH2 BGC0002035 [172]

Leporin (lep) Aspergillus flavus BGC0001445 [173]

Lovastatin (lov) Aspergillus terreus - [17,62,174]

Mycophenolic acid (mpa1) Penicillium brevicompactum BGC0000104 [175–180]

Mycophenolic acid (mpa2) Penicillium roqueforti BGC0001360 [181]

Mycophenolic acid (mpa3) Penicillium roqueforti BGC0001677 [182]

Paxillin (pax) Penicillium paxilli BGC0001082 [183]

Penicillin (pen1) Penicillium chrysogenum BGC0000404 [184]

Penicillin (pen2) Penicillium chrysogenum BGC0000405 [19]

Pestheic acid (pta) Pestalotiopsis fici BGC0000121 [185]

Pneumocandin (GL) Glaera Iozoyensis BGC0001035 [186–188]

Sorbicillinol (sor1) Penicillium rubens BGC0001404 [189,190]

Sorbicillinol (sor2) Trichoderma reesei - [191]

Tenellin (ten) Beauveria bassiana BGC0001049 [192,193]

Terrein (ter) Aspergillus terreus BGC0000161 [194]

Tetramic acid (tas) Hapsidospora irregularis - [195]

Ustiloxin B (ust) Aspergillus flavus - [196]

Xanthocillin (xan) Aspergillus fumigatus BGC0001990 [197]

https://doi.org/10.1371/journal.pcbi.1009372.t002
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included in the proteome database for 30 random loci containing 8 to 10 genes (S3 Table;

sequences available at the GitHub repository https://github.com/gvignolle/FunOrder (doi:10.

5281/zenodo.5118984)). We termed this control set „sequential GCs“. This set should repre-

sent the random degree of co-evolution based only on genomic vicinity. Notably, due to the

randomness of the sampling, the sequential GCs may also contain evolutionary linked genes.

Calculation of MEM and determination of thresholds for co-evolution

As the thresholds for the strict and/or evolutionary distance for the analysis of protein co-evo-

lution are database dependent, we needed to define these thresholds manually. To this end, we

performed a manual comparison of the phylogenetic trees of genes anticipated to be co-

evolved and of not presumably co-evolved genes. As positive control datasets (anticipated co-

evolution), we used the essential genes within the positive control BGCs. As negative control

data set (anticipated to not have co-evolved), we used the genes in the random GCs. For the

manual tree comparisons, we considered the topology (defined in S4 Table), branch lengths,

number of nodes, and shared leaves of the trees and calculated the manual evaluation measure

(MEM) according to the definitions in S5 Table. We calculated the MEM for each gene tree

pair of the positive and the negative control data sets (S6 and S7 Tables, respectively). The mea-

sure ranges from 3 (same) to 0 (no shared leaves). The MEM values of each pair-wise tree com-

parison were then manually reconciled with the corresponding strict and the combined

distance measures obtained from the treeKO analysis and the subsequent R script, respectively.

The procedure is exemplary described for the 2-Pyridon-Desmethylbassianin (dmb) BGC

from Beauveria bassiana in S1 File. Based on these manual comparisons, we defined the

threshold values for strict and combined distances in the following: two genes are considered

as co-evolved if the strict distance value is less than 0.7 or if the combined distance is equal to

or less than 60 percent of the maximum value in the combined distance matrix of the analysed

set.

Calculation of the Internal co-evolutionary quotient (ICQ)

The internal co-evolutionary quotient (ICQ) expresses how many genes in a GC or proteins in

a protein set are co-evolved according to the previously defined threshold for strict and com-

bined distances within the distance matrices of an analysed GC (or protein set). To calculate

the ICQ, each protein is compared with every other protein. The total number of all possible

pairwise comparisons is 2� [d�(d-1)] for d proteins. The ICQ was calculated using Eq 1, result-

ing in values between 0 and 1, with 1 representing no co-evolved genes, and 0 representing

that most genes are co-evolved with each other in the insert GC.

