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Preclinical data suggest that head and neck squamous cell carcinomas (HNSCC) may
evade immune surveillance and induce immunosuppression. One mechanism of immune
evasion involves the expression of programmed death ligand-1 (PD-L1) in tumor and
immune cells, which is, to date, the only biomarker routinely used in clinical practice to
select patients with advanced HNSCCs more likely to benefit from anti-PD-1 therapy.
Nonetheless, PD-L1 expression alone incompletely captures the degree of sensitivity of
HNSCCs to PD-1 inhibitors. Most patients exposed to anti-PD-1 antibodies do not
respond to therapy, suggesting the existence of mechanisms of de novo resistance to
immunotherapy. Furthermore, patients that initially respond to PD-1 inhibitors will
eventually develop acquired resistance to immunotherapy through mechanisms that
have not yet been completely elucidated. In this article, we will provide an overview of
the immune landscape of HNSCCs. We will briefly describe the clinical activity of inhibitors
of the PD-1/PD-L1 axis in this disease, as well as biomarkers of benefit from these agents
that have been identified so far. We will review pre-clinical and clinical work in cancers in
general, and in HNSCCs specifically, that have characterized the mechanisms of de novo
and acquired resistance to immunotherapy. Lastly, we will provide insights into novel
strategies under investigation to overcome resistance to immune checkpoint inhibitors.

Keywords: head and neck (H&N) cancer, immunotherapy, programmed death-1 (PD-1), programmed death ligand-1
(PD-L1), programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) axis, resistance
INTRODUCTION

In recent years, our understanding of the importance of the immune system and its interaction with
tumor cells and tumor microenvironment has allowed us to explore an increasing number of
immune modulation strategies for cancer therapies (1). The identification of so-called checkpoints
in T-cell immunity—namely, the molecules programmed death-1 (PD-1) and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), as well as the development of function-blocking
antibodies against these molecules, have paved the way towards our understanding of the
relevance of the immune system against cancer and its manipulation.

Immunologic checkpoints are a complex homeostatic system of signaling pathways that mediate
the activation or selective tolerance of the immune system towards target cells (2). These pathways
serve to establish an effector response to non-self-antigens while preventing the induction of
autoimmune activity. Tumor cells, including head and neck squamous cell carcinomas (HNSCCs),
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hijack these mechanisms of immunologic surveillance and
control to create an immunosuppressive and protumor
microenvironment. As a result, immunotherapy with PD-1
blockade has emerged as the latest standard-of-care treatment
strategy developed for advanced HNSCCs.

In this article, we will provide an overview of the immune
landscape of HNSCCs. We will briefly describe the clinical
activity of inhibitors of the PD-1/PD-L1 axis in this disease, as
well as biomarkers of benefit from these agents that have been
identified so far. We will review pre-clinical and clinical work in
cancers in general, and in HNSCCs specifically, that have
characterized the mechanisms of de novo and acquired
resistance to immunotherapy. Lastly, we will provide insights
into novel strategies under investigation to overcome resistance
to immune checkpoint inhibitors.
HEAD AND NECK SQUAMOUS CELL
CARCINOMAS AND THE CANCER
IMMUNITY CYCLE

HNSCC can evade immune surveillance through several
crosslinked mechanisms that have now been recognized as
being central to the development and progression of upper
aerodigestive tract malignancies (3). The most clinically
relevant mechanism of immune evasion identified so far is the
modulation of cytotoxic T lymphocyte (CTL) activity.

A dual signal is mandatory for activation of CTLs against
tumor antigens: the recognition of major histocompatibility
complex (MHC)-antigen by the T cell receptor, and the
interaction of B7 in the antigen presenting cell with CD28 in
the CTL (4). This process primarily occurs in the lymph nodes
and is regulated by immune checkpoint molecules. CTLA-4 is
mostly expressed in CTLs, as well as in regulatory T lymphocytes
(T regs). Upon binding to CTLA-4, the B7 protein induces CTL
inhibition, and may cause CTL exhaustion (5). CTLA-4
expression is also upregulated by the immunosuppressive
molecule transforming growth factor-b (TGF-b) produced by
tumors cells (6). T regs are also one of the most important
sources of TGF-b, thus contributing to T cell exhaustion (7, 8).

At the tissue level, T cell cytotoxicity is modulated by PD-1
and its ligands. PD-1 is a transmembrane protein belonging to
the CD28 receptor family, which is highly expressed on T and B
lymphocytes. The most important ligands for PD-1 include PD-
ligand 1 and 2 (PD-L1 and PD-L2). These ligands are mostly
expressed on antigen presenting cells, endothelial cells, as well as
in CTLs (9, 10). Tregs inhibit CTLs by PD-1-PD-L1 interaction,
thus promoting immunosuppression (11, 12). Hyperexpression
of PD-1 in CTLs may also contribute to the immunosuppressive
status due to enhanced sensitivity to PD-L1 (13). Like many
other cancers, HNSCCs express PD-L1 on tumor cells,
generating an immunosuppressive state and contributing to
tumor progression and metastasis, with a negative impact on
prognosis (14–16). Depending on the assay, PD-L1 is detected in
about 50–70% of HNSCCs, and expression in Human Papilloma
Virus (HPV)-related HNSCC is higher than in unrelated tumors
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(16). Indeed, HPV-related HNSCC are especially dependent on
PD-L1 expression. HPV (+) tumors are characterized by
more lymphocyte infiltration, with higher expression of PD-1
on CTLs when compared to HPV (−) tumors (17). In fact, at least
three types of immune response in HPV (+) HNSCC have
been described, rendering our understanding of the tumor
host immune interactions more complex than previously
thought (18).

In addition to CTLA-4 and PD-1 axes-mediated mechanisms,
tumor immune evasion involves other related processes (19),
selectively and briefly described as follows, some of which may
represent therapeutic targets: (i) Neoangiogenesis induced by
tumor associated macrophages exacerbates hypoxia and lowers
the microenvironment pH, leading to PD-L1 upregulation and
impairment of CTLs proliferation and efficiency (20–22); (ii)
Chemokines and molecules, such as vascular endothelial growth
factor (VEGF), interleukin 10 (IL-10), prostaglandin E2 and
TGF-b, produced by Tregs and myeloid-derived suppressor
cells (MDSCs), as well endothelial cells, reduce the attraction
of CTLs (23). On the other hand, release of CXCL8, CCL2,
CXCL5, and CXCL12, CCL22, and CCL28 attracts Tregs (24);
(iii) Arrest of clonal expansion of CTLs, mediated by tumor cell,
dendritic cell, and MDSCs secretion of indolamine-2,3-
oxygenase (IDO), which induces degradation of tryptophan, an
indispensable molecule for CTLs growth and production of
Granzyme B (25); (iv) Impaired expression of human
lymphocyte antigen-I (HLA-I) and other molecules involved in
the antigen presentation machinery, leading to reduced tumor
antigen recognition, impaired immune response, and worse
prognosis (26, 27). Genetic alterations identified by The
Cancer Genomic Atlas Network (TCGA), such as mutations in
KMTD2 and HLA-A, contribute to this immunosuppressive
behavior (28). Even though the complete loss of HLA-I could
lead to T cell recognition evasion, activation of natural killer
(NK) cells could take place, illustrating the potential for targeting
multiple immune pathways for cancer therapy (29, 30).
THE IMMUNE LANDSCAPE OF HEAD AND
NECK SQUAMOUS CELL CARCINOMAS