ICQ ¼ 1 �
g

2 � ½d � ðd � 1Þ�

� �

Eq 1

ICQ = internal co-evolutionary quotient; g = number of strict distances < 0.7 and com-

bined distances < = (0.6 � max value of the combined distance matrix) in all matrices (visual-

ized in the heatmaps); d = number of genes in the GC.

Manual interpretation of the FunOrder output

The FunOrder outputs three different visualizations (heatmap, dendrogram, PCA) each of the

strict and combined distance matrices among the genes (or proteins) of an inserted GC (or

protein set). These visualizations need to be interpreted manually. For the manual interpreta-

tion, we first searched for genes that clustered together with the core enzyme(s) in any of the
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three visualisations of the strict distance. The definition of the clusters needs to be performed

carefully keeping the biological background (gene predictions) in mind. For instance, a cluster

containing typical tailoring enzymes (e.g., hydrolases, P450 cytochrome oxidases, FAD-con-

taining enzymes, etc.) and/or further essential genes (e.g., transcription factors or transporters)

make sense, whereas clusters containing a lot of genes encoding for unknown genes and/or

genes that are unlikely to be involved in the biosynthesis of a secondary metabolite) do not

make sense. Next, clustering in the visualizations of the combined distances is considered. As

the combined distance also contains information about the speciation history, it may be used

to add further genes to the list of “detected genes”. Notably, this needs to be critically evaluated

and decided on a case-to-case basis, taking the gene predictions into account. Please also refer

to S2 File for a detailed step-by-step description of the interpretation procedure, the exemplary

analysis of the lovastatin BGC from A. terreus in the results, and S3 File and S4 File for the

exemplary analysis of two unknown BGCs.

Performance evaluation

To test the robustness of FunOrder, we analysed 42 completely randomly generated synthetic

GCs. To test whether the FunOrder method can be used to detect co-evolution within GCs (or

protein sets), we calculated the ICQ for different control sets and compared the results in a

kernel density plot. To evaluate the performance of the FunOrder method regarding its capa-

bility to identify presumably co-evolved essential genes (as defined in S1 Table) and to distin-

guish them from (presumably not co-evolved) gap genes and genes outside of the BGC via the

detection of co-evolution, we performed a manual interpretation of 30 empirically character-

ized BGCs (Table 2) as described above. Genes that clustered together with the core enzyme(s)

according to the procedure described above were considered as „detected“. Then we counted

the total number of (1a) detected essential genes or (1b) detected biosynthetic genes, (2a) not

detected essential genes or (2b) not detected biosynthetic genes, (3) detected gap and extra

genes, and (4) not detected gap or extra genes in all BGCs, and defined (1a or 1b) as true posi-

tives (TP), (2a or 2b) as false negatives (FN), (3) as false positives (FP), and (4) as true negatives

(TN). The values were used for a final statistical evaluation of FunOrder as suggested by

Chicco and Jurman [198].

Results and discussion

Applicability of FunOrder for the detection of co-evolution

First, we analyzed the 42 synthetic negative control GCs with the FunOrder software. We

could not find any sequence similarities with the empirically optimized fungal proteome data-

base, demonstrating the robustness of the FunOrder method towards non-biological random

amino acid sequences. Consequently, the 42 synthetic negative control GCs were not consid-

ered in the following.

Next, we performed FunOrder analyses of different control GCs and protein sets and calcu-

lated the internal co-evolutionary quotients (ICQs) using Eq 1. The ICQ is a value for the rela-

tive amount of co-evolutionary relations among the genes (or proteins) in a given GC or

protein set. An ICQ of 0 means that most genes (or proteins) are co-evolved with each other.

An ICQ of 1 means, that no co-evolution can be detected using the defined thresholds. As neg-

ative control for co-evolution, we used 60 randomly assembled negative control GCs (random

GCs, S8 Table). The random GCs were compiled by subsampling different proteomes, to mini-

mize the chance of random, unwanted co-evolution in the clusters. As positive control for co-

evolution we used 10 protein sets from conserved metabolic pathways of different ascomycetes

(S2 Table), termed „Biosynthetic pathways“, or „BioPath“. Given, that the proteins are part of
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the conserved primary metabolism and that their enzymatic functions are interrelated, we can

assume a high level of internal co-evolution among the proteins within these protein sets. As

control for the basic co-evolutionary value of co-localized (or sequential) genes, we used 30

random genetic loci containing 8 to 10 genes (S3 Table). We termed this control set „sequen-

tial GCs“. As test set for BGCs of the secondary metabolism in ascomycetes we used 30 empiri-

cally characterized BGCs (Table 2, S1 Table), also termed positive control BGCs.

We compared the ICQs of the different sets in an ANOVA (S5 File) and in a kernel density

plot (Fig 3). We found that the ICQs for the random GCs were significantly different from all

the other sets, demonstrating that the workflow of the FunOrder method can be used to detect

co-evolution, that the ICQ is a meaningful measure to represent the content of co-evolutionary

relationships within a GC or protein set, and that the manually defined thresholds for strict

and combined distances are applicable to define co-evolution within GC or proteins sets.

Based on these results, we defined the threshold of the ICQ for biologically relevant co-evolu-

tion within a GC as the point of intersect between the random GCs and the BGCs (0.718). GCs

with an ICQ above this threshold do not contain significantly more co-evolutionary connec-

tions among the contained genes than randomly assembled GCs.

To our surprise, we could not detect a statistically significant difference between the

sequential GCs and the positive control GCs. However, the maxima for the BioPath proteins

and the BGC are at the same value and the shape of the corresponding density plot is

Fig 3. Kernel density plot of the ICQ values for co-evolutionary linked enzymes of different control sets. BioPath, protein sets of

conserved biosynthetic pathways of the primary metabolism (S2 Table); random GCs, randomly assembled protein sets from 134 fungal

proteomes (Table 1); BGCs, previously empirically characterized fungal BGCs (Table 2); sequential GCs, co-localized genes from

random loci of different ascomycetes (S3 Table).

https://doi.org/10.1371/journal.pcbi.1009372.g003
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remarkably similar (Fig 3), whereas the maximum of the sequential GC is shifted towards the

random GCs and the shape of the curve is different to the two positive control sets (Fig 3).

These results indicate, that using only the absolute values of strict and combined distance may

not be enough to distinguish co-evolutionary linked genes within the context of co-localized

genes, but that the distances need to be assessed and interpreted in a case-by-case scenario

considering the biological background and context of the analyzed GC.

Exemplary analysis of the lovastatin BGC (lov)

The FunOrder method allows the detection of co-evolved genes within a set of genes or pro-

teins. As mentioned, we speculate that essential genes in BGCs are co-evolving and can there-

fore be differentiated from gap genes. In this context, the application of FunOrder might be

used to detect the essential or at least the biosynthetic genes in BGCs. The software package of

the FunOrder method calculates two distance matrices for the proteins within an input GC

representing the evolutionary similarities (based on pair-wise comparisons of the phylogenetic

trees using the treeKO tool [45]). First, we tried to use the previously defined thresholds for

the strict and combined distances to automatically detect the co-evolutionary relations in

BGCs. As insinuated above, this proofed not to be a successful strategy (not shown). We specu-

late, that the evolutionary similarities or distances among neighbouring genes are highly loca-

tion specific and that the absolute values are therefore not meaningful as general thresholds.

However, as the underlying strategy and method is clearly able to detect co-evolution (Fig 3),

we speculated that the obtained data may need to be represented in different forms and/or

reduced. Consequently, we added the following data visualizations to the FunOrder pipeline.