Analyses of transcriptomics, genetic mutations, and copy
number alterations in HNSCCs have revealed subtypes with
common characteristics that may determine sensitivities to
immunotherapies. Specifically, HPV (−) HNSCC may be
subdivided into copy number high and low (28). Copy number
low HPV (−) HNSCC, as well as HPV (+) HNSCC have been
shown to have increased expression of immune signatures
predictive of benefit from immune checkpoint inhibitors (31).
Likewise, in a pan-TCGA analysis including HNSCC,
lymphocyte infiltration correlated negatively with copy number
variation segment burden, and positively with aneuploidy, loss of
heterozygosity, homologous recombination deficiency, and
tumor mutational burden (TMB) (32). In another pan-TCGA
analysis, somatic copy number variation scores were positively
correlated with mutations in driver genes involved in the DNA
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damage response pathway, as well as reduced cytotoxic immune
infiltration—arm/chromosome somatic copy number variation
scores were stronger predictors for decreased expression of
immune signatures compared to focal copy number variation
scores, including in HNSCCs with high TMB (33).

Recently, six immune subtypes across multiple tumor types were
identified in an extensive pan-cancer TCGA immunogenomic
analysis: wound healing, interferon-g dominant, inflammatory,
lymphocyte depleted, immunologically quiet, and TGF-b
dominant. These tumors were characterized by differences in
macrophage or lymphocyte signatures, Th1:Th2 cell ratio, intra-
tumoral heterogeneity, copy number alterations, neoantigen load,
cell proliferation, expression of immunomodulatory genes, and
prognosis (34). The vast majority of squamous cell carcinomas
were of the wound healing or interferon-g dominant subtypes, with
no significant differences in survival between these two groups.
However, a more recent TCGA evaluation further stratified
squamous cell carcinomas into six immune subtypes with distinct
molecular characteristics and outcomes (35). The immune-cold
subtype had the lowest level of T cell infiltration, the highest rate of
aneuploidy, translating into worst survival. A subtype with M2-
polarized macrophages, TGF-b signaling and reactive stroma also
had a poor outcome compared to the other subtypes. The subgroup
with the best survival rates was characterized by high CTLs and NK
infiltration and elevated interferon-g signature (35). In another
study focusing specifically on HNSCCs, Chen et al. proposed
three subgroups which were consistent with (albeit less granular
than) the aforementioned analysis: immune active (enriched by
proinflammatory M1 macrophage signature, with increased
cytolytic activity and tumor infiltrating lymphocytes, and high
incidence of HPV infection); immune exhausted (enriched by
activated stroma and anti-inflammatory M2 macrophage
signatures, with activation of the WNT/TGF-b signaling pathway
activation and poor survival), and a non-immune class (36). In
another TCGA comprehensive HNSCC immune landscape study,
Mandal et al. demonstrated that both HPV (+) and HPV (−)
HNSCCs were one of the most immune infiltrated tumors.
However, most of the immune infiltrate was comprised of Tregs,
which suppress immunological activities. NK population was also
remarkably abundant in both subtypes of HNSCC (37). HPV-
related HNSCC demonstrated the highest immune infiltration and
increased cytolytic activity, which was counterbalanced by an
increased Treg/CTLs ratio, whereas smoking related HNSCC had
the lowest level of immune infiltration and interferon-g signature.
Patients with adaptative immune response cell infiltrates and
mutations had improved survival when compared to those with
innate immune response infiltrate and copy number alterations,
suggesting a possible role for new immunotherapeutic approaches
targeting Tregs and NK cells in improving efficacy of anti-PD-1
(37). Lastly, Cillo et al. assessed the transcriptional profiles of single
cells from peripheral and intra-tumoral immune populations from
patients with HPV (−) and HPV (+) HNSCCs and showed that
helper CD4+ T cells and B cells were relatively divergent and CD8+
T cells and CD4+ regulatory T cells were relatively similar. They also
identified a gene expression signature associated with CD4+ T
follicular helper cells and longer progression-free survival (38).
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The immune phenotype of HNSCC has also been characterized
in terms of spatial distribution of tumor infiltrating lymphocytes.
Troiano et al. classified tongue carcinomas into immune-inflamed
(when lymphocytes were found next to tumor cells), immune-
excluded (when lymphocytes were found in the stroma, outside
the tumor), or immune-desert (absence of lymphocytes). Immune
desert was the less frequent subgroup, but exhibited worse overall
survival (39).

Taken together, these findings suggest a complex immune
landscape, associated with (and possibly determined by) genomic
alterations, with important implications to HNSCC prognosis.
Interestingly, in one report, the transcriptomic variability of
immunologic signatures seemed to be stable in both a spatially,
and short-term, timely manner, minimizing the importance of
tumor heterogeneity in selecting immunotherapeutic
approaches, at least for untreated patients (40). The data
provide rationale for development of PD-1 inhibitors for
HNSCCs along with potential biomarkers of efficacy, and for
development of combination immunotherapeutic approaches
for management of patients harboring tumors with de novo
and/or acquired resistance to such immunotherapies.
STANDARD IMMUNOTHERAPIES FOR
HEAD AND NECK SQUAMOUS CELL
CARCINOMAS

The identification that lymphocytes could take part in the immune
response in cancers (including HNSCCs) was identified several
years ago (41), and evolved to the development of cancer
immunotherapy, initially for melanomas, later extended to
HNSCCs and other tumor types. Simplistically, the ultimate goal
of immunotherapy is to relieve immunosuppression, and thus
induce responses in tumor, without auto-immune adverse events
(42, 43). To date, the anti-PD-1 antibodies nivolumab and
pembrolizumab have been investigated in phase 3 studies and
are the only immunotherapies approved by regulatory agencies
worldwide for treatment of advanced HNSCCs.

In patients with recurrent or metastatic HNSCC that failed
platinum-based chemotherapy enrolled in the Checkmate-141
study, nivolumab, when compared to the investigators’ choice
single agent therapy, improved overall survival (OS) and overall
response rate (ORR). Importantly, the rate of grade 3–4 adverse
events was lower with nivolumab than chemotherapy (44). In the
KEYNOTE-040 study with analogous design, pembrolizumab
demonstrated similar benefits against investigators’ choice
standard therapy, although statistical significance for the
primary OS endpoint was not reached (45).

These encouraging results led to the development of
pembrolizumab in the first-line setting for recurrent/metastatic
disease. In the KEYNOTE-048 study, with a complex statistical
design and assumptions, pembrolizumab either as monotherapy
or in combination with cisplatin or carboplatin and 5-
fluorouracil (5-FU) was compared to platinum plus 5-FU
combined with cetuximab (EXTREME regimen) in patients
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that had failed curative-intent therapies including surgery and/or
radiation therapy (46). Compared to the EXTREME regimen,
pembrolizumab monotherapy improved OS in the PD-L1
combined positive score (CPS) ≥ 20 or CPS ≥ 1 populations.
The safety profile was improved in the pembrolizumab arm. Data
on the chemotherapy plus pembrolizumab cohort is discussed
below [see PD-(L)1 inhibitors plus chemotherapy subsection].
These results led to the FDA-approval of pembrolizumab as first-
line monotherapy in patients with recurrent or metastatic disease
with PD-L1 CPS ≥1, and in combination with chemotherapy
independently of PD-L1 expression (47). However, the European
regulatory agency recommended the approval of first-line
pembrolizumab (whether monotherapy or in combination with
platinum and 5-FU) only in patients with PD-L1 expressing
tumors (CPS of 1 or above) (48). Nonetheless, PD-L1 expression
alone incompletely captured the degree of sensitivity of HNSCCs
to PD-1 inhibitors. Most patients exposed to anti-PD-1
antibodies did not respond to therapy, suggesting the existence
of mechanisms of de novo resistance to immunotherapy.
Furthermore, most patients that initially respond to PD-1
inhibitors eventually develop acquired resistance to
immunotherapy through mechanisms that have not yet been
completely elucidated. These data illustrate the need to discover
more accurate biomarkers of sensitivity to PD-1 axis blockade, as
well as strategies to enhance activity of and/or overcome
resistance to these drugs.
PREDICTIVE FACTORS FOR
IMMUNOTHERAPY BENEFITS

Both PD-L1 and PD-L2 expression have been reported in many
tumor types (including HNSCCs) and were amongst the first
candidate biomarkers of immunotherapy efficacy investigated
across several trials (49–51). Several PD-L1 assays are available in
oncology, and they seem to be highly interchangeable in HNSCC
(52), specially for assays evaluating tumor cells by the antibodies
SP263, 22C3, and 28-8 (53). Concordance between staining
scores that involve immune cells, and/or other antibodies (e.g.,
SP142) are more modest (53, 54) and require more careful
interpretation. In the pivotal phase 3 Checkmate-141 trial, OS
and ORR were improved by nivolumab across the entire study
population. However, the magnitude of benefit seemed higher in
patients with PD-L1 expression in at least 1% of the tumor cells
using the 28-8 assay. HPV (+) and HPV (−) cancers derived the
same benefit from nivolumab. No interaction between HPV and
PD-L1 status was observed in this clinical trial (44, 55).
Pembrolizumab was first explored in advanced HNSCC in the
multi-cohort phase Ib KEYNOTE-012 trial (56). Anti-PD-L1
22C3 and anti-PD-L2 3G2 antibodies were used for PD-L1 and
PD-L2 immunohistochemical assays, respectively. Overall, a 4%
complete response (CR) and 14% partial response (PR) rate was
observed, and 60% of patients experienced reductions in target
lesions. PD-L1 CPS (which takes into account PD-L1 expression
in both tumor and immune cells) performed better than the
tumor proportion score (TPS) in predicting response to
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pembrolizumab, emerging as the most reliable biomarker for
pembrolizumab. PD-L2 and PD-L1 expression were correlated,
and PD-L2 expression was also associated with higher ORR.
Patients with co-expression of PD-L1 and PD-L2 had higher
ORR compared to PD-L1 positive patients alone. However, a 9%
ORR was found in patients without the expression of any
biomarker, underscoring the limitations of these strategies in
selecting patients for pembrolizumab therapy (56). Similar
results were found in the single arm, phase 2 KEYNOTE-055
study (57). These data supported the incorporation of PD-L1
expression (assessed by CPS) into the statistical design of the
first-line KEYNOTE-048 study, as previously described.

TMB has been postulated as a possible biomarker of
immunotherapy efficacy in cancers. Presumably, high TMB
increases the abundance of neo-antigens (or neo-epitopes)
resulting from non-synonymous mutations on cancer cells,
allowing immune recognition and specific CTLs activation
(58–60). However, only a small number of missense mutations
produce neo-antigens, and a smaller part of those neo-antigens
ultimately are recognizable by CTLs (61, 62). As such, specific
immunogenic mutations, rather than total mutational burden,
may be associated with improved prognosis, as it leads to
increased expression of CD8A and hyperexpression of PD-1
and CTLA-4 (61). Despite these limitations, TMB has been
associated with improved outcomes in clinical trials. In
KEYNOTE-012, using a cut off ≥ 102 mutations per exome,
TMB was associated with improved ORR (63–65). In a series of
126 patients treated at the Dana Farber Cancer Institute, TMB
was higher in former smokers compared to non-smokers and
HPV (+) patients, as well as in responders. Among HPV (−)
responders, NOTCH1 and SMARCA4 were more frequently
mutated, and frameshift events in tumor suppressor genes
occurred more frequently. T cell immunoglobulin mucin-3
(TIM-3)/lymphocyte activated gene-3 (LAG-3) co-expression
with PD-1 was higher on T cells among non-responders,
suggesting a possible mechanism of adaptive de novo immune
resistance (66). Consistent with the KEYNOTE-012 and Dana
Farber data, a post hoc analysis of the EAGLE study revealed that
a blood TMB of 16 mutations/Mb was associated with improved
OS in the second-line setting for the anti-PD-L1 durvalumab
alone, or in combination with the anti-CTLA4 tremelimumab
versus single agent chemotherapy (67). Of note, blood TMB
seemed also to be prognostic in the EAGLE study, since median
OS in the standard of care arm was 4.0 months for high TMB
versus 8.6 months for low TMB, raising the question whether this
biomarker could be associated with poor outcomes to
chemotherapy alone (67).