The strict and combined distances are visualized in a heatmap and clustered by higher similari-

ties (complete linkage method). Next, the Euclidean distances within the scaled distance matri-

ces are calculated and clustered (hierarchical clustering) using the Wards minimum variance

method aiming at finding compact spherical clusters, with the implemented squaring of dis-

similarities before cluster updating. The clustering is visualized in dendrograms. Finally, the

principal components of the data are represented in a score plot. Here, we exemplary describe

the manual interpretation of these visualizations (S6 File and Fig 4) with the aim to detect co-

evolution within the lovastatin BGC of A. terreus (lov, Fig 1). Please refer also to the step-by-

step description on how to interpret the FunOrder output in S2 File.

For the analysis of the lovastatin BGC, we first had a look at the heatmap representing the

strict distance matrix (S6 File). Therein all biosynthetic genes (lovA-D, F, G; Fig 1, red arrows)

are clustering together with each other and with the gap gene orf1, although not all inter-gene

distances were below the previously defined threshold (S6 File, heatmaps). This demonstrates

again that, evaluating only the numerical values (regardless of the concrete thresholds) is not

enough for a thorough analysis of a BGC. It is necessary to consider the distances within the

genomic context by comparing all provided visualisations. The biosynthetic genes of lovastatin

(lovA-D, F, G) also formed distinct clusters in the dendrograms and in the PCA of the strict

distance (S6 File and Fig 4A) In our experience, it was often helpful to additionally take the

combined distance values into consideration to get a more comprehensive picture of the BGC.

As mentioned before, the combined distance also considers speciation history. In the case of

the lovastatin BGC, orf10 and extra03 clustered together with lovA, B, D, F, G in the PCA of

the combined distance (Fig 4B). The gene orf10 encodes for an MFS (major facilitator super-

family) transporter, which warrants adding it to the „detected genes“; the transporter is actu-

ally necessary for the export of lovastatin [17] (Fig 1). The gene extra03 is predicted to encode

for an alpha-glucuronidase (AguA) which is involved in the hydrolysis of xylan. Therefore, the

clustering only in combined distance matrix does not justify classifying the gene extra03 as
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„detected“. The other two „further essential genes“, lovE and orf8 did not cluster together with

the biosynthetic genes in any visualizations of the distance matrices (Fig 4 and S6 File)). LovE

is a transcription factor and the main regulator of the lovastatin cluster [17] and essential for

the lovastatin biosynthesis in the native organism, although it is not directly part of the biosyn-

thetic pathway. The gene orf8 encodes for a 3-hydroxy-3-methylglutaryl coenzyme-A

(HMG-CoA) reductase, which is the target of statins [199] and in this case is conveying self-

resistance to lovastatin [200]. These results suggest that these two genes did not undergo the

same evolutionary process as the biosynthetic genes. This is in accordance with the „brick and

mortar”model suggested by Medema et al. [40]. The biosynthetic genes represent a co-evolving

„brick“, that is integrated into the biological context of A. terreus via the „mortar”that are the

further essential genes.

This exemplary analysis demonstrates how the different data output formats of the software

package need to be considered and compared manually, to decide on which genes are co-evo-

lutionary linked and likely to be involved in the biosynthesis of a secondary metabolite. When

considering only one output, one might get a distorted view of the analysed BGC. Notably, we

did not intend to leave this step up to automation, because the human (expert or child) pattern

recognition and mind still outperforms artificial intelligence (AI) algorithms and machine

learning algorithms in this regard [201]. Please also refer to S3 File and S4 File in which we

describe the analysis of two yet undescribed BGCs.