Interferon-g and its co-stimulatory chemokines are implicated in
tumor innate immune sensing, leading to immediate CTLs
recruitment into the tumor micro ambient, a key step for an
effective immune response (68–70). Interferon-g gene expression
was associated with clinical response in several cancer types treated
with pembrolizumab (71). Likewise, in the KEYNOTE-012 study, a
6-gene interferon-g signature including IDO1, CXCL10, CXCL9,
HLA-DRA, STAT1, IFN-g gene expression was found to be
associated with improved ORR or progression-free survival (65).
March 2021 | Volume 11 | Article 596290
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A major role of fecal microbiome in determining response to
immunotherapy has been increasingly recognized in recent years
(72). Several mechanisms have been implicated in the dynamic
interaction between microbiome and immunologic response,
including T-cell activation, influence on recognition pattern of
antigens (73). Some specific bacterial genera have been identified
as predictors of response and toxicity in fecal microbiota
transplant (FMT) experiments in mice. Akkermansia
muciniphila was associated with increased response to anti-
PD-1 (74). A. muciniphila, and Enterococcus hirae was able to
reverse resistance to immunotherapy in mice. The mechanism
implicated in such effects were related to increase in CCR9,
CXCR3, and promotion of CTLs infiltration (75). Studies in
melanoma suggested that the presence of certain genera, like
Bifidobacterium longum, Collinsella aerofaciens, Enterococcus
faecius, Faecalibacterium spp and Ruminococcaceae spp were
associated with increased response to immunotherapy, and
Bacteriodales were more common among non-responders.
Responders were more likely to harbor greater microbiome
diversity than non-responders (76, 77). Recently, data from
phase 3 randomized trials comparing anti-PD-1 to
chemotherapy showed that the use of antibiotics impaired the
OS of patients receiving anti-PD-1 without compromising
survival in the control group, suggesting a major role of
microbiota in the benefit of immunotherapy in HNSCC (78).
Oral cavity microbiome has also been implicated in HNSCC
carcinogenesis and progression. Usually, Fusobacteria are
abundant in primary and metastatic tissues, whereas
Streptococcus have limited homing (79). Smoking and alcohol
consumption are major risk factors for both HNSCC and
periodontal disease, and are key modifiers of oral microbiota
(80, 81). Abundant F. periodonticum and S. mitis and P. pasteri
paucity are associated with late stage oral cancer (82). Despite
these promising data, oral microbiome was not associated with
outcomes in the Checkmate 141 study (83). Evaluation of fecal
specimens may better reflect patients’ microbiome, but have not
been assessed in anti-PD-1 trials in HNSCCs.

Taken together, these data demonstrate that a robust
biomarker of sensitivity to PD-1/PD-L1 blockade has yet to be
developed. It is likely that multiple mechanisms of resistance to
immunotherapies are in place, leading to low response rates to
single agent PD-1 inhibitors in all HNSCC clinical trials
performed to date. Few comprehensive upfront and re-biopsy
studies for biomarker evaluation (especially upon disease
progression) have been completed. As will be discussed below,
such investigations would be essential for the rational design of
strategies aiming at mitigating resistance to treatment.
RESISTANCE TO IMMUNOTHERAPIES

From a clinical perspective, resistance to immunotherapy may be
divided into de novo or acquired. De novo (or primary) resistance
may be defined as lack of benefit from upfront immunotherapy
treatment, whereas acquired (or secondary) resistance is
characterized by an initial period of benefit from immunotherapy
Frontiers in Oncology | www.frontiersin.org 5
followed by disease progression. Mechanistically, de novo and
acquired resistance to immunotherapy may share common
processes, including adaptive immune resistance (whereby the
cancer is recognized by, but evades the immune system, by
adapting to the immune attack). Additionally, acquired resistance
to immunotherapy may emerge from adaptive resistance that
occurs in a relatively homogenous fashion, and/or by selection of
heterogenous clones over time that were already resistant to
immunotherapy, even before treatment initiation (84).

Mechanisms of resistance to immunotherapy include tumor
cell-intrinsic and tumor cell- extrinsic factors. Tumor cell-
intrinsic resistance may stem from absence of antigenic
proteins, absence of antigen presentation, genetic T cell
exclusion, and/or insensitivity to CTLs. Tumor cell-extrinsic
resistance may be a result of absence of CTLs, expression of
inhibitory immune checkpoints, and/or presence of
immunosuppressive cells (84–86). None of these mechanisms
have been extensively studied in HNSCCs, limiting our
understanding about the dynamic pressures on the immune
system at play upon immunotherapy administration, and
hindering our ability to rationally design combination and/or
sequential approaches to mitigate resistance to PD-1 inhibitors.
Knowledge gained from other cancers and pre-clinical work
might prove to be relevant to HNSCC patients and is therefore
described below.

Beta-2-microglobulin (B2M) has an important function on
HLA class I transport to cell membrane, and inactivating
mutations in B2M lead to loss of expression of HLA class I,
impairing immune response (87, 88). This mechanism of
resistance to anti-PD1 in metastatic melanoma has been
detailed elsewhere (89). Other groups reported that B2M
mutation in other clinical settings could also lead to acquired
resistance to immunotherapy (90–92). Other causes of HLA class
I loss of expression with intact B2M may also induce disease
progression to anti-PD1 (90). Saloura et al. have demonstrated
more diverse T-cell repertoire in HPV (+) versus (−) HNSCC,
possibly due to impaired HLA class I expression induced by the
virus (93). As such, strategies that could restore HLA class I
expression could potentially be developed to augment immune
response in this setting.

Release of IFN-g by CTLs may induce PD-L1 andMHC class I
expression in tumor cells through activation of the JAK-STAT
pathway. Several mechanisms of tumor cell death derive from
this pathway (94). Clinical evidence recognizes that mutations in
JAK1 and JAK2 can be responsible for the progression of
metastatic melanoma after initial response to anti-PD1 (89). It
is unknown whether alterations in other molecules in the JAK-
STAT pathway could be implicated in acquired resistance to
immunotherapy, but their role in primary resistance has already
been demonstrated (95).

The loss of mutations that preclude the expression of
neoantigens recognized by the immune system through clonal
selection, copy-number loss, or epigenetic mutation may lead to
immune evasion and clinical progression (96). In a case series of
four patients with non-small cell lung cancers, mutations
encoding neoantigens were lost, and progressive disease
March 2021 | Volume 11 | Article 596290
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occurred after initial response do anti-PD1 therapy (97) Clonal
pressure has been implicated in immunoselection of tumor cells
that respond to CTLs and adoptive cell transfer immunotherapy
(98–100).