Speed and scalability of the software

As the empirically optimized proteome database contained only 134 fungal proteomes, we

were able to use the blastp algorithm for sequence similarity search. The analysis of the lova-

statin BGC of A. terreus (lov) with 17 genes, took 1 h 19 m 48 sec real time using 22 threads on

an Ubuntu Linux system with 128 GB DDR4 RAM. The same analysis took 6 h 54 m 50 sec

real time using 3 threads and 5 h 48 m 50 sec using 4 threads on a Linux Mint Laptop,

Fig 4. A selection of the standard output of the FunOrder analysis of the lovastatin BGC (lov). Score plots of the first two principal components from a

PCA performed on the strict distance matrix (A) and on the combined distance matrix (B). The biosynthetic genes and the further essential genes are

indicated in red and gold, respectively. Clusters in the PCA are indicated by the dashed boxes.

https://doi.org/10.1371/journal.pcbi.1009372.g004
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demonstrating that the analysis of such a large cluster as the lovastatin cluster is fast and feasi-

ble. The number of threads can be defined, to increase the scalability and the overall

performance.

Performance evaluation

Up to this point, we demonstrated that the FunOrder method can be used to detect the overall

level of internal co-evolutionary relations within a GC or set of proteins. We demonstrated

that similar levels of co-evolutionary relations occur among the genes in BGCs and among

proteins of conserved metabolic pathways of the primary metabolism, and that these positive

control sets can be distinguished from negative control GC, containing randomly stringed

together proteins from different organisms with a threshold of 0.718 for the ICQ (Fig 3). Fur-

ther, we showed that the values of strict and combined distances need to be visualized in differ-

ent forms and then interpreted manually to detect co-evolution of individual genes within

fungal BGCs. Next, we aimed to test, whether the detection of co-evolved genes is indeed a use-

ful approach to identify the essential genes in fungal BGCs. To this end, we analysed the 30

empirically verified BGCs (Table 2) as described for the lovastatin cluster before. We looked

for genes that are co-evolutionary linked with the core biosynthetic gene. These genes were

considered as “detected”. The “detected” genes sets were compared to the previously empiri-

cally obtained set of essential genes and classified the genes in true positives (TP), false nega-

tives (FN), false positives (FP), or true negatives (TN) (S1 Table). To test and evaluate, how

well FunOrder is performing in detecting either all essential or just the biosynthetic genes, we

determined two different sets of TP and FN. TPs were either all detected essential genes, or all

detected biosynthetic genes. Accordingly, FNs were either all not detected essential genes or all

not detected biosynthetic genes (S1 Table). In both cases, FPs were all detected gap and extra

genes, and TNs were all not detected gap and extra genes (S1 Table) because it makes biologi-

cally no sense to define a „detected”further essential gene as a FP, even when defining detected

biosynthetic genes as TP. For an initial performance estimation, we calculated the percentages

of detected essential and biosynthetic genes (S1 Table) and compiled them in a kernel density

plot (Fig 5). More than 75% of all essential genes and biosynthetic genes were found to be co-

evolving using the FunOrder method in 13 and 16 BGCs (out of 30 BGCs), respectively. The

curves in the density plot also differ at high percentages; nearly all (above 90%) biosynthetic

genes could be detect in more cases than nearly all essential genes. These two observations

point in the direction, that especially the biosynthetic genes share a more coherent co-evolu-

tionary history and can thus be identified by looking for co-evolved genes in BGCs. Obviously,

not all essential genes in all BGCs are co-evolving and/or can be detected as co-evolved with

this method. This is at least partly based on the biological background. Each BGC has a unique

evolutionary background and needs to be interpreted individually. The FunOrder method

offers additional information about co-evolution for already defined BGCs and may be useful

in deciding which genes might be most relevant when studying a BGC.

For a stringent statistical evaluation, we calculated the normalized Matthews correlation

coefficient (normMCC) and other classical metrics and global metrics (Table 3) as indicated

by Chicco and Jurman [198] based on the previously defined TP, FN, FP, and TN (S1 Table).