Phosphatase and tensin homolog on chromosome 10 (PTEN)
inactivation and, consequently, phosphoinositide 3-kinase
(PI3K) pathway activation is related to an immunosuppressive
tumor microenvironment that may have implications in
resistance to immunotherapy (101). A total of 55 isocitrate
dehydrogenase 1 wild-type glioblastoma patients who received
immunotherapy, including 13 long-term responders, were
analyzed in one report, and PTEN mutations were identified
in 23 out of 32 non-responders, but only in 3 responders
(102). PTEN mutations were also associated with an
immunosuppressive signature. Similar results were found in
non-small cell lung cancer and melanoma patients, indicating a
putative effect of PTEN-loss in acquired resistance to
immunotherapy (103, 104). PTEN-loss may also be implicated
in secondary resistance to immunotherapy in other distinct
tumor types (105, 106). Patients with metastatic melanoma
who initially responded to anti-PD-1 alone or in combination
with anti-CTLA-4 and then progressed were analyzed, and
PTEN-loss was identified in 5 cases in the post-progression
biopsy out of 18 intact PTEN expression in pre-treatment
biopsies (107). In surgically treated oral cavity squamous cell
carcinomas, PTEN loss in tumor infiltrating immune cells has
been associated with worse prognosis (108). Similarly to PTEN-
loss, WNT-b-catenin promotes an immunosuppressive tumor
microenvironment that may be responsible for secondary
resistance to immunotherapy (106, 109).

Modulation of other immune checkpoints has been identified
in patients with secondary resistance to immunotherapy,
including, but not limited to, TIM-3, LAG3, and V-domain
immunoglobulin suppressor of T cell activation (VISTA),
glucocorticoid induced TNFR family related gene (GITR), and
T cell immunoglobulin and immunossupressor tyrosine kinase-
based inhibitory motif (TIGIT) (90, 107, 110).

TIM-3 is a member of TIM family expressed on CD4(+) Th1
but not Th2 lymphocytes (111). It is also expressed in tumor cells
and other immune cells (112). TIM-3 and its ligands, such as
galectin-9, may regulate several biological functions of tumor
cells, including aggregation, adhesion and apoptosis (113, 114).
The binding of TIM-3 to galectin-9 leads to promotion of
apoptosis of Th1 cells, impairs function of CTLs and induces
major expansion of MDSCs, suppressing immune response. In
early stages of disease, TIM-3 may have an immunostimulatory
effect favoring CTLs secretion of interferon-g, but TIM-3
expression in Tregs in late-stage tumors favor the suppression
of CTLs and are important to create an immunosuppressive
environment. Anti-TIM-3 monoclonal antibody may suppress
the inhibition of CTLs and improve antitumor response (115).
TIM-3 expression has been implicated in nodal metastasis and
recurrence in HNSCC (116). TIM-3 may be related to the
exhaustion of CTLs and ineffective immune response in
HNSCC, favoring metastatic behavior (117) In a HNSCC
mouse model, anti-TIM-3 antibody induced activation of CTLs
Frontiers in Oncology | www.frontiersin.org 6
and suppressed MDSCs, inhibiting carcinogenesis and
improving antitumor responses (116).

LAG3, also known as CD223, is mainly expressed in activated
T cells and, to a lesser extent, NK cells, B cells and dendritic cells.
LAG-3 reduces T cell proliferation and activation (118, 119).
LAG-3 is also an effector of Tregs inhibitory function (120).
Tumor-infiltrating lymphocytes co-expressing PD-1 and LAG-3
may be susceptible to inhibition, leading to immune scape of
cancer cells (121). LAG-3 also binds to liver and lymph node
sinusoidal endothelial cell C-type lectin (LSECtin) and inhibit
the secretion of interferon-g by CTLs, therefore inhibiting
immune response (122). Fibrinogen-like protein 1 (FGL1) is a
liver secreted protein which inhibits the activation of T cells (123,
124). FGL1 is upregulated in several human cancers and it is
associated with impaired outcome and blocking of FGL1-LAG-3
interaction enhances T cell response and improves antitumor
immunity (123, 124). In HNSCCs, LAG-3 overexpression is
associated with worse prognosis, and LAG-3 blockade retarded
tumor growth in a HNSCC mouse model (125).

VISTA is another checkpoint similar in function to PD-L1
and capable of suppressing T effector cells. VISTA is expressed
on myeloid APCs and Tregs (126). VISTA enhances Treg
maturation and suppresses T cell activation (127). V-set and
immunoglobulin domain-containing 3 (VSIG3) interacts with
VISTA on activated T cells, suppress T cell proliferation and
induces the production of immunosuppressive cytokines and
chemokines. Data from several tumor types support blocking of
VSIG3/VISTA pathway as a promising immunotherapy strategy
(128). In HNSCC patients, overall survival was reduced when
VISTA expression was high simultaneously with low CD8+
infiltration (129).

GITR is expressed on the surface of CD25+CD4+ Tregs,
CTLS and NK cells (130). Binding of GITR to its ligand GITRL
may impair the attraction of Tregs, weaken their suppression
activity and activate the MAPK (mitogen-activated protein
kinase)/ERK pathway and NF-kB signaling, which ultimately
induces T cell proliferation and pro-inflammatory cytokines
(131–133).

TIGIT is expressed mainly in effector lymphocytes and NK
cells (134). CD155 is highly expressed in tumor cells and has high
affinity to TIGIT, and induces IL-10 secretion, reduces the
secretion of pro-inflammatory cytokines and inhibits
antitumor response (135). TIGIT shares the same ligands with
CD226, which, in part, counterbalances the TIGIT
immunosuppressive effect (136). In mouse models of HNSCCs,
TIGIT blockade delayed tumor progression through
mechanisms involving CD8+ CTLs activation and Tregs
inhibition. PD-1/PD-L1 inhibition increased expression of
TIGIT on Tregs (137).

Some mechanisms of resistance may be induced by previous
treatment. For example, in the Checkmate-064 study, patients
with metastatic melanomas were randomized to ipilimumab
followed by nivolumab after 12 weeks or the opposite order,
and the immune landscape was analyzed at baseline and at week
13. Some immunophenotypes were more prone to show
responses to ipilimumab and progression to nivolumab, and
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vice versa. Ipilimumab and nivolumab induced different patterns
or immune landscape change after 12 weeks, and such patterns
were related to patient outcomes. Furthermore, the alterations
induced by ipilimumab favored progression in the nivolumab-
ipilimumab cohort, whereas the alterations induced by
nivolumab favored response in the nivolumab-ipilimumab
cohort (138). These findings explain the superior survival
outcomes in the nivolumab-ipilimumab arm (139).
DISCUSSION AND FUTURE DIRECTIONS

There is an intricate interplay between the immune system, other
components of the tumor microenvironment, and cancer cells
that ultimately contribute to carcinogenesis and determine
sensitivity and resistance to therapeutic strategies that have
been developed so far to manage HNSCCs. The complexities
of the microenvironment-cancer cell equilibrium outlined above
in this review suggest that single-agent anti-PD-1/PD-L1 therapy
would not be sufficient to promote long-term disease control. A
natural evolution in the clinical development process of
pharmacologic agents to treat HNSCCs would be the study of
drug combinations, many of which have not been thoroughly
investigated in pre-clinical systems specific to head and neck
cancers but are already undergoing testing in human trials. This
rapid pace of clinical investigations underscores a new model of
information “cross pollination” from one cancer type to the next
that, on the one hand, could reduce the likelihood of success of
each individual study (given less robust rationale), but on the
other hand may collectively result in identification of improved
treatment options for patients with malignant diseases that were
Frontiers in Oncology | www.frontiersin.org 7
previously considered low priority for drug development, such as
HNSCCs. Indeed, at the time of this writing, a search on
clinicaltrials.gov using the terms “head and neck cancer” AND
“nivolumab”, “pembrolizumab”, “durvalumab”, “atezolizumab”,
“avelumab”, OR “cemiplimab” (i.e., PD-1/PD-L1 inhibitors
already approved for at least one cancer type) resulted in 270
studies (Figure 1). Below, we briefly discuss all phase 3 drug
combination trials identified, whether ongoing, completed
or terminated.

Programmed Death Ligand-1 Inhibitors
Plus Chemotherapy
Chemotherapy has been proposed as a combination strategy to
enhance immunotherapy efficacy and bypass de novo and/or
acquired resistance to PD-(L)1 inhibitors, through mechanisms
that might involve increase of mutational load in cancer cells,
depletion of suppressive regulatory T cells and myeloid-derived
cells, normalization of neovasculature (thus facilitating T cell
infiltration), upregulation of HLA class I expression and other
components of antigen presentation machinery, induction of
immunogenic cancer cell death (leading to neoantigen cross
presentation), and modulation of cell signaling to increase
sensitivity to interferon-gamma (140). In the KEYNOTE-048
phase 3 study, platinum, 5-FU plus pembrolizumab was
compared to platinum, 5-FU plus cetuximab, and results
demonstrated an improvement in overall survival for patients
with PD-L1 expression CPS ≥ 20, CPS ≥ 1, or in the total
population (regardless of PD-L1 expression) (46). Post-hoc
analysis has demonstrated that efficacy improvement for the
combination was primarily restricted to the PD-L1 positive
group (141), raising the possibility that chemotherapy may not
270 an�-PD-1/PD-L1 clinical trials

161 combina�on studies

Phase I
N=95

Phase II
N=93

Phase III
N=12

Pembrolizumab
N=75

Nivolumab
N=44

Durvalumab
N=32

Atezolizumab
N=13

Avelumab
N=10

Cemiplimab
N=4

Excluded:

45 single agent
40 XRT combo
15 chemo combo
9 other reasons

BA

C

FIGURE 1 | Clinical trials evaluating immunotherapy in HNSCC. (A) Completed, ongoing, or terminated HNSCC clinical trials involving pembrolizumab, nivolumab,
durvalumab, atezolizumab, avelumab, or cemiplimab as single agents or in combination with drugs other than cytotoxic chemotherapy. (B). Most common co-
targets (or mechanism of action, when appropriate – e.g. oncolytic virus) for anti-PD-1 or anti-PD-L1 combinations (C). A word cloud visual representation of PD-1 or
PD-L1 inhibitors (in capital letters) and their co-targets (in small caps) under evaluation in combination studies. The font size is proportional to the number of studies
employing the intervention.
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contribute to overcoming resistance to immunotherapy in
patients without PD-L1 expression. A comparison between the
pembrolizumab and chemotherapy plus pembrolizumab arms
was not planned per trial design, and therefore it remains to be
determined whether the long-term benefits from treatment in the
pembrolizumab-containing arms can be attributed to the
immunotherapy alone, or may be a result of a synergistic effect
between chemotherapy and immunotherapy contributing to
mitigation of resistance to treatment. Several chemotherapy
plus immunotherapy trials are under way (Figure 1),
combined or not with radiation therapy (see below).

Programmed Death Ligand-1 Inhibitors
Plus Radiation Therapy
The tumor immune microenvironment is dynamic and has been
shown to be depleted of CD8+ T cells and B lymphocytes in
recurrent versus primary tumors, with immune suppressive features
apparent after receipt of chemoradiation therapy (142). Clonal
expansion of tumor-infiltrating T cells has been identified in
patients with untreated, locoregionally advanced SCCHN (93).
These observations increase the enthusiasm for incorporating
immunotherapy for earlier stages of HNSCC, in which immune
function seems to be better preserved, and for which radiation
therapy-based strategies are often used as a standard of care.
Adiotherapy-induced immunosuppression has been well
characterized (143). In animal models, PD-L1 blockade combined
with radiation therapy reverses T cell exhaustion and leads to
oligoclonal T cell expansion (144), suggesting a possible role of
PD-(L)1 inhibitors in contributing to disease control in this setting.
Radiation therapy may also synergize with immune checkpoint
inhibitors through other nonredundant pathways that enhance
antitumor activity, reviewed elsewhere (143, 145). Results of the
first randomized studies combining PD-(L)1 inhibitors with
radiation therapy for locally advanced HNSCC have recently been
presented. In the GORTEC 2015-01 PembroRad trial,
pembrolizumab plus radiation therapy failed to improve
locoregional control compared to cetuximab plus radiation
therapy in patients unfit for platinum (146). Likewise, in the
phase 3 JAVELIN Head and Neck 100 trial, addition of avelumab
to cisplatin/radiation therapy did not improve progression-free or
overall survival (147). In advanced disease, addition of stereotactic
radiation therapy to nivolumab has also been evaluated as a strategy
to induce abscopal effect in a randomized phase 2 trial.
Unfortunately, there were no improvements in overall response
rates of nonirradiated lesions (primary endpoint), progression-free
or overall survival (148). Despite these early negative results, several
studies continue to evaluate immunotherapy in the context of
radiation therapy (Figure 1) and will eventually determine
whether PD-(L)1 inhibitors and radiation therapy can be
combined to effectively circumvent resistance to treatment.