To determine the degree of balance between positive and negative controls we calculated the

no-information error rate ni which is best for balanced test sets with the value 0.5. The

obtained values of 0.5084 and 0.5444 allowed for the usage and confirmed the validity of the

classical metrics such as F1 score and Accuracy. The FunOrder method displays overall high

metrics in identifying essential and/or biosynthetic genes in a BGC. Despite the differences

between biosynthetic and essential genes in Fig 5, we could not detect strong differences in the
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overall statistical assessment. FunOrder can be used to detect essential and biosynthetic genes

in a BGC based on protein family co-evolution with a accuracy of 0.7215 and 0.743,

respectively.

Concluding remarks

The FunOrder method was created to identify the essential genes in a BGC and distinguish

them from gap genes based on the hypothesis that the essential genes are co-evolutionary

linked. We evaluated this method and simultaneously tested the underlying hypothesis using

different control sets of genes and proteins, respectively. We observed on the one hand that

Fig 5. Kernel density plots of the relative discovery rate of essential or biosynthetic genes in 30 tested fungal BGCs.

https://doi.org/10.1371/journal.pcbi.1009372.g005
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co-evolutionary linkage in fungal BGCs is commonly occurring—especially within the biosyn-

thetic genes, and on the other hand that the FunOrder method can be used to detect the bio-

synthetic genes within BGCs and to some extent also the further essential genes. We would

like to stress that this method is delivering data on co-evolution, that needs to be critically eval-

uated and interpreted keeping the biological background in mind, and that FunOrder is not to

be considered a stand-alone tool but meant to deliver supplementary data about co-evolution

within predefined BGCs.

During the testing and evaluation, we encountered several cases of ambiguous results,

where the different visualizations clustered different genes together. One way to handle such

ambiguous results is to critically assess the results by considering the gene predictions. We fur-

ther suggest adding and/or removing genes at the edges of the BGC and re-running the analy-

sis. This might change the clustering behaviour and clarify the results. Alternatively,

homologous BGCs from other fungi may be analysed by FunOrder and the clustering of the

corresponding genes compared to the initial BGC.

The basis but also limitation for the method is the database [42]. Here we used a specific set

of proteomes (Table 1) and were thus able to detect co-evolved genes in ascomycetes. Notably,

the underlying strategy and workflow of FunOrder can be adapted to analysing genomic

regions in other phyla, orders, or even kingdoms by using different databases. In case a larger

database is integrated into the software package, alternative search algorithms, such as DIA-

MOND [202] or HMMER (similarity search using hidden Markov models) [203] might be

used instead of blastp to enhance the performance. Nevertheless, each novel database, even if

only one single proteome would be introduced in an existing database, will have to be verified

and validated.

In this study, we looked for genes that share the same or a similar evolutionary background

with the core genes of BGCs and could demonstrate that FunOrder is a fast and powerful

method that can support scientists to decide which genes of a BGC are promising study

objects. Notably, the application of this method is not limited to fungal BGC. It can be used for

any applications where information of a shared co-evolution can contribute to a better under-

standing. FunOrder with the existing ascomycete database might already be used for a genome

wide analysis of co-evolving transcription factors or detection of functionally connected pro-

tein-protein interactions [42]. As a future perspective, FunOrder might be even used for the

analysis of total proteomes to detect evolutionary linked genes.

Table 3. Statistical evaluation of the performance of FunOrder in detecting relevant genes in BGCs.

essential genes biosynthetic genes

Sensitivity 0.6349 0.6615

Specificity 0.8112 0.8112

Precision 0.7766 0.7457

Negative Predictive Value 0.6823 0.7412

False Positive Rate 0.1888 0.1888

False Discovery Rate 0.2234 0.2543

False Negative Rate 0.3651 0.3385

Accuracy 0.7215 0.743

F1 Score 0.6986 0.7011

Matthews Correlation Coefficient 0.4524 0.4797

Normalized Matthews Correlation Coefficient 0.7262 0.73985

No-information error rate ni 0.5084 0.5444

https://doi.org/10.1371/journal.pcbi.1009372.t003
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