Programmed Death Ligand-1 Plus
Cytotoxic T-Lymphocyte-Associated
Protein 4Inhibitors
CTLA-4 was the first modern immunotherapy strategy to be
widely explored in oncology. CTLA-4 can bind to B7, precluding
Frontiers in Oncology | www.frontiersin.org 8
the interaction between B7 and the co-stimulatory molecule
CD28 and limiting the proliferation of T cells and the release
of interleukin-2 (149). Blocking of CTLA-4 may limit the
inhibitory effect on CTLs favoring host immune response. Due
to its limited efficacy in other tumor types than melanoma,
including HNSCC, anti-CTLA-4 has been developed mostly in
combination with other agents (150–155). More recently,
building on the results of the phase 2 CONDOR study (154),
durvalumab, alone or in combination with tremelimumab, were
compared to investigator’s choice chemotherapy (cetuximab,
taxane, methotrexate, or fluoropyrimidine) in the phase 3
EAGLE study involving patients with HNSCC whose disease
failed platinum-based chemotherapy. Durvalumab alone or in
combination did not meet the primary outcome of OS benefit.
Duration of response and 2-year survival were improved in the
durvalumab monotherapy arm, suggesting that this drug is active
in HNSCCs (156). PD-L1 expression, as assessed by SP263 assay,
did not impact on any of the efficacy results, but a small benefit
was found in patients with high TMB (≥16mutations/Mb) (67,
156). Despite these disappointing results, durvalumab alone or in
combination with tremelimumab was evaluated in the first line
setting in comparison with the EXTREME regimen in the
KESTREL trial (NCT02551159), and results are pending.
Nivolumab has also been tested in combination with
ipilimumab versus nivolumab alone in the Checkmate-714
trial, and although the data have not yet been formally
reported, a press release dated April 25, 2019 has indicated
that the study did not meet its primary endpoint. In
Checkmate-651 nivolumab plus ipilimumab has been
compared against the EXTREME regimen (NCT02741570).
Recruitment has already been completed, and the main data
for these trials are expected in the following months. Nivolumab
plus ipilimumab is also under development in the setting of
locally advanced, potentially curable disease (NCT03700905).
Taken together, the strategy of targeting PD-(L)1 plus CTLA-4
has not yielded promising results so far in phase 2/3 trials (154,
156). Unless the recently completed studies (NCT02551159,
NCT02741570) report superior outcomes in the near future,
other immunotherapy-immunotherapy combinations may need
to be explored, as discussed below.

Programmed Death-1 Plus Indolamine-2,3-
Oxygenase Inhibitors
IDO is an enzyme that metabolizes tryptophan, limiting CTLs
cytotoxicity. It is highly expressed in tumor-cells, macrophages
and dendritic cells (157). Tryptophan depletion and its
inhibitory metabolites has been implicated on how IDO is
responsible for T cell anergy and suppression, as well as Treg
activation and MDSCs infiltration (158, 159). IDO activity has
been implicated on resistance to anti-PD-1 therapy (160, 161).
Epacadostat, an IDO inhibitor, was evaluated in combination
with pembrolizumab in advanced solid tumors, including
HNSCCs. In phase I study ECHO-202/KEYNOTE-037, the
ORR for this combination was 55%, including 13% complete
responders. Two patients with refractory HNSCC were included,
and one achieved a partial response and the other had stable
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disease with minor reduction in tumor burden (162). This study
had a phase II part, including 36 additional HNSCC patients.
The ORR was 30.5%, which was lower in patients with 3 or more
lines of treatment (163). Nivolumab was also combined with
epacadostat, with an ORR of 22.6% (164). Despite these results,
its development as adjunctive therapy to anti-PD-1 in HNSCC
(NCT03358472, NCT03342352) was halted due to the negative
results of the combination IDO inhibitor and pembrolizumab in
melanoma (165).
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Programmed Death-1 Plus B7H3 Inhibitors
B7 constitutes a superfamily of inhibitory molecules in the cancer
microenvironment was highly related to the immune evasion of
cancer cells (4). B7-H3 (also known as CD276) is a newly
identified member of the B7 family (166, 167), which is found
in several human cancer cells and APCs. B7-H3 induces
proliferation of both CD4+ and CD8+ T cells, enhances CTLs,
and stimulates IFN-g production in the presence of T cell
receptor signaling (167). B7-H3 was later found to negatively
TABLE 1 | Select Phase I and II drug combination clinical trials with PD-1/PD-L1 inhibitors.

Drugs PD-1/PD-L1
co-target

Summary of results Reference

avelumab/
cetuximab

EGFR Phase-I feasibility trial evaluating RT plus cetuximab-avelumab in cisplatin-ineligible advanced HNSCC. 8/10
completed therapy. No grade 4-5 toxicity was found. PFS was 10mo. (NCT02938273)

Elbers et al. (171)

durvalumab/
cetuximab

EGFR Phase II clinical trial evaluating cetuximab plus durvalumab in advanced/metastatic HNSCC. The first
preliminary report identified an activation of NK cell immune response. (NCT03691714)

Gulati et al. (172)

Pembrolizumab/
cetuximab

EGFR Multi-cohort phase II trial evaluating cetuximab plus pembrolizumab in advanced/metastatic, cisplatin-
refractory or cisplatin-ineligible HNSCC patients. In anti-PD-1/cetuximab naïve patients cohort, 33 subjects
were enrolled. ORR was 41% and PFS was 8.2mo. (NCT03082534)

Sacco et al. (173)

nivolumab/
cetuximab

EGFR Phase II clinical trial evaluating cetuximab plus nivolumab in previously treated advanced/metastatic HNSCC
patients. Median PFS and OS were 3.4 and 11.5 months, respectively. (NCT03370276)

Chung et al. (174)

durvalumab/
MEDI0457

HPV Phase II window of opportunity trial evaluating durvalumab plus MEDI0457, a therapeutic vaccine against
HPV, in potentially curable p16+ HNSCC patients. Only 3 out of 21 patients recurred. (NCT02163057)

Aggarwal et al.
(175)

avelumab/
TG4001

HPV Phase Ib window of opportunity trial evaluating avelumab plus TG4001, a therapeutic vaccine against HPV,
in advanced/metastatic HPV+ patients. T cell responses were observed. Three out of nine patients (including
5 with HNSCC) showed partial responses. (NCT03260023)

Le Tourneau et al.
(176)

nivolumab/
ISA101

HPV Phase II clinical trial evaluating nivolumab plus ISA101, a therapeutic vaccine against HPV-16, in patients with
advanced/metastatic HPV-16 positive cancers. Twenty two out of 24 patients had HPV+ oropharyngeal
cancer. The ORR was 33.3%, and median PFS and OS were 2.7 and 17.5 months, respectively.
(NCT02426892)

Massarelli et al.
(177)

pembrolizumab/
enoblituzumab

B7H3 Phase I clinical trial evaluating pembrolizumab and enoblituzumab in solid tumors. The ORR was 33.3% in 18
patients with HNSCC not previously exposed to anti-PD-1. (NCT02475213)

Aggarwal et al.
(170)

pembrolizumab/
eftilagimod
alpha

LAG3 Phase II multi-cohort trial evaluating pembrolizumab plus eftilagimod alpha in lung and HNSCC patients. The
ORR in HNSCC were 40% in 15 patients. (NCT03625323)

Felip et al. (178)

nivolumab/
lirilumab

KIR2DL1/2L3 Phase I/II trial evaluating nivolumab plus lirilumab in advanced/metastatic HNSCC patients. Amongst 41
patients, the ORR was 24.1%, including 10.3% complete responders.

Leidner et al. (179)

atezolizumab/
varlilumab

CD27 Phase I trial evaluating atezolizumab plus varlilumab in solid tumors. A total of 36 patients with solid tumors
were included. Amongst three HNSCC patients, one responded. (NCT02335918)

Sanborn et al. (180)

pembrolizumab/
SD-101

TLR9 Phase Ib/II trial evaluating pembrolizumab plus SD-101 in patients with advanced/metastatic HNSCC.
Twenty-three patients out of 28 were evaluable for efficacy. The ORR was 22%, including two patients with
complete response. (NCT02521870).

Cohen et al. (181)

durvalumab/
AZD9150
durvalumab/
AZD5069

STAT3
CXCR2

Phase Ib/II trial evaluating durvalumab in combination with AZD9150 or AZD5069 in anti-PD-1/PD-L1 naïve
patients with advanced/metastatic HNSCC. In 38 patients in the AZD9150 cohort, ORR was 26%, including
4 complete responders. In 20 patients of AZD5069 cohort, ORR was 10%. (NCT02499328)

Cohen et al. (182)

pembrolizumab/
GR-MD-02

Galectin3 Phase Ib trial evaluating pembrolizumab plus GR-MD-02 in patients with malignant melanoma, lung cancer
and HNSCC. The ORR was 33% in the six HNSCC treated patients. (NCT02575404)

Curti (183)

pembrolizumab/
INCB001158

Arginase Multi-cohort phase I/II trial evaluating INCB00158 alone or in combination with pembrolizumab in advanced/
metastatic solid tumors. Mature data for MSS CRC showed 28% ORR. HNSCC is yet to be reported.
(NCT02903914)

Naing et al. (184)

durvalumab/
metformin

AMPK Phase I window of opportunity trial evaluating durvalumab plus metformin in patients with operable HNSCC.
The combination was safe. Data on response is pending. (NCT03618654)

Richa et al. (185)

nivolumab/
tadalafil

PDE5 Phase II window of opportunity trial evaluating nivolumab alone or in combination with tadalafil in patients
with operable HNSCC. Patients (N=47) were randomized to nivolumab alone or in combination. Half of the
patients responded, including 9% complete response rate. Tadalafil improved T cell infiltration.
(NCT03238365)

Luginbuhl et al.
(186)

durvalumab/
olaparib

PARP Phase II window of opportunity trial randomized operable HNSCC patients to cisplatin/olaparib, olaparib
alone, no treatment or olaparib plus durvalumab. Two patients out of 11 responded to Olaparib-durvalumab,
including a complete responder.

Psyrri et al. (187)
March 2021 | Volume
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regulate T cell function, affecting preferentially T helper type 1-
mediated immune responses (168). Overexpression of B7-H3
was associated with larger tumor, advanced stage, and impaired
survival in oral cancer patients (169). Retifanlimab, an anti-PD-1
antibody, and enoblituzumab, an anti-CD276, were evaluated in
combination in multiple tumor types cohorts. In the anti-PD-1
naïve HNSCC cohort, 18 patients were treated, and ORR were
33.3%, with five partial responders and one complete responder
(170). This led to the subsequent development of a phase II/III
study (NCT04129320).

Programmed Death Ligand-1 Plus
EGFR Inhibitors
As described in Table 1, a number of phase 2 studies have been
completed targeting the PD-1/PD-L1 axis and EGFR in
recurrent/metastatic disease. A randomized, phase 3 study is
currently ongoing evaluating the role of avelumab added to
concurrent cetuximab/radiation therapy in locally advanced
HNSCCs. GORTEC-2017-01 is a two-cohort prospective
clinical trial enrolling treatment naïve patients with resectable
stage III-IVa HNSCC. Cisplatin-eligible patients will be
randomized to radiation therapy plus cisplatin or radiation
therapy plus cetuximab plus avelumab. Those who are unfit for
cisplatin therapy will be randomized to radiation therapy plus
cetuximab or radiation therapy plus cetuximab plus
avelumab (NCT02999087).

Programmed Death-1 Inhibitor
Plus Lenvatinib
As mentioned above, angiogenesis is closely related to immune
response and may take part in the development of de novo or
acquired resistance to immunotherapy. Lenvatinib is a multi-
kinase inhibitor of vascular endothelial growth factor receptors
1–3, was combined with pembrolizumab in a phase Ib/II clinical
trial. The ORR was 36.4% in 22 evaluated HNSCC patients (188).
These results lead to the development of a placebo-controlled
randomized phase 3 trial enrolling patients with HNSCC with no
prior therapy for advanced or metastatic disease and CPS ≥ 1 to
pembrol izumab plus Lenvatinib or pembrol izumab
alone (NCT04199104).
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Programmed Death-1 Inhibitor Plus
Inducible Co-Stimulator of T Cells Agonist
The inducible co-stimulator of T cells (ICOS, or CD278) and its
ligand (ICOSL) play important roles in memory and CTLs
development and specific immune responses (189). ICOS and its
pathway potentiates immunosuppression mediated by Tregs, but
also induces antitumor responses when activated in CTLs (190,
191). Data on combination of anti-PD-1 with ICOS agonists are
scarce, but synergy has been observed (192, 193). These data led to
the rapid launching of a randomized phase 2 study evaluating the
combination of ICOS agonists and anti-PD-1. Treatment naïve
patients with advanced/metastatic HNSCC expressing PD-L1 (CPS
≥ 1) are randomized to receive pembrolizumab with GSK3359609
or placebo in the INDUCE-3 trial (NCT04128696). A second study
will encompass HNSCC with or without PD-L1 expression. In this
study, patients will be randomized to platinum-fluorouracil-
pembrolizumab plus GSK3359609 or placebo (NCT04428333).

In addition to the aforementioned phase 3 studies, multiple
phase 1/2 clinical trials with PD-1/PD-L1 inhibitors combined
with a second drug targeting a variety of pathways are ongoing or
have been completed (Table 1) (170–187). Studies for which data
have been reported are summarized in Table 1. These clinical
trials include patients that are immunotherapy-naïve (thus
potentially addressing de novo resistance) and/or patients who
have developed acquired resistance to anti-PD-1. While it is
premature to elect a dominant combination strategy that will
move forward to become a new standard of care, preliminary
results for many of these studies are encouraging. Nonetheless, it
is expected that resistance mechanisms will not be uniform in all
patients, and biomarker-informed approaches will likely be
needed to maximize the chances of achieving long-term
successful outcomes, thus leading, in the future, to the
development of precision immunotherapy for recurrent/
metastatic HNSCCs, and ultimately earlier stage disease as well.
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